Micas, feldspars and columbite tantalite minerals from the...

19
eschweizerbart_xxx Micas, feldspars and columbite–tantalite minerals from the zoned granitic lepidolite-subtype pegmatite at Namivo, Alto Ligonha, Mozambique ANA M. R. NEIVA * Department of Earth Sciences and Geosciences Centre, University of Coimbra, 3000–272 Coimbra, Portugal *Corresponding author, e-mail: [email protected] Abstract: The Namivo granitic lepidolite-subtype pegmatite is concentrically zoned. Textural and chemical studies show at the crystal scale and within each zone that muscovite evolved to lithian muscovite and the latter to ‘‘mixed form’’ in the outer and inner intermediate zones and core. ‘‘Mixed form’’ also evolved to lepidolite in the inner intermediate zone and core. Each of these micas represents an evolution from the pegmatite outer intermediate zone to the inner intermediate zone and core. Some crystals are progressively zoned while others are reversely zoned, but overgrowths and replacements also occur. Albite and K-feldspar evolved from the wall zone to the core and feldspar thermometry records a decrease in temperature. Columbite-(Mn) shows a compositional trend from the outer intermediate zone to the core typical of this mineral from a lepidolite-subtype granitic pegmatite. The chemical zonation of this pegmatite is derived from crystallization of an undercooled granitic melt in which a probably local constitutional zone refining of fluxing and incompatible elements contributes to the textural and chemical changes from the wall zone to the core. The unexpected occurrence of lepidolite and Fe/Mg-containing polylithionite, the richest micas in Si, Li calc . and F, in the outer intermediate zone is attributed to disequilibrium crystallization from an undercooled melt. They are associated with tantalite, and Ta precipitation may have been caused by the local decrease of Li and F in the melt. These minerals are uncommon in this zone of granitic pegmatites. Key-words: muscovite, lithium micas, albite, K-feldspar, columbite–tantalite minerals, gahnite, electron microprobe, pegmatite evolution. 1. Introduction Micas and feldspars are good petrogenetic indicators of pegmatite evolution, and consequently their geochemistry has been used to track the consolidation history of pegma- tite bodies (e.g., Jahns, 1982; Jolliff et al., 1987; Monier et al., 1987; C ˇ erny ´ , 1994; C ˇ erny ´ et al., 1995; Kile & Foord, 1998; Alfonso et al., 2003; Roda Robles et al., 2006, 2007; Van Lichtervelde et al., 2008; Neiva & Ramos, 2010; Vieira et al., 2011). However, chemical zoning in micas from pegmatites has rarely been studied (Neiva et al., 2008, 2012; Van Lichtervelde et al., 2008). Columbite- tantalite minerals from granitic pegmatites have been stu- died widely and are tracers of pegmatite fractionation (e.g., C ˇ erny ´ et al., 1986; Beurlen et al., 2008; Neiva et al., 2008, 2012; Neiva & Ramos, 2010). The Namivo granitic pegmatite is located in the central part of the Alto Ligonha pegmatite area in northern Mozambique (Fig. 1), close to the confluence of the Namivo and Mo ´lucue ´ rivers, in the Zambe ´zia province. A geochemical evolution occurs from green and bluish green beryl in the outer intermediate zone to pink beryl in the inner intermediate zone, ‘‘core margin’’ and core (Neiva & Neiva, 2005). This paper presents the study of micas, feldspars and columbite–tantalite minerals to provide information on their geochemical evolution and paragen- esis and implications for the Namivo pegmatite evolution. 2. General geology and petrography The Namivo granitic pegmatite intruded a Precambrian migmatitic paragneiss and the contact is sharp. It is a lepidolite-subtype pegmatite (C ˇ erny ´ & Ercit, 2005), which is concentrically zoned (Fig. 2). The wall zone (WZ) consists dominantly of quartz and K-feldspar, but also contains albite and biotite altered into chlorite. The grain size (2.5–10 cm) increases inwards. The outer intermediate zone (OIZ) consists mainly of quartz and albite (,2.5–10 cm), but it also contains K- feldspar, muscovite, lithian muscovite, ‘‘mixed form’’ (with both dioctahedral and trioctahedral structures, Foster, 1960), zinnwaldite, lepidolite, polylithionite, beryl, garnet, tourmaline, a tabular variety of albite, cassi- terite, gahnite, columbite–tantalite, rutile, uranium miner- als and secondary muscovite and cookeite (an alteration 0935-1221/13/0025-2335 $ 8.55 DOI: 10.1127/0935-1221/2013/0025-2335 # 2013 E. Schweizerbart’sche Verlagsbuchhandlung, D-70176 Stuttgart Eur. J. Mineral. 2013, 25, 967–985 Published online December 2013

Transcript of Micas, feldspars and columbite tantalite minerals from the...

Page 1: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

Micas feldspars and columbitendashtantalite minerals from the zoned granitic

lepidolite-subtype pegmatite at Namivo Alto Ligonha Mozambique

ANA M R NEIVA

Department of Earth Sciences and Geosciences Centre University of Coimbra 3000ndash272 Coimbra PortugalCorresponding author e-mail neivadctucpt

Abstract The Namivo granitic lepidolite-subtype pegmatite is concentrically zoned Textural and chemical studies show at thecrystal scale and within each zone that muscovite evolved to lithian muscovite and the latter to lsquolsquomixed formrsquorsquo in the outer and innerintermediate zones and core lsquolsquoMixed formrsquorsquo also evolved to lepidolite in the inner intermediate zone and core Each of these micasrepresents an evolution from the pegmatite outer intermediate zone to the inner intermediate zone and core Some crystals areprogressively zoned while others are reversely zoned but overgrowths and replacements also occur Albite and K-feldspar evolvedfrom the wall zone to the core and feldspar thermometry records a decrease in temperature Columbite-(Mn) shows a compositionaltrend from the outer intermediate zone to the core typical of this mineral from a lepidolite-subtype granitic pegmatite The chemicalzonation of this pegmatite is derived from crystallization of an undercooled granitic melt in which a probably local constitutional zonerefining of fluxing and incompatible elements contributes to the textural and chemical changes from the wall zone to the core Theunexpected occurrence of lepidolite and FeMg-containing polylithionite the richest micas in Si Licalc and F in the outerintermediate zone is attributed to disequilibrium crystallization from an undercooled melt They are associated with tantalite andTa precipitation may have been caused by the local decrease of Li and F in the melt These minerals are uncommon in this zone ofgranitic pegmatites

Key-words muscovite lithium micas albite K-feldspar columbitendashtantalite minerals gahnite electron microprobe pegmatiteevolution

1 Introduction

Micas and feldspars are good petrogenetic indicators ofpegmatite evolution and consequently their geochemistryhas been used to track the consolidation history of pegma-tite bodies (eg Jahns 1982 Jolliff et al 1987 Monieret al 1987 Cerny 1994 Cerny et al 1995 Kile amp Foord1998 Alfonso et al 2003 Roda Robles et al 2006 2007Van Lichtervelde et al 2008 Neiva amp Ramos 2010Vieira et al 2011) However chemical zoning in micasfrom pegmatites has rarely been studied (Neiva et al2008 2012 Van Lichtervelde et al 2008) Columbite-tantalite minerals from granitic pegmatites have been stu-died widely and are tracers of pegmatite fractionation (egCerny et al 1986 Beurlen et al 2008 Neiva et al 20082012 Neiva amp Ramos 2010)

The Namivo granitic pegmatite is located in the centralpart of the Alto Ligonha pegmatite area in northernMozambique (Fig 1) close to the confluence of theNamivo and Molucue rivers in the Zambezia province Ageochemical evolution occurs from green and bluish greenberyl in the outer intermediate zone to pink beryl in theinner intermediate zone lsquolsquocore marginrsquorsquo and core (Neiva amp

Neiva 2005) This paper presents the study of micasfeldspars and columbitendashtantalite minerals to provideinformation on their geochemical evolution and paragen-esis and implications for the Namivo pegmatite evolution

2 General geology and petrography

The Namivo granitic pegmatite intruded a Precambrianmigmatitic paragneiss and the contact is sharp It is alepidolite-subtype pegmatite (Cerny amp Ercit 2005)which is concentrically zoned (Fig 2) The wall zone(WZ) consists dominantly of quartz and K-feldspar butalso contains albite and biotite altered into chlorite Thegrain size (25ndash10 cm) increases inwards

The outer intermediate zone (OIZ) consists mainly ofquartz and albite (25ndash10 cm) but it also contains K-feldspar muscovite lithian muscovite lsquolsquomixed formrsquorsquo(with both dioctahedral and trioctahedral structuresFoster 1960) zinnwaldite lepidolite polylithioniteberyl garnet tourmaline a tabular variety of albite cassi-terite gahnite columbitendashtantalite rutile uranium miner-als and secondary muscovite and cookeite (an alteration

0935-1221130025-2335 $ 855DOI 1011270935-122120130025-2335 2013 E Schweizerbartrsquosche Verlagsbuchhandlung D-70176 Stuttgart

Eur J Mineral

2013 25 967ndash985

Published online December 2013

eschweizerbart_xxx

product of LiAl-silicates) K-feldspar content increasesinwards Albite is penetrated by quartz Micas are mainlyassociated with quartz and beryl The dark brown tourma-line is associated with micas Cassiterite is partially sur-rounded by columbitendashtantalite and rutile and they areassociated with micas and quartz Some columbitendashtanta-lite minerals are associated with lithium micas Rare andsmall uranium minerals penetrate along fractures ofcolumbitendashtantalite

The inner intermediate zone a (IIZa) consists domi-nantly of albite and perthitic K-feldspar (30 cm) andalso contains quartz muscovite lithian muscovitelsquolsquomixed formrsquorsquo lepidolite beryl columbite monazitecookeite and bismutite Micas are mainly associated withK-feldspar and albite Columbite occurs among feldsparcrystals locally penetrating them and is rarely surroundedby monazite The inner intermediate zone b (IIZb) isessentially made of lsquolsquomixed formrsquorsquo lepidolite and a tabular

variety of albite (10 to 30 cm) but also contains quartzK-feldspar muscovite lithian muscovite beryl and bismu-tite Lepidolite and lsquolsquomixed formrsquorsquo abundances increasewith depth Micas are associated with albite and quartzAlbite is the most abundant feldspar in OIZ IIZa and IIZb

The lsquolsquocore marginrsquorsquo (Cm) has mainly quartz and beryl(30 cm) but the core (Cc) consists mainly of quartz andspodumene (10 to 30 cm) and also has albite K-feldsparmuscovite lithian muscovite lsquolsquomixed formrsquorsquo lepidoliteberyl tabular variety of albite columbite and cookeiteMicas are associated with quartz K-feldspar and albiteSpodumene occurs in long crystals up to 5 cm thick cut-ting quartz but some are altered into kaolinite Albite andits tabular variety replace quartz and spodumeneColumbite is associated with albite and quartz

3 Sampling and analytical methods

Several samples from all zones of the Namivo graniticpegmatite and information was given by MB Dias whowas the exploitation manager of the company working thepegmatite in 1962 to JM Cotelo Neiva who visited thepegmatite with him All the available material was used forthis study Feldspars and micas have been selected from thezones where they occur Columbite-tantalite minerals arefrom the OIZ IIZa and Cc and tourmaline and gahnitewere only found in the OIZ

The major elements of minerals were determined using aJeol Hyperprobe JXA-8500F operated at 15 kV accelerat-ing voltage and 10 nA beam current except for columbi-tendashtantalite for which the voltage and current were 20 kVand 20 nA Detection limits (3s) above mean backgroundwere 003 wt for most oxides except for ZnO SrOBaO Rb2O Cs2O (006 wt) and F (01 wt) withcounting times of 80 s for these five oxides and F Theanalyses were carried out at LNEG S Mamede de InfestaPortugal Standards used include albite (NaKa) orthoclase(AlKa SiKa KKa) apatite (CaKa PKa) MgO (MgKa)MnTiO3 (MnKa) TiO2 (TiKa) Fe2O3 (FeKa) ZnS(ZnKa) fluorite (FKa) vanadinite (ClKa) BaSO4

(BaLa) SrTiO3 (SrLa) glasses Ge-Al-Ca containing 100wt Rb (RbLa) and Si-Al-Ca with 100 wt Cs (CsLa)cassiterite (SnKa) pure Ta (La) SrBaNb4O12 (NbLa) andscheelite (WLa)

4 Micas

41 Chemical composition of micas

As different micas are associated in the same crystals(Fig 3) it is impossible to separate them or use a laserablation inductively coupled plasma mass spectrometer(LA-ICP-MS) to determine their trace elementsTherefore ZnO BaO Rb2O and Cs2O contents weredetermined by electron microprobe In general ZnO andBaO contents are low but Rb2O and Cs2O contents are

Fig 2 Zones of the Namivo granitic pegmatite Mozambique Mainconstituents of Wall Zone (WZ ndash quartz K-feldspar) OuterIntermediate Zone (OIZ ndash quartz and albite) Inner IntermediateZone (IIZa ndash albite and perthitic K-feldspar IIZb ndash lsquolsquomixed formrsquorsquolepidolite and tabular variety of albite) and Core (Cm ndash lsquolsquocoremarginrsquorsquo quartz and beryl Cc ndash core-quartz and spodumene)

Fig 1 Location of the Namivo granitic pegmatite in the AltoLigonha pegmatite area of northern Mozambique Simplified mapafter Dias amp Wilson (2000)

968 A M R Neiva

eschweizerbart_xxx

very helpful for the interpretations Li2O contents ofzinnwaldite lepidolite polylithionite and lsquolsquomixedformrsquorsquo were calculated from the equation Li2O frac14 (0289 SiO2) 9658 and of muscovite and lithian muscovitefrom the equation Li2O frac14 03935 F1326 (Tischendorfet al 1997) Secondary micas replacing feldspars werenot analyzed

Variation in the chemical composition of micas from theNamivo granitic pegmatite is shown in Table 1 and Fig 4lsquolsquoMixed formrsquorsquo is of course not a proper mica mineral name(Rieder et al 1999) The chemical distinction between

dioctahedral and trioctahedral micas is the value of 25octahedral cations per formula unit in dioctahedral and25 octahedral cations in trioctahedral micas for a for-mula calculated on the basis of 12 O thorn F atoms (Riederet al 1999) The Li2O content of analyzed lsquolsquomixed formsrsquorsquois calculated for a trioctahedral mica and the value ofoctahedral cations per formula unit is 28 and totals ofanalyses are good (Table 1) indicating that they are trioc-tahedral micas If Li2O contents of these analyses arecalculated for a dioctahedral mica the value of octahedralcations per formula mainly ranges between 23 and 28 and

Fig 3 Backscattered-electron images of zoned micas from the Namivo granitic pegmatite Mozambique Micas a b c d d1 from the OIZ ef f1from the IIZa g h from the IIZb i j from the Cc d1 and f1 are details of d and f respectively Lep ndash lepidolite Zin ndash zinnwaldite Brl ndashberyl Mix f ndash lsquolsquomixed formrsquorsquo Q ndash quartz Pol ndash polylithionite Cst ndash cassiterite Rt ndash rutile Ct ndash columbitendashtantalite Lith mu ndash lithianmuscovite Ab ndash albite Mu ndash muscovite K-fel ndash K-feldspar

Silicate and oxide minerals from a zoned granitic pegmatite 969

eschweizerbart_xxx

Tab

le1

R

epre

sen

tati

ve

elec

tro

nm

icro

pro

be

anal

yse

sin

wt

o

fm

icas

fro

mth

eN

amiv

og

ran

itic

peg

mat

ite

Mo

zam

biq

ue

Ou

ter

Inte

rmed

iate

Zo

ne

-O

IZIn

ner

Inte

rmed

iate

Zo

ne

-II

Za

Zin

Lep

lsquolsquoM

ixed

Frsquorsquo

Lep

Lep

Po

llsquolsquo

Mix

edF

rsquorsquoL

ith

Mu

sP

ol

Lit

hM

us

lsquolsquoM

ixed

Frsquorsquo

lsquolsquoM

ixed

Frsquorsquo

Lep

Mu

sL

ith

Mu

s

Co

mp

osi

tio

nC

ore

Rim

Co

reR

imR

imC

ore

Rim

Co

reC

ore

Rim

Rim

SiO

24

37

15

42

04

52

45

63

75

23

45

87

64

67

14

63

35

91

84

58

54

85

74

81

24

94

64

55

44

61

1T

iO2

06

00

15

04

70

02

02

70

05

mdashmdash

00

2mdash

01

00

03

00

7mdash

00

4A

l 2O

32

21

81

76

52

97

81

59

01

82

11

48

13

12

63

53

31

49

43

71

92

68

82

83

32

46

43

77

03

55

0F

eO8

42

39

74

57

24

44

94

13

11

56

17

51

14

mdash2

68

11

01

50

01

21

15

Mn

O0

60

00

60

33

00

20

21

00

30

10

01

50

05

01

20

27

12

32

16

04

80

53

Mg

O5

15

17

21

06

14

01

33

10

10

87

06

80

94

00

50

09

mdash0

01

mdashmdash

Zn

O0

46

03

20

17

01

10

24

01

30

14

01

00

09

00

60

13

02

60

41

00

60

15

CaO

00

10

01

00

4mdash

00

10

02

00

30

05

00

1mdash

mdash0

02

00

10

02

mdashL

i 2O

2

97

60

13

42

66

35

47

73

23

84

03

07

45

04

34

38

42

54

64

01

60

45

Na 2

O0

08

00

60

23

01

10

23

00

70

29

03

30

06

04

40

13

02

60

13

03

80

28

K2O

10

00

98

41

00

91

02

01

05

89

77

93

39

98

95

09

91

10

28

97

79

95

99

39

81

Rb

2O

08

60

78

06

61

30

02

80

46

05

10

43

04

91

06

15

01

42

16

71

02

11

0C

s 2O

0

06

00

9

00

60

14

00

6

00

6

00

6

00

6

00

60

15

05

50

13

02

2

00

60

03

F5

10

89

92

24

10

50

10

14

10

05

24

60

81

98

41

06

53

84

89

74

10

50

11

0H

2O

18

30

23

33

9mdash

mdashmdash

33

54

12

mdash4

01

19

12

15

09

14

28

39

61

02

03

10

40

81

01

75

10

51

41

04

31

10

38

51

00

51

10

04

21

03

77

10

03

31

02

85

10

19

61

03

19

10

02

51

00

21

O

F2

14

37

80

94

44

14

26

42

21

03

03

44

13

04

52

26

20

53

11

02

10

46

To

tal

99

89

10

03

01

00

81

10

07

31

00

05

99

63

99

48

10

00

89

96

49

98

81

00

59

99

91

10

00

81

00

04

99

75

KR

b(w

t)1

11

21

47

13

41

91

62

11

88

56

26

25

48

98

1

Si

30

85

36

20

30

45

37

47

35

58

38

54

31

02

30

83

38

63

30

45

32

66

32

26

33

51

30

24

30

86

AlIV

09

15

03

80

09

55

02

53

04

42

01

46

08

98

09

17

01

37

09

55

07

34

07

74

06

49

09

76

09

14

PT

40

04

00

40

04

00

40

04

00

40

04

00

40

04

00

40

04

00

40

04

00

40

0A

lVI

09

31

10

09

14

07

09

92

10

17

09

99

15

49

18

54

10

12

19

56

13

96

14

65

13

19

19

74

18

87

Ti

00

32

00

08

00

24

00

01

00

14

00

02

mdashmdash

00

01

mdash0

00

50

00

20

00

4mdash

00

02

Fe2thorn

04

97

02

22

02

57

01

36

02

81

00

72

00

87

00

97

00

62

mdash0

15

10

06

20

08

50

00

70

06

4M

n0

03

60

00

30

01

90

00

10

01

20

00

20

00

60

00

80

00

30

00

70

01

50

07

00

12

40

02

70

03

0M

g0

54

20

17

10

10

60

13

90

13

50

09

90

08

60

06

70

09

10

00

50

00

9mdash

00

01

mdashmdash

Zn

00

24

00

16

00

08

00

05

00

12

00

06

00

07

00

05

00

04

00

03

00

06

00

13

00

21

00

03

00

07

Li

08

44

16

13

09

25

17

73

14

95

19

32

10

26

00

80

19

54

01

14

11

84

11

46

12

64

00

42

01

20

PR

29

13

04

27

53

05

29

73

11

27

62

11

31

32

09

27

72

76

28

22

05

21

1C

a0

00

10

00

10

00

3mdash

00

01

00

01

00

02

00

04

00

01

mdashmdash

00

01

00

01

00

01

mdashN

a0

01

10

00

80

03

00

01

40

03

00

00

90

03

70

04

30

00

80

05

70

01

70

03

40

01

70

04

90

03

6K

09

00

08

38

08

66

08

65

09

17

08

18

07

90

08

47

07

91

08

40

08

82

08

36

08

60

08

41

08

38

Rb

00

39

00

33

00

29

00

56

00

12

00

19

00

22

00

18

00

21

00

45

00

65

00

61

00

73

00

44

00

47

Cs

00

02

00

03

00

02

00

04

00

02

00

02

00

02

00

02

00

02

00

04

00

16

00

04

00

06

00

02

00

01

PA

09

50

88

09

30

94

09

60

85

08

50

91

08

20

95

09

80

94

09

60

94

09

2F

11

39

18

99

04

77

22

07

21

80

20

85

05

17

01

70

20

31

02

23

11

44

10

37

15

87

01

05

02

33

OH

0

86

10

10

11

52

3mdash

mdashmdash

14

83

18

30

mdash1

77

70

85

60

96

30

41

31

89

51

76

7Z

on

esL

DL

DL

DL

DD

D

LD

LD

L

F

igu

res

Fig

s3

a6

ab

Fig

3

bF

igs

3c

6c

Fig

s3

d

d1

6

dF

igs

3e

6e

fF

igs

3f

f1

6g

h

970 A M R Neiva

eschweizerbart_xxx

Tab

le1

C

on

tin

ued

Inn

erIn

term

edia

teZ

on

e-

IIZ

bC

ore

-C

c

Lit

hM

us

Lep

Mu

slsquolsquo

Mix

edF

rsquorsquoL

epL

ith

Mu

slsquolsquo

Mix

edF

rsquorsquoL

epM

us

Lit

hM

us

Co

reR

imC

ore

Rim

Rim

Co

reR

imR

im

SiO

24

69

25

21

64

62

24

90

64

99

94

71

84

90

15

09

54

63

44

65

6T

iO2

00

3mdash

00

40

03

00

30

02

00

1mdash

mdashmdash

Al 2

O3

35

72

22

89

36

17

28

04

24

87

35

10

26

26

23

49

36

31

35

53

FeO

00

10

61

00

70

05

00

70

04

21

81

55

00

10

03

Mn

O0

55

05

80

43

12

92

24

06

01

09

13

30

14

01

4M

gO

mdashmdash

mdashmdash

mdashmdash

mdashmdash

mdashmdash

Zn

O

00

60

10

00

8

00

60

19

0

06

02

50

07

0

06

0

06

CaO

00

30

04

mdashmdash

00

10

01

00

10

01

mdashmdash

Li 2

O

06

55

42

02

54

52

47

90

93

45

15

07

04

70

79

Na 2

O0

41

00

80

49

02

60

16

04

10

13

01

00

55

05

4K

2O

97

99

78

10

16

96

69

76

94

49

33

90

89

97

99

0R

b2O

12

42

30

14

31

79

21

01

34

17

52

13

14

81

69

Cs 2

O0

16

08

7

00

60

62

05

00

11

07

70

79

01

40

12

F1

46

83

40

70

49

97

63

19

25

55

73

51

15

16

9H

2O

38

30

52

41

62

14

08

23

61

18

20

95

39

63

70

10

08

61

03

69

10

02

61

02

51

10

31

61

00

77

10

26

71

02

87

10

05

81

00

75

O

F0

61

35

00

29

21

03

20

08

12

33

30

90

48

07

1T

ota

l1

00

25

10

01

99

99

71

00

41

99

96

99

96

10

03

49

97

81

00

10

10

00

4

KR

b(w

t)7

23

96

44

94

26

44

83

96

15

3

Si

31

10

34

98

30

84

32

68

33

76

31

30

33

02

34

42

30

82

31

02

AlIV

08

90

05

02

09

16

07

32

06

24

08

70

06

98

05

58

09

18

08

98

PT

40

04

00

40

04

00

40

04

00

40

04

00

40

04

00

AlV

I1

90

01

30

71

92

91

47

01

35

51

87

51

38

71

31

21

92

81

89

2T

i0

00

1mdash

00

02

00

02

00

02

00

01

00

01

mdashmdash

mdashF

e2thorn

00

01

00

34

00

04

00

03

00

04

00

02

01

23

00

88

00

01

00

02

Mn

00

31

00

33

00

24

00

73

01

28

00

34

00

62

00

76

00

08

00

08

Mg

mdashmdash

mdashmdash

mdashmdash

mdashmdash

mdashmdash

Zn

00

03

00

05

00

04

00

03

00

09

00

03

00

12

00

03

00

03

00

03

Li

01

73

14

61

00

66

12

11

13

01

02

49

12

21

13

76

01

27

02

11

PR

21

12

84

20

32

76

28

02

16

28

12

86

20

72

12

Ca

00

02

00

03

mdashmdash

00

01

00

01

00

01

00

01

mdashmdash

Na

00

53

00

10

00

63

00

34

00

21

00

53

00

17

00

13

00

71

00

70

K0

82

80

83

70

86

50

82

10

84

10

79

90

80

20

78

20

84

60

84

1R

b0

05

30

09

90

06

10

07

70

09

10

05

70

07

60

09

20

06

30

07

2C

s0

00

50

02

50

00

10

01

80

01

40

00

30

02

20

02

30

00

40

00

3P

A0

94

09

70

99

09

50

97

09

10

92

09

10

98

09

9F

03

06

17

69

01

48

10

51

16

30

04

03

11

83

15

70

02

42

03

56

OH

1

69

40

23

11

85

20

94

90

37

01

59

70

81

70

43

01

75

81

64

4Z

on

esD

LD

D

LD

LL

D

DF

igu

res

Fig

s3

g

6i

jk

Fig

s3

h

6l

Fig

s3

i6

m

nF

igs

3j

6o

p

OIZ

IIZ

aII

Zb

Cc

asin

Fig

2Z

inndash

zin

nw

ald

ite

Lep

ndashle

pid

oli

teF

ndashfo

rmP

olndash

po

lyli

thio

nit

eL

ith

Mu

sndash

lith

ian

mu

sco

vit

eM

us

ndashm

usc

ov

ite

Lndash

ligh

ter

zon

eD

ndashd

ark

erzo

ne

D

-th

ed

ark

estzo

ne

L

-th

eli

gh

test

zon

ein

BS

Eim

ages

BaO

isb

elo

wth

ed

etec

tio

nli

mit

Cal

cula

ted

nu

mb

ero

fio

ns

on

the

bas

iso

f1

2o

xy

genthorn

Fat

om

sL

i 2O

v

alu

esca

lcu

late

dfr

om

equ

atio

ns

of

Tis

chen

do

rff

eta

l

(19

97

)O

H

-ca

lcu

late

db

yd

iffe

ren

ceto

20

00

H

2O

-ca

lcu

late

db

yst

oic

hio

met

ry

Silicate and oxide minerals from a zoned granitic pegmatite 971

eschweizerbart_xxx

analytical totals are not good The analyzed lsquolsquomixedformsrsquorsquo are distinguished in backscattered-electron (BSE)images and chemically (Fig 3b d d1 e f f1 h i andFig 4) The chemical distinction between lsquolsquomixed formrsquorsquoand lepidolite from the OIZ (Fig 4) is clear in Fig 3bwhere lepidolite is darker than lsquolsquomixed formrsquorsquo because theformer has less Fe and Mn than the latter (Table 1) and inFig 3f f1 and 3h for micas from the IIZa and IIZbrespectively where lepidolite is lighter than lsquolsquomixedformrsquorsquo because the former has more Fe2thorn and Mn oronly more Mn than the latter (Table 1) The lsquolsquomixedformsrsquorsquo analyzed are distinguished in the BSE imagesfrom the lepidolite that falls in its fields in the Fig 4The fields of lepidolite composition in Foster (1960) arelarger than the field for lepidolite from the trilithionite tothe polylithionite (Rieder et al 1999) According to Fleet(2003) only a few lepidolite compositions plot on thetrilithionite-polylithionite join In general lepidolite hashigher Si Licalc Rb Cs F contents and lower AlVI andOH contents than lsquolsquomixed formrsquorsquo (Table 1 Fig4)lsquolsquoMixed formrsquorsquo is also clearly distinguished fromlithian muscovite in OIZ IIZa IIZb and Cc in BSEimages (Fig 3d d1 e f i) and chemically (Table 1 Fig4) as it generally has higher Si Licalc Rb Cs F contentsand lower AlVI and OH contents than lithian muscovite

Two distinct trends are defined in Fig 4 One trendconsists of Al-poorer micas which are zinnwaldite

lepidolite and FeMg-containing polylithionite from theOIZ A hiatus occurs between zinnwaldite and lepidolitebut the zinnwaldite series is continuous with the field oflepidolite at the high Li content (Fleet 2003) The othertrend consists of Al-richer micas (muscovite lithian mus-covite and lsquolsquomixed formrsquorsquo from the OIZ IIZa IIZb and Ccand also lepidolite from most of those zones except fromthe OIZ) There is a gap between lithian muscovite and thelsquolsquomixed formrsquorsquo which may be explained by a hiatus inmica stability (eg Jolliff et al 1987) but a solid solutionbetween dioctahedral and trioctahedral micas has beenindicated experimentally (Monier amp Robert 1986) whileother authors have shown that the octahedral site occu-pancy ranges continuously from muscovite to lepidolite(eg Roda Robles et al 2005 Van Lichterveld et al2008 Vieira et al 2011) Most lithian muscovites andlsquolsquomixed formrsquorsquo from the OIZ are richer in Fe2thornthornMg thornMn than those from the other zones due to their higherFe2thorn and Mg contents (Fig 4 Table 1)

In the Al-poorer micas from the OIZ ranging from zinn-waldite to lepidolite and FeMg-containing polylithionite(Fig 4) (AlIV thorn AlVI) Fe2thorn Mg Ti Mn and Zn contentsdecrease and Si and Licalccontents increase (Table 1) In theAl-richer micas ranging from muscovite to lithian muscoviteand lsquolsquomixed formrsquorsquo from the OIZ IIZa IIZb and Cc and alsoto lepidolite from most of those zones except from the OIZ(AlIV thorn AlVI) AlVI and OH contents and KRb ratio

Fig 4 Plots of micas from the Namivo granitic pegmatite Mozambique in the LindashR2thornndashR3thornthorn Ti diagram according to the classification ofFoster (1960) slightly modified (Rieder et al 1999) with R3thorn frac14 AlVI R2thorn frac14 (Fe2thornt thorn Mn2thornthorn Mg) showing the variety of micacompositions Two trends are defined one for Al-poorer micas (zinnwaldite lepidolite and FeMg-containing polylithionite) from theOIZ another for Al-richer micas (muscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepidolite) from all zones except lepidolite from the OIZOIZ IIZa IIZb and Cc as in Fig 2

972 A M R Neiva

eschweizerbart_xxx

generally decrease and Si Licalc Rb Cs and F contentsgenerally increase (Table 1)

42 Main substitution mechanisms

The 2Si thorn Li 3Altotal mechanism operates in the diocta-hedral micas (muscovite and lithian muscovite) (Fig 5a b)whereas the 3LiVI AlVIthorn 2ampVI (amp represents a vacancy)operates in the trioctahedral micas (lsquolsquomixed formrsquorsquo lepido-lite zinnwaldite and FeMg-containing polylithionite) (Fig5c d) which agrees with findings for micas from the Tancopegmatite (Van Lichtervelde et al 2008)

43 Textures and chemical compositions of zoned micacrystals

Backscattered-electron images combined with quantita-tive spot electron-microprobe analyses made it possibleto distinguish different micas in the Namivo graniticpegmatite Similar textural aspects and geochemicalobservations were found between some Al-richer micasfrom the OIZ IIZa IIZb and Cc Some selected zonedcrystals are documented (Table 1 Fig 3 and 6) In theOIZ lepidolite penetrates zinnwaldite along cleavagesand partially surrounds it and the contacts are sharp(Fig 3a) A chemical gap occurs between zinnwalditeand lepidolite compositions (Fig 6a b) Lepidolite withhigher Si Licalc F contents similar KRb value andlower (AlIV thorn AlVI) Ti Fe2thorn Mg (Fe2thornthorn Mn thorn Mg)Zn and OH contents (Table 1) replaces zinnwaldite Athin lepidolite rim partially surrounds lsquolsquomixed formrsquorsquoand the contact is sharp (Fig 3b) The lepidolite rimhas higher Si Mg Licalc Rb F contents and lowerAlVI Ti Fe2thorn Mn Na and OH contents and KRb ratiothan the lsquolsquomixed formrsquorsquo core (Table 1) The lepidoliterim is an Al-poorer mica whereas the lsquolsquomixed formrsquorsquocore is an Al-richer mica (Fig 4) The lepidolite rimcorresponds to an overgrowth The FeMg-containingpolylithionite partially surrounds and penetrates lepido-lite along cleavages and shows well defined contacts(Fig 3c) Both contain rutile cassiterite and columbi-tendashtantalite inclusions A continuous chemical evolutiontakes place from lepidolite to FeMg-containing poly-lithionite (Figs 4 6c) The latter has higher Si LicalcRb contents and lower AlVI Ti Fe2thorn Mn Mg Zn Nacontents and KRb ratio (Table 1) and replaces lepido-lite A lithian muscovite rim with rare FeMg-containingpolylithionite surrounds the lsquolsquomixed formrsquorsquo core and thispolylithionite penetrated lithian muscovite (Fig 3d)The contact between the lithian muscovite rim andlsquolsquomixed formrsquorsquo core is irregular suggesting disequili-brium or at a cleavage (Fig 3d d1) Two linear trendsone for the lithian muscovite rim and another for thelsquolsquomixed formrsquorsquo core are defined in the (Fe2thornthornMnthornMg)vs (AlIV thornAlVI) diagram (Fig 6d) The FeMg-contain-ing polylithionite rim does not belong to any of thesetrends and plots outside this diagram because it is an Al-poorer mica whereas the others are Al-richer micas

(Fig 4) The lithian muscovite rim has higher AlVI(AlIV thorn AlVI) OH contents and KRb ratio and lowerMg (Fe2thornthorn Mn thorn Mg) Licalc Rb F contents than thelsquolsquomixed formrsquorsquo core (Table 1 Fig 6d) The crystal isreversely zoned The FeMg-containing polylithioniterim has higher Si Licalc F contents and lower AlVI(AlIV thorn AlVI) Fe2thorn Mn (Fe2thornthorn Mn thorn Mg) Na andOH contents than the lsquolsquomixed formrsquorsquo core and lithianmuscovite rim (Table 1) and replaces lithian muscovite

In the IIZa some zoned crystals have a lithian muscovitecore and a lsquolsquomixed formrsquorsquo rim and the contacts are gradual(Fig 3e) A small discontinuity occurs in the trends fromthe lithian muscovite core to lsquolsquomixed formrsquorsquo rim in the(Fe2thornthorn Mn thorn Mg) vs (AlIV thorn AlVI) and Rb2O vs KRb(Fig 6e f) The lsquolsquomixed formrsquorsquo rim has higher Si Fe2thornMn (Fe2thornthornMn thornMg) Licalc K Rb Cs F contents andlower AlVI (AlIVthornAlVI) Na OH contents and KRb ratiothan the lithian muscovite core (Table 1 Fig 6e f) indi-cating progressive zoning Similar textural relationshipsand chemical evolutions were found in other zoned crystalsfrom the OIZ IIZb and Cc In another crystal from theIIZa lithian muscovite partially surrounds lsquolsquomixed formrsquorsquointergrown with lepidolite Lithian muscovite also partiallysurrounds muscovite (Fig 3f) The contacts betweenlsquolsquomixed formrsquorsquo and lepidolite and also between muscoviteand lithian muscovite are gradual (Fig 3f f1) whereasthey are well defined for muscovite withlsquolsquomixed formrsquorsquoand lepidolite (Fig 3f f1) The crystal has a lsquolsquomixed formrsquorsquoand lepidolite core and a partial rim of muscovite andlithian muscovite The lsquolsquomixed formrsquorsquo core evolved tolepidolite core as the Si Fe2thorn Mn (Fe2thornthorn Mn thorn Mg)Licalc K Rb Cs and F contents increase and the (AlIV thornAlVI) and KRb ratio decrease (Table 1 Fig 6g h) The SiFe2thorn Mn (Fe2thornthorn Mn thorn Mg) Licalc Rb and F contentsincrease and the (AlIV thorn AlVI) and KRb ratio decreasefrom the muscovite rim to the lithian muscovite rim (Table1 Fig 6g h) suggesting that the former evolved to thelatter The muscovite rim has higher AlVI (AlIV thorn AlVI)Na OH contents and KRb ratio and lower Si Fe2thorn Mn(Fe2thornthornMn thornMg) Zn Licalc Rb and F contents than thelsquolsquomixed formrsquorsquo core and lepidolite core (Table 1 Fig 6gh) Muscovite was probably reversely formed and evolvedafterwards to lithian muscovite

In the IIZb some crystals have a lithian muscovite coreand a thinner lepidolite rim (Fig 3g) and others show asmall muscovite core and a larger rim of lsquolsquomixed formrsquorsquointergrown with lepidolite (Fig 3h) The contacts betweenthe cores and rims are well defined There are increases inthe Si Mn (Fe2thornthorn Mn thorn Mg) Licalc Rb and F contentsand decreases in the AlVI (AlIVthornAlVI) and KRb ratio fromthe lsquolsquomixed formrsquorsquo rim to the intergrown lepidolite rim(Table 1 Figs 3h 6l) suggesting that the former evolvedto the latter as also found in IIZa and Cc In both crystalsthe rim compositions have higher Si (Fe2thornthorn Mn thorn Mg)Licalc Rb Cs F contents and lower AlVI (AlIVthorn AlVI) Naand OH contents and KRb ratio than the core (Table 1 Figs3g 6i j k 3h 6l) A compositional gap occurs between coreand rim in the diagrams for both crystals (Fig 6i j k l)suggesting that both rims correspond to overgrowths and no

Silicate and oxide minerals from a zoned granitic pegmatite 973

eschweizerbart_xxx

diffuse reequilibration took place in any crystal as thecontacts between core and rim are sharp

In the Cc lithian muscovite is surrounded and pene-trated by lsquolsquomixed formrsquorsquo showing well defined contacts(Fig 3i) The lsquolsquomixed formrsquorsquo has higher Si Fe2thorn Mn(Fe2thornthorn Mn thorn Mg) Licalc Rb Cs F contents and lowerAlVI (AlIV thorn AlVI) Na OH contents and KRb ratio thanthe lithian muscovite (Table 1 Fig 6m n) and a composi-tional gap occurs between both micas suggesting thatlsquolsquomixed formrsquorsquo replaced lithian muscovite In rare crystalsa small lepidolite core is surrounded by a large muscoviterim containing K-feldspar inclusions The contact betweenthe core and rim is sharp (Fig 3j) A thin partial rim oflithian muscovite surrounds muscovite and the contact isgradual The muscovite rim has higher AlVI (AlIVthornAlVI)Na K OH contents and a greater KRb value and lower SiFe2thorn Mn Licalc Rb Cs and F contents than the lepidolitecore (Table 1 Fig 6o p) and a compositional gap occursbetween them (Fig 6o p) indicating that either muscoviteforms an overgrowth or it is reversely formed From themuscovite rim to the lithian muscovite rim the Si Licalc

Rb F contents increase whereas the AlVI (AlIV thorn AlVI)and OH contents and KRb ratio decrease (Table 1 Fig 6op) suggesting that muscovite evolved to lithian muscoviteas also found in IIZa and IIZb

44 Evolution of mica compositions within each zoneand from the outer intermediate zone to the core of theNamivo granitic pegmatite

The KRb ratio is taken as the best fractionation index inmicas (eg Cerny et al 1985 Foord et al 1995 Wise1995 Pesquera et al 1999 Roda Robles et al 2006 2007)It is hard to establish trends in the evolution of mica com-position from muscovite and lithian muscovite to lsquolsquomixedformrsquorsquo and lepidolite within each zone because the KRbratio shows some partial overlapping particularly betweenthe lithian muscovite and lsquolsquomixed formrsquorsquo and also betweenthe latter and lepidolite However an evolution from mus-covites to lepidolite (Al-richer mica Fig 4) is clearer (Fig7) In general in IIZa IIZb and Cc the Si Licalc Rb Cs and

Fig 5 The main substitutions in micas from the Namivo granitic pegmatite Mozambique a b SiIVthorn LiVI versus AlIVthornAlVI showing the 2SithornLi 3Altotal substitution mechanism operating in dioctahedral micas (Mu muscovite and Lith mu lithian muscovite) c d AlVI thornamp VI

versus LiVI (where amp represents a vacancy) and showing the 3LiVI AlVI thorn 2 amp VI substitution mechanism operating in trioctahedral micas(Mix f ndashlsquolsquomixed formrsquorsquo Lep lepidolite Zin zinnwaldite and Pol-FeMg-containing polylithionite) OIZ IIZa IIZb and Cc as in Fig 2

974 A M R Neiva

eschweizerbart_xxx

F contents tend to increase and the (AlIV thorn AlVI) AlVI

contents and KRb ratio tend to decrease from muscoviteto lepidolite (Table 1 Fig 7) This sequence is consistentbut rarely in the Cc lepidolite is rimmed by muscovite (Fig3j) But in the OIZ the evolution stops in lsquolsquomixed formrsquorsquoparticularly shown by the large range of the KRb ratiowhich mainly overlaps that of lepidolite from this zone(Fig 7) because this lepidolite is an Al-poorer mica whereasthe others are Al-richer micas (Fig 4)

In the OIZ the lepidolite has more Si Licalc and F andless (AlIV thorn AlVI) Ti Fe2thorn Mn Mg and Zn than zinn-waldite (Table 1) but it has larger ranges of Rb and KRbratio than zinnwaldite (Fig 7) The FeMg-containingpolylithionite is the richest mica in Si Licalc and thepoorest in (AlIV thorn AlVI) (Table 1) But at this zone scalethe polylithionite has Rb Cs contents and KRb ratiowithin the ranges for lepidolite and close to those of zinn-waldite (Fig 7)

Fig 6 Variation diagrams of micas from selected zoned crystals from the zones of the Namivo granitic pegmatite Mozambique to showtheir relationships lith musc lithian muscovite OIZ IIZa IIZb and Cc an in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 975

eschweizerbart_xxx

From the OIZ to IIZa IIZb and Cc muscovite and lithianmuscovite generally show increases in the Si Licalc F and Rbcontents and decreases in the Fe2thorn and Mg contents and KRb ratio but the Mg content is very low in these micas fromthe IIZa IIZb and Cc (Table 1 Fig 7a) The lsquolsquomixed formrsquorsquoshows increases in the Si Licalc F Rb Cs contents anddecreases in the (AlIV thorn AlVI) and Mg contents and KRbratio but the Mg content is very low in this mica from theIIZb and Cc (Table 1 Fig 7b c) The lepidolite shows anincrease in the Si Licalc F Rb and Cs contents and a decreasein the KRb ratio from the IIZa to the IIZb and Cc (Table 1Fig 7d e) Furthermore the lepidolite from the OIZ has thelowest (AlIV thorn AlVI) AlVI and OH contents the highest SiFe2thorn Licalcand F contents and KRb ratio and the lowest Rband Cs contents compared to lepidolite from the other zones(Table 1 Fig 7d e)

5 Feldspars

Selected chemical analyses of albite and K-feldspar fromfive zones of the Namivo granitic pegmatite are given inTable 2 Strontium is the most abundant trace element inalbite (eg Cerny 1994) Anorthite and Sr contents and SrCa ratio of albite decrease from the WZ to the Cc (Fig 8Table 2) Rubidium is the most abundant trace element inK-feldspar followed by Cs in IIZa IIZb and Cc In gen-eral K Rb and Cs contents of K-feldspar increase and KRb and KCs values decrease from the WZ to the Cc (Table2 Fig 9)

The program SOLVCALC 20 (Wen amp Nekvasil 1994)using the Margules model Fuhrman amp Lindsley (1988) wasapplied for the purpose of thermometry The pairing ofplagioclase cores with the K-feldspars average of eachsample was used to estimate the crystallization temperaturesof primary magmatic feldspars They are 405 C (WZ)406ndash340 C (OIZ) 390ndash335 C (IIZa) 347ndash306 C (IIZb)and 333ndash289 C (Cc) at 3 kbar The metamorphic environ-ment of rare-element-Li granitic pegmatites is one of lowpressure 2ndash4 kbar (Cerny amp Ercit 2005) In general thedifference between the maximum and minimum calculatedtemperatures at 2 3 and 4 kbar for the same feldspar pairfrom the Namivo pegmatite is lower than 40 C The tem-perature decreases from the wall zone (WZ) to the core(Cc) A similar temperature behavior of feldspars wasfound in the pegmatite-aplite dike USA (Morgan ampLondon 1999)

6 Other silicates

Tourmaline of schorl composition was only found inthe OIZ (Table 2) because there was not enough Feand Mg for schorl to precipitate in the other zonesSpodumene only occurs in the Cc and its compositionis nearly pure (Table 2)

7 Columbite-tantalite

Representative chemical analyses of columbitendashtantalitefrom the Namivo granitic pegmatite are given in Table 3and plotted in the columbite quadrilateral (Fig 10a)Most crystals are unzoned but zoned crystals with dar-ker and lighter zones in BSE images are from the Cc Thelighter zone of columbite-(Mn) has higher Ta contentTa(Ta thorn Nb) and Mn(Mn thorn Fe) values and lower Nbcontent than the darker zone (Fig 10a b) The crystals ofthe columbitendashtantalite minerals are low in W Sn and Tiimpurities (Table 3)

The main trend starts from the columbite-(Mn) of theOIZ towards the more Mn-enriched and slightly Ta-enriched columbite-(Mn) from the IIZa and Cc The high-est Ta(Ta thorn Nb) values belong to the lighter zone ofcolumbite-(Mn) with Mn(Mn thorn Fe) frac14 10 from the CcThe richest columbite-(Mn) in Ta(TathornNb) and composi-tions of tantalite-(Fe) and tantalite-(Mn) were only foundin the OIZ (Fig 10a) and are associated with lepidolite andpolylithionite (Fig 3c)

8 Gahnite

Gahnite was rarely found in the OIZ and shows a darkerzone that partially surrounds a lighter zone in a BSE image(Fig 11a) The darker zone has a higher Zn content andlower Sn Ti Nb Ta Mn contents and SnZn value than thelighter zone (Table 4 Fig 11b c) These gahnite composi-tions fall within the igneous field of Batchelor amp Kinnaird(1984) The darker zone is closer in composition to thepure gahnite (Zn8Al16O32) than the lighter zone whichcontains up to 0983 apfu Sn 0195 apfu Ti 1029 apfutotal Fe2thorn 0101 apfu Mn (Table 4) and consequently hasa composition distinct from nigerite In general both thedarker and lighter zones have higher Sn Ti and Fe contentsthan gahnite from the granitic pegmatites of Nigeria(Batchelor amp Kinnaird 1984) Arga northern Portugal(Gomes et al 1995) and Cabanas northern Portugal(Neiva amp Champness 1997) Borborema province north-eastern Brazil (Soares et al 2007) The Zn=Fe2thornt values ofthe darker and lighter zones of gahnite from Namivo arelower than those reported in Neiva amp Champness (1997)and Soares et al (2007)

9 Discussion and conclusions

91 Evolution of micas in the zoned pegmatite

In general individual mica crystals show varying patternsand compositional zoning involving several elementsmainly Si AlVI (AlIV thorn AlVI) Fe2thorn Mn (Fe2thornthorn Mn thornMg) Licalc Rb Cs F and OH and the KRb ratioProgressively zoned crystals from the IIZa show grada-tional contacts between a lithian muscovite core and a

976 A M R Neiva

eschweizerbart_xxx

lsquolsquomixed formrsquorsquo rim (Figs 3e 6e f) and the zoning patternscorrespond to fractionation trends and probably reflect adrop in temperature during the crystallization of the grani-tic pegmatite melt Progressively zoned crystals also occurin OIZ IIZb and Cc Some crystals are reversely zonedwith a) a lsquolsquomixed formrsquorsquo core and a lithian muscovite rimfrom the OIZ (Figs 3d d1 6d) b) a core consisting oflsquolsquomixed formrsquorsquo and lepidolite and a rim of muscovite andlithian muscovite from the IIZa (Figs 3f f1 6g h) c) alepidolite core and a muscovite and lithian muscovite rimfrom the Cc (Figs 3j 6o p) which may be explained bythe hypothesis of oscillations in the compositions of themelt from which they grew alternating between an Li-enriched boundary layer and a bulk melt that is less frac-tionated The muscovite evolved to lithian muscovite inIIZa and Cc (Figs 3f 6g h 3j 6o p) Replacements (Figs3a 6a b 3c 6c 3i 6m n Table 1) occur in OIZ and Ccand overgrowths (Figs 3b g 6i j k 3h 6l Table 1) occurin OIZ and IIZb as found in BSE images

Muscovite evolved to lithian muscovite as observed inOIZ IIZa IIZb and Cc (Figs 3f 6g h 3j 6o p Table 1)Lithian muscovite evolved to lsquolsquomixed formrsquorsquo in OIZ IIZaIIZb and Cc (Figs 3e 6e f Table 1) and lsquolsquomixed formrsquorsquoevolved to lepidolite in IIZa IIZb and Cc (Figs 3f f1 6gh 3h 6l Table 1) All these evolutions are due to fractionalcrystallization

In the OIZ lepidolite has more Si Licalcand F butsimilar KRb to that of zinnwaldite and replaces it (Figs

3a 6a b 7d Table 1) An FeMg-containing polylithionitehas higher Si Licalcand Rb contents and a smaller KRbratio than the lepidolite that it replaces (Figs 3c 6c Table1) and a continuous chemical evolution from lepidolite topolylithionite is shown

The trends for major and trace elements of micas withineach zone are difficult to define due to some partial over-lapping but a progressive evolution from muscovite to lithianmuscovite lsquolsquomixed formrsquorsquo and lepidolite in IIZa IIZb and Ccis mainly shown by an increase in the Si Licalc F Rb and Cscontents and a decrease in the KRb ratio and this is simi-larly shown in the OIZ from muscovite to lsquolsquomixed formrsquorsquo(Table 1 Fig 7) In the OIZ Si and Licalccontents increaseprogressively from zinnwaldite to lepidolite and FeMg-containing polylithionite but a gap occurs between zinnwal-dite and lepidolite (Table 1 Fig 4) whereas a continuousevolution from lepidolite to polylithionite is observed TheKRb ratios of zinnwaldite and polylithionite are within therange of that of lepidolite (Fig 7d e)

Each Al-richer mica (muscovite lithian muscovite andlsquolsquomixed formrsquorsquo) exhibits an evolution from the OIZ to theIIZa and then to the IIZb and Cc particularly shown by anincrease in the Si Licalc F and Rb contents and adecrease in the KRb ratio but also an increase in theCs content in the lsquolsquomixed formrsquorsquo (Table 1 Fig 7) Theseelements and ratio have been used as petrogenetic indi-cators of evolution in micas from pegmatites (eg Cernyet al 2005 Roda Robles et al 2006 2007 Vieira et al

Fig 7 Plot of some variation diagrams of micas from the OIZ IIZa IIZb and Cc of the Namivo granitic pegmatite Mozambique showingthat the Rb2O and Cs2O contents increase and the KRb ratio decreases for micas from the OIZ to the Cc OIZ IIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 977

eschweizerbart_xxx

Tab

le2

R

epre

sen

tati

ve

elec

tro

nm

icro

pro

be

anal

yse

sin

wt

o

ffe

ldsp

ars

sch

orl

and

spo

du

men

efr

om

the

Nam

ivo

gra

nit

icp

egm

atit

eM

oza

mb

iqu

e

Alb

ite

K-f

eld

spar

Sch

orl

Sp

od

um

ene

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

OIZ

Zo

ne

Cc

SiO

26

75

76

78

86

87

06

84

76

84

1S

iO2

65

10

65

55

65

46

64

96

64

72

SiO

23

52

0S

iO2

64

65

TiO

20

02

mdash0

02

mdashmdash

TiO

2mdash

00

1mdash

mdashmdash

TiO

20

35

Al 2

O3

27

20

Al 2

O3

20

25

19

74

19

67

19

88

19

97

Al 2

O3

18

96

18

23

18

31

18

24

18

05

B2O

3

10

28

Fe 2

O3

00

6F

e 2O

3mdash

mdashmdash

mdash0

10

Fe 2

O3

mdash0

02

mdash0

03

mdashA

l 2O

33

17

2M

nO

01

3M

nO

00

6mdash

mdashmdash

mdashM

nO

mdash0

03

00

3mdash

mdashF

eO1

35

2M

gO

01

8M

gO

mdashmdash

mdashmdash

mdashM

gO

00

10

01

00

5mdash

mdashM

nO

03

3N

a 2O

01

9C

aO1

04

08

00

56

03

70

32

CaO

00

10

01

00

60

01

00

2M

gO

22

8L

i 2O

8

05

Na 2

O1

06

11

12

01

12

11

13

41

13

4N

a 2O

06

50

58

04

10

59

03

8C

aO0

23

To

tal

10

04

6K

2O

00

50

17

00

60

14

01

0K

2O

14

72

14

75

15

67

15

01

15

74

Li 2

O

02

2S

rO0

72

05

00

24

01

1mdash

Rb

2O

00

90

20

03

00

59

09

0N

a 2O

22

8S

i1

99

7P

2O

50

01

00

4mdash

mdashmdash

Cs 2

O

00

6

00

60

09

01

80

20

K2O

00

1A

lIV0

00

3T

ota

l1

00

33

10

03

31

00

46

10

03

11

00

24

P2O

5mdash

00

3mdash

mdashmdash

H2O

3

18

P2

00

To

tal

99

60

99

48

10

03

89

96

11

00

01

F0

78

AlV

I0

98

7S

rC

a(w

t)0

81

07

40

50

03

50

Cl

mdashF

e3thorn

00

01

KR

b(w

t)153

68

48

23

16

Sum

1003

8P

09

9S

i1

18

23

11

87

91

19

58

11

93

21

19

21

KC

s(w

t)4

07

20

41

63

73

69

O

F0

33

Li

10

00

P0

00

10

00

6mdash

mdashmdash

To

tal

10

00

5M

n0

00

3T

i0

00

3mdash

00

03

mdashmdash

Si

11

98

61

20

88

12

04

11

20

45

12

03

3M

g0

00

8A

l4

17

64

07

14

03

54

08

34

10

1P

mdash0

00

5mdash

mdashmdash

TS

i5

95

2N

a0

01

2F

e3thorn

mdashmdash

mdashmdash

00

13

Ti

mdash0

00

1mdash

mdashmdash

Al

00

48

P1

02

Mn

00

09

mdashmdash

mdashmdash

Al

41

14

39

62

39

70

39

86

39

55

B3

00

0M

gmdash

mdashmdash

mdashmdash

Fe3thorn

mdash0

00

3mdash

00

04

mdashZ

Al

60

00

Ca

01

95

01

50

01

04

00

69

00

60

Mn

mdash0

00

50

00

5mdash

mdashY

Al

02

74

Sr

00

73

00

51

00

24

00

11

mdashM

g0

00

30

00

30

01

4mdash

mdashT

i0

04

5N

a3

59

93

80

03

78

33

83

23

83

1C

a0

00

20

00

20

01

20

00

20

00

4M

g0

57

5K

00

11

00

38

00

13

00

31

00

22

Na

02

32

02

07

01

46

02

12

01

37

Mn

00

47

K3

45

73

47

03

67

73

55

03

73

3F

e2thorn

19

12

Z1

60

01

59

61

60

01

60

11

60

4R

b0

01

10

02

40

03

50

07

00

10

8L

i0

14

8X

38

94

04

39

33

94

39

1C

s0

00

20

00

50

00

70

01

40

01

6P

Y3

00

0m

ole

s

XC

a0

04

2A

n5

13

82

71

71

5Z

16

10

16

06

16

01

16

03

15

99

Na

07

47

Ab

94

69

53

97

09

75

97

9X

37

13

72

39

03

85

40

0K

00

02

Or

03

09

03

08

06

mo

les

amp

02

09

An

01

01

03

01

01

Ab

63

56

38

56

35

OH

35

83

Or

93

69

43

95

99

43

96

4F

04

17

Cl

mdash

WZ

ndashw

allzo

ne

OIZ

ndasho

ute

rin

term

edia

tezo

ne

IIZ

aan

dII

Zb

ndashin

ner

inte

rmed

iate

zon

esC

cndash

core

asin

Fig

2B

aOis

bel

ow

the

det

ecti

on

lim

itin

bo

thfe

ldsp

ars

Cs 2

Ofrac14

00

3w

tin

the

K-

feld

spar

fro

mth

eW

Z

mdashN

ot

det

ecte

d

Nu

mb

ero

fio

ns

on

the

bas

iso

f3

2o

xy

gen

sfo

ral

bit

ean

dK

-fel

dsp

ar

31

anio

ns

(O

OH

F

)fo

rsc

ho

rlan

d6

ox

yg

ens

for

spo

du

men

e

-A

mo

un

tin

ferr

edfr

om

con

sid

erat

ion

so

fst

oic

hio

met

ry

978 A M R Neiva

eschweizerbart_xxx

2011) Lepidolite from the OIZ is an Al-poorer mica (Fig4) and has the highest Si Licalcand F contents (Table 1)indicating that an evolution cannot be shown from thislepidolite to lepidolites from the other zones which areAl-richer micas (Fig 4) However there is a regulardecrease in the KRb ratio and a progressive increase inthe Rb and Cs contents from lepidolite of the OIZ tolepidolite of IIZa IIZb and Cc (Fig 7) which indicatesthat the KRb ratio and Rb and Cs contents must not beconsidered alone to show fractional crystallization in

lepidolites particularly if some are Al-richer micas andothers Al-poorer micas The high Licalcand F contents oflepidolite from the OIZ did not decrease its KRb ratioSuch an effect is considered to have taken place in lepi-dolite (an Al-richer mica) from the wall zone of the Tancopegmatite Manitoba Canada (Van Lichtervelde et al2008) An evolution from the lepidolite of the IIZa to thatof the Cc is generally shown by the increasing Si LicalcF Rb Cs contents and a decrease in the KRb ratio (Table1 Fig 7)

At the scale of crystals the pegmatite zones and alsothose from the OIZ to the Cc of the Namivo granitic pegma-tite Al-richer micas show fractionation because theyformed from the fractionation of an Li-rich pegmatite melt

The Al-poorer micas zinnwaldite lepidolite and FeMg-containing polylithionite only occur in the OIZ (Fig 4)Polylithionite is the mica richest in Si and Licalc and lepi-dolite from this zone is the richest in Si Licalcand F (Fig 4Table 1) The high Li contents of these micas reflect aconsiderably higher D(Li) at low temperature (Icenhoweramp London 1995) These Li-rich micas may have crystal-lized from an undercooled melt This hypothesis does notimply high Rb and Cs contents and low KRb ratios Thisagrees with the fact that these micas from the OIZ havesimilar Rb and Cs contents and KRb ratios to those of Al-richer micas (muscovite lithian muscovite and lsquolsquomixedformrsquorsquo) from the same pegmatite zone (Fig 7) Howeverthe lepidolite from the wall zone of the Tanco pegmatiteCanada of a similar origin has a low KRb ratio which isattributed to the complexly interrelated structural compo-nents of this lepidolite (Van Lichtervelde et al 2008) TheLi-rich micas from the OIZ may also represent disequili-brium These two hypotheses are considered the best forthese micas of primary magmatic origin

Another hypothesis was also considered They may havecrystallized in boundary layers which concentrate Li andF But this mechanism was suggested for the most fractio-nated tourmaline enriched in Li and F from the core of the

Fig 8 Plot of albite compositions from all zones of the Namivo granitic pegmatite Mozambique showing that the anorthite content of albitedecreases from the WZ to the Cc WZ OIZ IIZa IIZb and Cc as in Fig 2

Fig 9 The Rb vs Cs diagram of K-feldspar from all zones of theNamivo granitic pegmatite Mozambique showing that the Rb andCs contents of K-feldspar increase from the WZ to the Cc WZ OIZIIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 979

eschweizerbart_xxx

Little Three pegmatite dike USA (Morgan amp London1999) and the micas enriched in Li and F from theNamivo pegmatite belonging to the OIZ Furthermore ina boundary layer melt that became enriched in Li and F theKRb ratio of micas decreases strongly (Van Lichterveldeet al 2008) which was not found in these micas from theOIZ (Fig 7d) Nor can they have resulted from the crystal-lization of a late melt that would have reacted with the OIZbecause these micas are among those containing the high-est KRb values (Fig 7d)

92 The importance of feldspars micas andcolumbitendashtantalite compositions to the Namivogranitic pegmatite evolution

The trace elements Rb and Cs and the KRb and KCs ratioshave been used to show the evolution of K-feldspar inpegmatites (eg Cerny 1994 Cerny et al 2005 RodaRobles et al 2005) The Rb and Cs contents increase andthe KRb and KCs ratios of K-feldspar decrease from theWZ to the Cc (Fig 9 Table 2) reflecting the growth of K-feldspar from an increasingly fractionated melt withouthaving grown from or having been chemically modifiedby an aqueous fluid as in the Swamp pegmatite section atthe Little Three Mine USA (London et al 2012) Thecrystallization of K-feldspar from an exsolved aqueousfluid from melt will reverse the magmatic fractionation ofRb Cs KRb and KCs because Rb and especially Cs areso much more compatible in vapor that both Rb and Csremain in the fluid phase (London et al 2012) The feldsparsolvus pairs in the Namivo pegmatite record magmaticcrystallization temperatures that decrease from WZ to CcAlbite shows a decrease in the Ca Sr contents and SrCaratio from the WZ to the Cc (Fig 8 Table 2) Therefore thefeldspars and also Al-richer micas as already explainedshow fractionation in this zoned pegmatite

In general lepidolite from the Namivo pegmatite hassimilar Rb2O and Cs2O contents and KRb (wt) values tothose of lepidolite from the Rozna and Dobra Voda lepi-dolite-subtype pegmatites in the Czech Republic (Cernyet al 1995) but lower Rb2O and Cs2O contents thanlepidolite from the lepidolite-subtype pegmatite at RedCross Lake Manitoba Canada (Cerny et al 2012a) K-feldspar from the Namivo pegmatite also has lower Rb2O

Table 3 Representative electron microprobe analyses in wt of columbitendashtantalite from the Namivo granitic pegmatite Mozambique

Outer Intermediate Zone - OIZ Inner Intermediate Zone - IIZa

Core - Cc

D L L

WO3 022 059 079 113 101 351 050 007Ta2O5 5487 5123 2503 3186 2888 2519 3127 4542Nb2O5 2537 3000 5483 4635 5113 5144 4911 3686SnO2 008 015 024 049 020 026 017 012TiO2 263 161 136 254 202 145 125 016FeO 860 710 665 471 236 068 mdash mdashMnO 793 952 1099 1304 1400 1725 1748 1718Total 9970 10020 9989 10012 9960 9978 9978 9981W 0004 0011 0013 0019 0016 0057 0008 0001Ta 1065 0975 0422 0552 0495 0430 0543 0847Nb 0819 0949 1538 1336 1456 1460 1418 1143Sn 0002 0004 0006 0012 0005 0007 0004 0003Ti 0141 0085 0063 0122 0096 0068 0060 0008Fe 0513 0416 0345 0251 0124 0036 mdash mdashMn 0479 0564 0578 0704 0747 0917 0945 0998P

3023 3004 2965 2996 2939 2975 2978 3000Mn(Mn thorn Fe) 048 058 063 074 086 096 100 100Ta(Ta thorn Nb) 057 051 022 029 025 023 028 043Classification tant-(Fe) tant-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn)

D ndash darker L ndash lighter zones mdash Not detected tant-tantalite col-columbite Cation formula on the basis of 6 atoms of oxygen

Fig 10 Compositions of columbitendashtantalite from the Namivogranitic pegmatite Mozambique in the columbite quadrilateralshowing that Mn(Mn thorn Fe) of columbite-(Mn) increases from theOIZ to the Cc and the richest columbite-(Mn) in Ta(Ta thorn Nb)tantalite-(Fe) and tantalite-(Mn) only occur in the OIZ OIZ IIZaand Cc as in Fig 2

980 A M R Neiva

eschweizerbart_xxx

and Cs2O contents than K-feldspar from the lepidolite-subtype pegmatite at Red Cross Lake The Rb2O andCs2O contents of primary and late K-feldspar of this peg-matite at Red Cross Lake attained unprecedented levels(Cerny et al 2012a) The lowest KRb (wt) values ofmuscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepido-lite from the IIZb and Cc (Fig 7) and K-feldspar (KRb frac1414) from the Cc compare well with those found in theseminerals from the AC6frac143 lepidolite-subtype pegmatitefrom Greer Lake (Cerny et al 2005) and some of themost fractionated pegmatites worldwide which belong tothe petalite-subtype (eg Tanco Manitoba Cerny 2005Cerny et al 1998 Varutrask Sweden Cerny et al 2005)but muscovite lithian muscovite and lepidolite from theIIZb and Cc have lower Rb2O and Cs2O contents than thesemicas from the Tanco pegmatite (Cerny 2005a VanLichtervelde et al 2008) K-feldspar also has lower

contents of these oxides than the most evolved K-feldsparfrom the Tanco pegmatite (Cerny 2005a) The magmaticfractionation was strong from the WZ to IIZb and Cc of theNamivo lepidolite-subtype pegmatite

The compositional trend of columbite-(Mn) from the OIZto Cc of the Namivo granitic lepidolite-subtype pegmatite(Fig 10) is identical to that of columbite-group mineralsfrom the lepidolite-subtype complex granitic pegmatitesfrom the Dobra Voda in the Moldanubicum CzechRepublic (Novak amp Cerny 1998) and the HimalayaDistrict southern California (shown in Cerny et al 2004)Experimental data for the Fe-Mn pair (Linnen amp Cuney2005) suggest an increase in Fe with fractional crystalliza-tion which is not observed in nature Other phases seem tocontrol the bahavior of Fe and Mn in the melt eg thecrystallization of tourmaline causes a rapid increase of theMnFe in the melt (Van Lichtervelde et al 2006) When thecrystallization of tourmaline stopped the columbitendashtantaliteminerals showed a constant MnFe indicating that the Fe andMn contents in the melt remained constant Schorl onlyoccurs in the OIZ of the Namivo granitic pegmatite and itscrystallization cannot be responsible for the increase in theMnFe of the melt because Mn(Mn thorn Fe) of columbite-(Mn) increases progressively from the OIZ to the IIZa and Cc(Fig 10) Garnet zinnwaldite and gahnite containing Fe andMn also only occur in the OIZ and cannot also have causedthe increase of the MnFe in the melt The dominant Mnenrichment before Ta enrichment started in the columbitendash-tantalite composition from some granitic pegmatites isattributed to an increased alkali-fluoride activity at moderatemHF (Cerny et al 2004) and an increase in the activity offluorine (Martins et al 2011) Each Al-richer mica (musco-vite lithian muscovite and lsquolsquomixed formrsquorsquo) from the Namivogranitic pegmatite shows an increase in F content from theOIZ to the IIZa IIZb and Cc (Table 1) In general the Fcontent of lepidolite also increases from the IIZa to the IIZband Cc Therefore the extreme Fe-Mn fractionation beforeTa enrichment in columbite-(Mn) (Fig 10) may be due to anincrease in the activity of fluorine as a consequence offractional crystallization The increase in the Ta content ofcolumbite-(Mn) from the Namivo granitic pegmatite isattributed to fractional crystallization

The geochemical evolution of albite and K-feldsparfrom the WZ to the Cc Al-richer micas muscovite lithianmuscovite and lsquolsquomixed formrsquorsquo from the OIZ to the Cc andlepidolite from the IIZa to the Cc and columbite-(Mn) andalso beryl (Neiva amp Neiva 2005) from the OIZ to the Ccare caused by magma fractionation The pegmatite zonesare the product of primary crystallization from a volatile-rich silicate melt The pegmatite consolidated from the WZto the Cc The IIZb is one of the most evolved zones asalso suggested by the beryl composition (Neiva amp Neiva2005) and is the richest in lsquolsquomixed formrsquorsquo and lepidolite

The richest columbite-(Mn) in Ta(Ta thorn Nb) and com-positions of tantalite-(Fe) and tantalite-(Mn) only occur inthe OIZ (Fig 10a) associated with lepidolite and polythio-nite (Fig 3c) which may be due to the local depletion of Liand F in the melt which decreases the solubility of Ta andcauses Ta precipitation (Linnen 1998 Linnen amp Cuney

Fig 11 a Backscattered-electron image of a gahnite crystal with adarker zone partially surrounding a lighter zone from the OIZ of theNamivo granitic pegmatite b c Plot of gahnite compositions in theSn-Zn-Ti diagram (atomic proportions) showing a chemical distinc-tion between the lighter and darker zones OIZ as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 981

eschweizerbart_xxx

2005) At the Tanco pegmatite Ta oxides are also asso-ciated with lepidolite enriched in Li and F from the wallzone (Van Lichtervelde et al 2008)

93 Origin and evolution of the zoned graniticlepidolite-subtype pegmatite at Namivo

In general granitic pegmatites particularly those belong-ing to the rare-element class are accepted as having beenformed by the fractional crystallization of a granite melt(eg Cerny 1991a b 1992 Neiva et al 2008 2012 Roda-Robles et al 2012) But it also has been proposed thatpegmatites may be formed by partial melting of appropri-ate rock compositions (eg Nabelek et al 1992 Nabelekamp Russ-Nabelek 1992 Shearer et al 1992 Roda Robleset al 1999) The lepidolite-subtype pegmatites belong tothe LCT (lithium-cesium-tantalum) family (Cerny amp Ercit2005) They are derived by fractional crystallization of agranite magma (eg Cerny et al 2005 Neiva amp Ramos2010 Cerny et al 2012b) Experimental work by Londonet al (1989) and London (1990) using Macusani glass as astarting material equivalent to the bulk composition ofhighly fractionated rare-alkali-rich pegmatites underhighly evolved and hydrous but H2O undersaturatedmelt obtained the latest primary assemblage consisting

of an Li-rich mica thorn albite thorn quartz deposited directlyfrom the primary melt phase Other authors egZasedatelev (1974 1977) and Stewart (1978) argue thatlepidolite-bearing pegmatites are derived from direct ana-texis and Gordiyenko et al (1996) consider that they arederived from an undefined medium and the rare-elementmineralization is superimposed on preexisting barrenpegmatites

Lepidolite-subtype pegmatites may migrate a long wayfrom their parent granites because their volatile-rich highlyfluid pegmatite melts are stable at relatively low tempera-tures (eg Cerny et al 2005 Antunes et al 2013)Therefore the Namivo pegmatite is probably derived byfractional crystallization of an S-type granite magmawhich resulted from partial melting of metamorphosed juve-nile sediments containing micas that carry most of the traceelements that define the signature of the LCT pegmatites(eg Dahl et al 1993)

The two main models for the internal evolution of peg-matites that dominated for more than a century are a) thefractional crystallization of a flux-bearing granitic melt fromthe margins to the center of the pegmatite (Cameron et al1949) b) the interactions of an aqueous fluid with graniticmelt (Jahns amp Burnham 1969 Jahns 1982) The recentmodel of constitutional zone refining combines aspects ofboth models and invokes the formation of a flux-enriched

Table 4 Electron microprobe analyses in wt of zoned gahnite from the outer intermediate zone (OIZ) of the Namivo granitic pegmatiteMozambique

Darker Zone Lighter Zone

Mean s Range Mean s Range

SnO2 036 050 0ndash097 658 281 151ndash998TiO2 008 008 0ndash021 065 034 008ndash105Nb2O5 001 002 0ndash006 018 007 007ndash029Ta2O5 001 004 0ndash010 015 013 0ndash033ZnO 3998 123 3810ndash4109 3339 318 3004ndash3848FeO 367 048 331ndash442 433 065 306ndash498MnO 032 004 028ndash040 039 006 032ndash048MgO 003 004 0ndash010 ndash ndash ndashAl2O3 5507 050 5436ndash5572 5337 070 5257ndash5443SiO2 003 003 0ndash007 008 010 0ndash025Total 9956 9912n 8 8Sn 0035 0048 0ndash0095 0648 0278 0149ndash0983Ti 0015 0015 0ndash0038 0120 0064 0015ndash0195Nb ndash 0003 0ndash0006 0021 0009 0009ndash0037Ta ndash 0002 0ndash0006 0009 0009 0ndash0021Zn 7226 0182 6890ndash7382 6086 0568 5482ndash6965Fe2thornt 0752 0103 0675ndash0913 0894 0135 0628ndash1029Mn 0066 0008 0057ndash0083 0082 0013 0066ndash0101Mg 0010 0015 0ndash0037 ndash ndash ndashAl 15887 0052 15805ndash15954 15526 0170 15375ndash15853Si 0007 0008 0ndash0018 0019 0025 0ndash0062P

23998 23405Fe3thorn 0064 0230Fe2thorn 0686 0658SnZn 0005 0007 0ndash0014 0106 0052 0021ndash0179ZnFe2thornt 961 143 768ndash1093 681 190 536ndash1109

n number of analysis Cation formula based on 32 atoms of oxygen Fe2thornt total Fe2thorn estimated

982 A M R Neiva

eschweizerbart_xxx

boundary layer of silicate liquid in advance of a crystal-lization front (London 2008 London amp Morgan 2012)

Lepidolite-subtype pegmatites are generally scarce(Cerny et al 2005) particularly the zoned ones In thesymmetrically zoned lepidolite-subtype pegmatites ofRozna and Dobra Voda Czech Republic micas (Cernyet al 1995) tourmaline (Selway et al 1999) and colum-bite-group minerals (Novak amp Cerny 1998) evolve fromthe outermost zone to the innermost zone following thecrystallization sequence The same was found in tourma-line from the zoned Lastovicky Dolnı Bory and Raddovicelepidolite-subtype pegmatite dikes in the Czeck Republic(Selway et al 1999)

In general beryl (Neiva amp Neiva 2005) feldsparsmicas and columbite-(Mn) (in this paper) from theNamivo lepidolite-subtype pegmatite record the progres-sive chemical evolution of the pegmatite from the wallzone to the core These minerals were produced by crystal-lization from a silicate melt rather than an aqueous fluidphase The slow cooling of melt shown by the magmaticcrystallization temperatures of feldspars cannot explain theincrease in grain-size of minerals from the wall zone to thecore but fluxes will be necessary to promote the change oftexture particularly a flux-rich hydrosilicate liquidaccording to the experimental evidence (London 2009)The constitutional zone refining model will be the best forthis zoned pegmatite and probably for all lepidolite-sub-type pegmatites because this model also produces a higherfinal concentration of incompatible components in a smal-ler volume of rock than fractional crystallization does(Morgan amp London 1999)

The core margin at the Rozna pegmatite contains K-feld-spar and quartz and the core consists mainly of quartz but it issurrounded and penetrated by a quartz-bearing albitethorn lepi-dolite complex which contains several minerals At theDobra Voda pegmatite the center of the dike is occupiedby the lepidolite unit containing albite and other minerals(Cerny et al 1995) At the Namivo pegmatite the coremargin consists of quartz and beryl and the core containsmainly quartz and spodumene but also albite lepidolite andother minerals The last-unit assemblages of primary miner-als in most of the highly fractionated LCT pegmatites are richin albite and commonly contain lepidolite or spodumene andmost of the other rare phases These units represent the lastmost fractionated liquid that can be derived by fractionalcrystallization of a crustal melt (London 2008)

The Namivo granitic pegmatite shows a significant dis-tinction from the other zoned lepidolite-subtype pegmatitesand LCT pegmatites except the Tanco petalite-subtypepegmatite in Canada because the lepidolite richest in SiLi and F FeMg-containing polylithionite and associatedcolumbite-(Mn) with the highest Ta(Ta thorn Nb) ratio tanta-lite-(Fe) and tantalite-(Mn) only occur in the outer inter-mediate zone These minerals usually form late in theconsolidation of pegmatites The lepidolite and polylithio-nite are probably derived from the disequilibrium crystal-lization of an undercooled melt Tantalite may reflect a localdecrease in Li and F that caused Ta precipitation

This paper contributes to a better understanding of theorigin and evolution of the rare zoned lepidolite-subtypepegmatites and shows that although the pegmatite evolvedfrom the wall zone to the core it presents an unusualassociation of lepidolite polylithionite and tantalite in theouter intermediate zone

Acknowledgments Thanks are due to JM Cotelo Neivaand MB Dias for the samples and information providedand to MR Machado Leite and MF Guimaraes for theuse of the electron microprobe facilities at the LaboratorioNacional de Energia e Geologia (LNEG) PortugalFinancial support was provided by the PortugueseGovernment for the project Pest-OECTEUI00732011of the Geosciences Centre through the PortugueseFoundation for Science and Technology I would like tothank D London WB Simmons and the associated editorE Widom for their constructive reviews of this manuscriptand M Prieto for his editorial work

References

Alfonso P Melgarejo JC Yusta I Velasco F (2003)

Geochemistry of feldspars and muscovite in granitic pegmatite

from the Cap de Creus field Catalonia Spain Can Mineral 41

103ndash116

Antunes IMHR Neiva AMR Ramos JMF Silva PB

Silva MMVG Corfu F (2013) Petrogenetic links between

lepidolite-subtype aplite-pegmatite aplite veins and associated

granites at Segura (central Portugal) Chemie der Erde in press

httpdxdoiorg101016jchemer20121203

Batchelor RA amp Kinnaird JA (1984) Gahnite compositions

compared Mineral Mag 48 425ndash430

Beurlen H Da Silva MRR Thomas R Soares DR Olivier P

(2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-

element granitic pegmatite fractionation in the Borborema pro-

vince Northeastern Brazil Miner Deposita 43 207ndash228

Cameron EN Jahns RH McNair AH Page LR (1949)

Internal structure of granitic pegmatites Econ Geol

Monograph 2 115 p

Cerny P (1991a) Fertile granites of Precambrian rare-element

pegmatite fields is geochemistry controlled by tectonic setting

or source lithologies Precambrian Res 51 429ndash468

mdash (1991b) Rare-element granite pegmatites I Anatomy and inter-

nal evolution of pegmatite deposits Geoscience Canada 18

49ndash67

mdash (1992) Geochemical and petrogenetic features of mineralization

in rare-element granitic pegmatites in the light of current

research Applied Geochemistry 7 393ndash416

mdash (1994) Evolution of feldspars in granitic pegmatites in

lsquolsquoFeldspars and their Reactionsrsquorsquo I Parsons ed NATO

Advanced Study Institute Series C421 501ndash539

mdash (2005) The Tanco rare-element pegmatite deposit Manitoba

regional context internal anatomy and global comparisons in

lsquolsquoRare-element Geochemistry and Mineral Depositsrsquorsquo RL

Linnen amp IM Samson eds Geochemical Association of

Canada Short Course Notes St Catherines 17 127ndash158

Silicate and oxide minerals from a zoned granitic pegmatite 983

eschweizerbart_xxx

Cerny P amp Ercit TS (2005) The classification of granitic pegma-

tites revisited Can Mineral 43 2005ndash2026

Cerny P Meintzer RE Andersen AJ (1985) Extreme fractiona-

tion in rare-element granitic pegmatites selected examples of

data and mechanisms Can Mineral 23 381ndash421

Cerny P Goad BE Hawthorne FC Chapmann R (1986)

Fractionation trends of the Nb- and Ta-bearing oxide minerals

in the Greer Lake pegmatite granite and its pegmatite aureole

southeastern Manitoba Am Mineral 71 501ndash517

Cerny P Stanek J Novak M Baadsgaard H Rieder M

Ottolini L Kavalova M Chapman R (1995) Geochemical

and structural evolution of micas in the Rozna amp Dobra Voda

pegmatites Czech Republic Mineral Petrol 55 177ndash201

Cerny P Ercit TS Vanstone PJ (1998) Mineralogy and petrol-

ogy of the Tanco rare-element pegmatite deposit southeastern

Manitoba International Mineralogical Association 17th General

Meeting Toronto Field Guidebook B6

Cerny P Chapman R Ferreira K Smeds SA (2004)

Geochemistry of oxide minerals of Nb Ta Sn and Sb in

the Varutrask granitic pegmatite Sweden The case of an

lsquolsquoanomalousrsquorsquo columbitendashtantalite trend Am Mineral 89

505ndash518

Cerny P Masau M Goad BE Ferreira K (2005) The Greer

Lake leucogranite Manitoba and the origin of lepidolite-sub-

type granitic pegmatites Lithos 80 305ndash321

Cerny P Teertstra DK Chapman R Selway JB Hawthorne

FC Ferreira K Chackowsky LE Wang X-J Meintzer

RE (2012a) Extreme fractionation and deformation of the

leucogranite-pegmatite suite at Red Cross Lake Manitoba

Canada IV Mineralogy Can Mineral 50 1839ndash1875

Cerny P Halden NM Ferreira K Meintzer RE Brisbin WC

Chackowsky LE (2012b) Extreme fractionation and deforma-

tion of the leucogranite-pegmatite suite at Red Cross Lake

Manitoba Canada II Petrology of the leucogranites and peg-

matites Can Mineral 50 1807ndash1822

Dahl PS When DC Feldmann SG (1993) The systematics of

trace-element partitioning between coexisting muscovite and

biotite in metamorphic rocks from the Black Hills South

Dakota USA Geochim Cosmochim Acta 57 2487ndash2505

Dias MB amp Wilson WE (2000) The Alto Ligonha Pegmatites

Mozambique Mineral Record 31 459ndash497

Fleet ME (2003) Rock-Forming Minerals vol 3A Sheet silicates

micas The Geological Society London second edition chap 6

Lithium micas 651ndash690

Foord EE Cerny P Jackson LL Sherman DM Eby RK

(1995) Mineralogical and geochemical evolutions of micas

from miarolitic pegmatites of the anorogenic pikes-Peak

Batholith Colorado Mineral Petrol 55 1ndash26

Foster MD (1960) Interpretation of the composition of lithium

micas US Geol Surv Prof Paper 354-E 115ndash147

Fuhrman ML amp Lindsley DK (1988) Ternary-feldspar modeling

and thermometry Am Mineral 73 201ndash215

Gomes CL Castro P Alves C (1995) Caracterizacao das espi-

nelas zincıferas e do par ganite-nigerite no campo aplito-

pegmatıtico da Serra de Arga-Minho N de Portugal IV

Congresso Nacional de Geologia Resumos Alargados

Universidade do Porto Mem 4 629ndash633

Gordiyenko VV Ilyina AN Timochina LA Badamina EB

Stanek J (1996) Geochemical model of evolution of a pegma-

tite-forming ore-magmatic system of western Moravia Proc

Russ Mineral Soc 125 38ndash48 (in Russian)

Icenhower JP amp London D (1995) An experimental study for

element partitioning between biotite muscovite and coexisting

peraluminous granitic melt at 200 MPa (H2O) Am Mineral 80

1229ndash1251

Jahns RH (1982) Internal evolution of pegmatite bodies in lsquolsquoGranitic

Pegmatites in science and industryrsquorsquo P Cerny ed Mineralogical

Association of Canada Short Course Handbook 8 293ndash327

Jahns RH amp Burnham CW (1969) Experimental studies of

pegmatite genesis I A model for the derivation and crystal-

lization of granitic pegmatites Econ Geol 64 843ndash864

Jolliff BL Papike JJ Shearer CK (1987) Fractionation trends

in mica and tourmaline as indicators of pegmatite internal evo-

lution Bob Ingersoll pegmatite Black Hills South Dakota

USA GeochimCosmochim Acta 51 519ndash534

Kile DE amp Foord EE (1998) Micas from the Pikes Peak bath-

olith and its cogenetic granitic pegmatites Colorado optical

properties composition and correlation with pegmatite evolu-

tion Can Mineral 36 463ndash482

Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic

melts with Li and Li thorn F constraints for mineralization in rare

metal granites and pegmatites Econ Geol 93 1013ndash1025

Linnen RL amp Cuney M (2005) Granite-related rare-element

deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf

mineralization in lsquolsquoRare-element geochemistry and mineral

depositsrsquorsquo RL Linnen amp IM Samson eds Geochemical

Association of Canada Short Course Notes 17 45ndash68

London D (1990) Internal differentiation of rare-element pegmatites

a synthesis of recent research in lsquolsquoOre Bearing Granite Systems

Petrogenesis and Mineralizing Processesrsquorsquo HJ Stein amp JL

Hannah eds Geol Soc America Special Paper 246 35ndash50

mdash (2008) Pegmatites The Canadian Mineralogist Special

Publication 10 347 p

mdash (2009) The origin of primary textures in granitic pegmatites

Can Mineral 47 697ndash724

London D amp Morgan GB VI (2012) The pegmatite puzzle

Elements 8 263ndash268

London D Morgan GB VI Hervig RL (1989) Vapor-under-

saturated experiments in the system macusanite-H2O at 200

MPa and the internal differentiation of granitic pegmatites

Contrib Mineral Petrol 102 1ndash17

London D Morgan GB VI Paul KA Guttery BM (2012)

Internal evolution of miarolitic granitic pegmatites at the Little

Three mine Ramona California USA Can Mineral 50

1025ndash1054

Martins T Lima A Simmons WB Folster AU Noronha F

(2011) Geochemical fractionation of Nb-Ta oxides in Li-bear-

ing pegmatites from the Barroso-Alvao pegmatite field northern

Portugal Can Mineral 49 777ndash791

Monier G Charoy B Cuney M Ohnenstetter D Robert JL

(1987) Evolution spatiale et temporelle de la composition des

micas du granite albitique a topaze-lepidolite de Beauvoir

Geologie De La France 2ndash3 179ndash188

Monier G amp Robert JL (1986) Evolution of the miscibility gap

between muscovite and biotite solid solutions with increasing

lithium content an experimental study in the systems

K2OndashLi2OndashMgOndashAl2O3ndashSiO2ndashH2OndashHF at 600 C 2 kbar

PH2O comparison with natural lithium micas Mineral Mag

50 641ndash651

Morgan GBVI amp London D (1999) Crystallization of the little

three layered pegmatite-aplite dike Ramona District California

Contrib Mineral Petrol 136 310ndash330

984 A M R Neiva

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985

Page 2: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

product of LiAl-silicates) K-feldspar content increasesinwards Albite is penetrated by quartz Micas are mainlyassociated with quartz and beryl The dark brown tourma-line is associated with micas Cassiterite is partially sur-rounded by columbitendashtantalite and rutile and they areassociated with micas and quartz Some columbitendashtanta-lite minerals are associated with lithium micas Rare andsmall uranium minerals penetrate along fractures ofcolumbitendashtantalite

The inner intermediate zone a (IIZa) consists domi-nantly of albite and perthitic K-feldspar (30 cm) andalso contains quartz muscovite lithian muscovitelsquolsquomixed formrsquorsquo lepidolite beryl columbite monazitecookeite and bismutite Micas are mainly associated withK-feldspar and albite Columbite occurs among feldsparcrystals locally penetrating them and is rarely surroundedby monazite The inner intermediate zone b (IIZb) isessentially made of lsquolsquomixed formrsquorsquo lepidolite and a tabular

variety of albite (10 to 30 cm) but also contains quartzK-feldspar muscovite lithian muscovite beryl and bismu-tite Lepidolite and lsquolsquomixed formrsquorsquo abundances increasewith depth Micas are associated with albite and quartzAlbite is the most abundant feldspar in OIZ IIZa and IIZb

The lsquolsquocore marginrsquorsquo (Cm) has mainly quartz and beryl(30 cm) but the core (Cc) consists mainly of quartz andspodumene (10 to 30 cm) and also has albite K-feldsparmuscovite lithian muscovite lsquolsquomixed formrsquorsquo lepidoliteberyl tabular variety of albite columbite and cookeiteMicas are associated with quartz K-feldspar and albiteSpodumene occurs in long crystals up to 5 cm thick cut-ting quartz but some are altered into kaolinite Albite andits tabular variety replace quartz and spodumeneColumbite is associated with albite and quartz

3 Sampling and analytical methods

Several samples from all zones of the Namivo graniticpegmatite and information was given by MB Dias whowas the exploitation manager of the company working thepegmatite in 1962 to JM Cotelo Neiva who visited thepegmatite with him All the available material was used forthis study Feldspars and micas have been selected from thezones where they occur Columbite-tantalite minerals arefrom the OIZ IIZa and Cc and tourmaline and gahnitewere only found in the OIZ

The major elements of minerals were determined using aJeol Hyperprobe JXA-8500F operated at 15 kV accelerat-ing voltage and 10 nA beam current except for columbi-tendashtantalite for which the voltage and current were 20 kVand 20 nA Detection limits (3s) above mean backgroundwere 003 wt for most oxides except for ZnO SrOBaO Rb2O Cs2O (006 wt) and F (01 wt) withcounting times of 80 s for these five oxides and F Theanalyses were carried out at LNEG S Mamede de InfestaPortugal Standards used include albite (NaKa) orthoclase(AlKa SiKa KKa) apatite (CaKa PKa) MgO (MgKa)MnTiO3 (MnKa) TiO2 (TiKa) Fe2O3 (FeKa) ZnS(ZnKa) fluorite (FKa) vanadinite (ClKa) BaSO4

(BaLa) SrTiO3 (SrLa) glasses Ge-Al-Ca containing 100wt Rb (RbLa) and Si-Al-Ca with 100 wt Cs (CsLa)cassiterite (SnKa) pure Ta (La) SrBaNb4O12 (NbLa) andscheelite (WLa)

4 Micas

41 Chemical composition of micas

As different micas are associated in the same crystals(Fig 3) it is impossible to separate them or use a laserablation inductively coupled plasma mass spectrometer(LA-ICP-MS) to determine their trace elementsTherefore ZnO BaO Rb2O and Cs2O contents weredetermined by electron microprobe In general ZnO andBaO contents are low but Rb2O and Cs2O contents are

Fig 2 Zones of the Namivo granitic pegmatite Mozambique Mainconstituents of Wall Zone (WZ ndash quartz K-feldspar) OuterIntermediate Zone (OIZ ndash quartz and albite) Inner IntermediateZone (IIZa ndash albite and perthitic K-feldspar IIZb ndash lsquolsquomixed formrsquorsquolepidolite and tabular variety of albite) and Core (Cm ndash lsquolsquocoremarginrsquorsquo quartz and beryl Cc ndash core-quartz and spodumene)

Fig 1 Location of the Namivo granitic pegmatite in the AltoLigonha pegmatite area of northern Mozambique Simplified mapafter Dias amp Wilson (2000)

968 A M R Neiva

eschweizerbart_xxx

very helpful for the interpretations Li2O contents ofzinnwaldite lepidolite polylithionite and lsquolsquomixedformrsquorsquo were calculated from the equation Li2O frac14 (0289 SiO2) 9658 and of muscovite and lithian muscovitefrom the equation Li2O frac14 03935 F1326 (Tischendorfet al 1997) Secondary micas replacing feldspars werenot analyzed

Variation in the chemical composition of micas from theNamivo granitic pegmatite is shown in Table 1 and Fig 4lsquolsquoMixed formrsquorsquo is of course not a proper mica mineral name(Rieder et al 1999) The chemical distinction between

dioctahedral and trioctahedral micas is the value of 25octahedral cations per formula unit in dioctahedral and25 octahedral cations in trioctahedral micas for a for-mula calculated on the basis of 12 O thorn F atoms (Riederet al 1999) The Li2O content of analyzed lsquolsquomixed formsrsquorsquois calculated for a trioctahedral mica and the value ofoctahedral cations per formula unit is 28 and totals ofanalyses are good (Table 1) indicating that they are trioc-tahedral micas If Li2O contents of these analyses arecalculated for a dioctahedral mica the value of octahedralcations per formula mainly ranges between 23 and 28 and

Fig 3 Backscattered-electron images of zoned micas from the Namivo granitic pegmatite Mozambique Micas a b c d d1 from the OIZ ef f1from the IIZa g h from the IIZb i j from the Cc d1 and f1 are details of d and f respectively Lep ndash lepidolite Zin ndash zinnwaldite Brl ndashberyl Mix f ndash lsquolsquomixed formrsquorsquo Q ndash quartz Pol ndash polylithionite Cst ndash cassiterite Rt ndash rutile Ct ndash columbitendashtantalite Lith mu ndash lithianmuscovite Ab ndash albite Mu ndash muscovite K-fel ndash K-feldspar

Silicate and oxide minerals from a zoned granitic pegmatite 969

eschweizerbart_xxx

Tab

le1

R

epre

sen

tati

ve

elec

tro

nm

icro

pro

be

anal

yse

sin

wt

o

fm

icas

fro

mth

eN

amiv

og

ran

itic

peg

mat

ite

Mo

zam

biq

ue

Ou

ter

Inte

rmed

iate

Zo

ne

-O

IZIn

ner

Inte

rmed

iate

Zo

ne

-II

Za

Zin

Lep

lsquolsquoM

ixed

Frsquorsquo

Lep

Lep

Po

llsquolsquo

Mix

edF

rsquorsquoL

ith

Mu

sP

ol

Lit

hM

us

lsquolsquoM

ixed

Frsquorsquo

lsquolsquoM

ixed

Frsquorsquo

Lep

Mu

sL

ith

Mu

s

Co

mp

osi

tio

nC

ore

Rim

Co

reR

imR

imC

ore

Rim

Co

reC

ore

Rim

Rim

SiO

24

37

15

42

04

52

45

63

75

23

45

87

64

67

14

63

35

91

84

58

54

85

74

81

24

94

64

55

44

61

1T

iO2

06

00

15

04

70

02

02

70

05

mdashmdash

00

2mdash

01

00

03

00

7mdash

00

4A

l 2O

32

21

81

76

52

97

81

59

01

82

11

48

13

12

63

53

31

49

43

71

92

68

82

83

32

46

43

77

03

55

0F

eO8

42

39

74

57

24

44

94

13

11

56

17

51

14

mdash2

68

11

01

50

01

21

15

Mn

O0

60

00

60

33

00

20

21

00

30

10

01

50

05

01

20

27

12

32

16

04

80

53

Mg

O5

15

17

21

06

14

01

33

10

10

87

06

80

94

00

50

09

mdash0

01

mdashmdash

Zn

O0

46

03

20

17

01

10

24

01

30

14

01

00

09

00

60

13

02

60

41

00

60

15

CaO

00

10

01

00

4mdash

00

10

02

00

30

05

00

1mdash

mdash0

02

00

10

02

mdashL

i 2O

2

97

60

13

42

66

35

47

73

23

84

03

07

45

04

34

38

42

54

64

01

60

45

Na 2

O0

08

00

60

23

01

10

23

00

70

29

03

30

06

04

40

13

02

60

13

03

80

28

K2O

10

00

98

41

00

91

02

01

05

89

77

93

39

98

95

09

91

10

28

97

79

95

99

39

81

Rb

2O

08

60

78

06

61

30

02

80

46

05

10

43

04

91

06

15

01

42

16

71

02

11

0C

s 2O

0

06

00

9

00

60

14

00

6

00

6

00

6

00

6

00

60

15

05

50

13

02

2

00

60

03

F5

10

89

92

24

10

50

10

14

10

05

24

60

81

98

41

06

53

84

89

74

10

50

11

0H

2O

18

30

23

33

9mdash

mdashmdash

33

54

12

mdash4

01

19

12

15

09

14

28

39

61

02

03

10

40

81

01

75

10

51

41

04

31

10

38

51

00

51

10

04

21

03

77

10

03

31

02

85

10

19

61

03

19

10

02

51

00

21

O

F2

14

37

80

94

44

14

26

42

21

03

03

44

13

04

52

26

20

53

11

02

10

46

To

tal

99

89

10

03

01

00

81

10

07

31

00

05

99

63

99

48

10

00

89

96

49

98

81

00

59

99

91

10

00

81

00

04

99

75

KR

b(w

t)1

11

21

47

13

41

91

62

11

88

56

26

25

48

98

1

Si

30

85

36

20

30

45

37

47

35

58

38

54

31

02

30

83

38

63

30

45

32

66

32

26

33

51

30

24

30

86

AlIV

09

15

03

80

09

55

02

53

04

42

01

46

08

98

09

17

01

37

09

55

07

34

07

74

06

49

09

76

09

14

PT

40

04

00

40

04

00

40

04

00

40

04

00

40

04

00

40

04

00

40

04

00

40

0A

lVI

09

31

10

09

14

07

09

92

10

17

09

99

15

49

18

54

10

12

19

56

13

96

14

65

13

19

19

74

18

87

Ti

00

32

00

08

00

24

00

01

00

14

00

02

mdashmdash

00

01

mdash0

00

50

00

20

00

4mdash

00

02

Fe2thorn

04

97

02

22

02

57

01

36

02

81

00

72

00

87

00

97

00

62

mdash0

15

10

06

20

08

50

00

70

06

4M

n0

03

60

00

30

01

90

00

10

01

20

00

20

00

60

00

80

00

30

00

70

01

50

07

00

12

40

02

70

03

0M

g0

54

20

17

10

10

60

13

90

13

50

09

90

08

60

06

70

09

10

00

50

00

9mdash

00

01

mdashmdash

Zn

00

24

00

16

00

08

00

05

00

12

00

06

00

07

00

05

00

04

00

03

00

06

00

13

00

21

00

03

00

07

Li

08

44

16

13

09

25

17

73

14

95

19

32

10

26

00

80

19

54

01

14

11

84

11

46

12

64

00

42

01

20

PR

29

13

04

27

53

05

29

73

11

27

62

11

31

32

09

27

72

76

28

22

05

21

1C

a0

00

10

00

10

00

3mdash

00

01

00

01

00

02

00

04

00

01

mdashmdash

00

01

00

01

00

01

mdashN

a0

01

10

00

80

03

00

01

40

03

00

00

90

03

70

04

30

00

80

05

70

01

70

03

40

01

70

04

90

03

6K

09

00

08

38

08

66

08

65

09

17

08

18

07

90

08

47

07

91

08

40

08

82

08

36

08

60

08

41

08

38

Rb

00

39

00

33

00

29

00

56

00

12

00

19

00

22

00

18

00

21

00

45

00

65

00

61

00

73

00

44

00

47

Cs

00

02

00

03

00

02

00

04

00

02

00

02

00

02

00

02

00

02

00

04

00

16

00

04

00

06

00

02

00

01

PA

09

50

88

09

30

94

09

60

85

08

50

91

08

20

95

09

80

94

09

60

94

09

2F

11

39

18

99

04

77

22

07

21

80

20

85

05

17

01

70

20

31

02

23

11

44

10

37

15

87

01

05

02

33

OH

0

86

10

10

11

52

3mdash

mdashmdash

14

83

18

30

mdash1

77

70

85

60

96

30

41

31

89

51

76

7Z

on

esL

DL

DL

DL

DD

D

LD

LD

L

F

igu

res

Fig

s3

a6

ab

Fig

3

bF

igs

3c

6c

Fig

s3

d

d1

6

dF

igs

3e

6e

fF

igs

3f

f1

6g

h

970 A M R Neiva

eschweizerbart_xxx

Tab

le1

C

on

tin

ued

Inn

erIn

term

edia

teZ

on

e-

IIZ

bC

ore

-C

c

Lit

hM

us

Lep

Mu

slsquolsquo

Mix

edF

rsquorsquoL

epL

ith

Mu

slsquolsquo

Mix

edF

rsquorsquoL

epM

us

Lit

hM

us

Co

reR

imC

ore

Rim

Rim

Co

reR

imR

im

SiO

24

69

25

21

64

62

24

90

64

99

94

71

84

90

15

09

54

63

44

65

6T

iO2

00

3mdash

00

40

03

00

30

02

00

1mdash

mdashmdash

Al 2

O3

35

72

22

89

36

17

28

04

24

87

35

10

26

26

23

49

36

31

35

53

FeO

00

10

61

00

70

05

00

70

04

21

81

55

00

10

03

Mn

O0

55

05

80

43

12

92

24

06

01

09

13

30

14

01

4M

gO

mdashmdash

mdashmdash

mdashmdash

mdashmdash

mdashmdash

Zn

O

00

60

10

00

8

00

60

19

0

06

02

50

07

0

06

0

06

CaO

00

30

04

mdashmdash

00

10

01

00

10

01

mdashmdash

Li 2

O

06

55

42

02

54

52

47

90

93

45

15

07

04

70

79

Na 2

O0

41

00

80

49

02

60

16

04

10

13

01

00

55

05

4K

2O

97

99

78

10

16

96

69

76

94

49

33

90

89

97

99

0R

b2O

12

42

30

14

31

79

21

01

34

17

52

13

14

81

69

Cs 2

O0

16

08

7

00

60

62

05

00

11

07

70

79

01

40

12

F1

46

83

40

70

49

97

63

19

25

55

73

51

15

16

9H

2O

38

30

52

41

62

14

08

23

61

18

20

95

39

63

70

10

08

61

03

69

10

02

61

02

51

10

31

61

00

77

10

26

71

02

87

10

05

81

00

75

O

F0

61

35

00

29

21

03

20

08

12

33

30

90

48

07

1T

ota

l1

00

25

10

01

99

99

71

00

41

99

96

99

96

10

03

49

97

81

00

10

10

00

4

KR

b(w

t)7

23

96

44

94

26

44

83

96

15

3

Si

31

10

34

98

30

84

32

68

33

76

31

30

33

02

34

42

30

82

31

02

AlIV

08

90

05

02

09

16

07

32

06

24

08

70

06

98

05

58

09

18

08

98

PT

40

04

00

40

04

00

40

04

00

40

04

00

40

04

00

AlV

I1

90

01

30

71

92

91

47

01

35

51

87

51

38

71

31

21

92

81

89

2T

i0

00

1mdash

00

02

00

02

00

02

00

01

00

01

mdashmdash

mdashF

e2thorn

00

01

00

34

00

04

00

03

00

04

00

02

01

23

00

88

00

01

00

02

Mn

00

31

00

33

00

24

00

73

01

28

00

34

00

62

00

76

00

08

00

08

Mg

mdashmdash

mdashmdash

mdashmdash

mdashmdash

mdashmdash

Zn

00

03

00

05

00

04

00

03

00

09

00

03

00

12

00

03

00

03

00

03

Li

01

73

14

61

00

66

12

11

13

01

02

49

12

21

13

76

01

27

02

11

PR

21

12

84

20

32

76

28

02

16

28

12

86

20

72

12

Ca

00

02

00

03

mdashmdash

00

01

00

01

00

01

00

01

mdashmdash

Na

00

53

00

10

00

63

00

34

00

21

00

53

00

17

00

13

00

71

00

70

K0

82

80

83

70

86

50

82

10

84

10

79

90

80

20

78

20

84

60

84

1R

b0

05

30

09

90

06

10

07

70

09

10

05

70

07

60

09

20

06

30

07

2C

s0

00

50

02

50

00

10

01

80

01

40

00

30

02

20

02

30

00

40

00

3P

A0

94

09

70

99

09

50

97

09

10

92

09

10

98

09

9F

03

06

17

69

01

48

10

51

16

30

04

03

11

83

15

70

02

42

03

56

OH

1

69

40

23

11

85

20

94

90

37

01

59

70

81

70

43

01

75

81

64

4Z

on

esD

LD

D

LD

LL

D

DF

igu

res

Fig

s3

g

6i

jk

Fig

s3

h

6l

Fig

s3

i6

m

nF

igs

3j

6o

p

OIZ

IIZ

aII

Zb

Cc

asin

Fig

2Z

inndash

zin

nw

ald

ite

Lep

ndashle

pid

oli

teF

ndashfo

rmP

olndash

po

lyli

thio

nit

eL

ith

Mu

sndash

lith

ian

mu

sco

vit

eM

us

ndashm

usc

ov

ite

Lndash

ligh

ter

zon

eD

ndashd

ark

erzo

ne

D

-th

ed

ark

estzo

ne

L

-th

eli

gh

test

zon

ein

BS

Eim

ages

BaO

isb

elo

wth

ed

etec

tio

nli

mit

Cal

cula

ted

nu

mb

ero

fio

ns

on

the

bas

iso

f1

2o

xy

genthorn

Fat

om

sL

i 2O

v

alu

esca

lcu

late

dfr

om

equ

atio

ns

of

Tis

chen

do

rff

eta

l

(19

97

)O

H

-ca

lcu

late

db

yd

iffe

ren

ceto

20

00

H

2O

-ca

lcu

late

db

yst

oic

hio

met

ry

Silicate and oxide minerals from a zoned granitic pegmatite 971

eschweizerbart_xxx

analytical totals are not good The analyzed lsquolsquomixedformsrsquorsquo are distinguished in backscattered-electron (BSE)images and chemically (Fig 3b d d1 e f f1 h i andFig 4) The chemical distinction between lsquolsquomixed formrsquorsquoand lepidolite from the OIZ (Fig 4) is clear in Fig 3bwhere lepidolite is darker than lsquolsquomixed formrsquorsquo because theformer has less Fe and Mn than the latter (Table 1) and inFig 3f f1 and 3h for micas from the IIZa and IIZbrespectively where lepidolite is lighter than lsquolsquomixedformrsquorsquo because the former has more Fe2thorn and Mn oronly more Mn than the latter (Table 1) The lsquolsquomixedformsrsquorsquo analyzed are distinguished in the BSE imagesfrom the lepidolite that falls in its fields in the Fig 4The fields of lepidolite composition in Foster (1960) arelarger than the field for lepidolite from the trilithionite tothe polylithionite (Rieder et al 1999) According to Fleet(2003) only a few lepidolite compositions plot on thetrilithionite-polylithionite join In general lepidolite hashigher Si Licalc Rb Cs F contents and lower AlVI andOH contents than lsquolsquomixed formrsquorsquo (Table 1 Fig4)lsquolsquoMixed formrsquorsquo is also clearly distinguished fromlithian muscovite in OIZ IIZa IIZb and Cc in BSEimages (Fig 3d d1 e f i) and chemically (Table 1 Fig4) as it generally has higher Si Licalc Rb Cs F contentsand lower AlVI and OH contents than lithian muscovite

Two distinct trends are defined in Fig 4 One trendconsists of Al-poorer micas which are zinnwaldite

lepidolite and FeMg-containing polylithionite from theOIZ A hiatus occurs between zinnwaldite and lepidolitebut the zinnwaldite series is continuous with the field oflepidolite at the high Li content (Fleet 2003) The othertrend consists of Al-richer micas (muscovite lithian mus-covite and lsquolsquomixed formrsquorsquo from the OIZ IIZa IIZb and Ccand also lepidolite from most of those zones except fromthe OIZ) There is a gap between lithian muscovite and thelsquolsquomixed formrsquorsquo which may be explained by a hiatus inmica stability (eg Jolliff et al 1987) but a solid solutionbetween dioctahedral and trioctahedral micas has beenindicated experimentally (Monier amp Robert 1986) whileother authors have shown that the octahedral site occu-pancy ranges continuously from muscovite to lepidolite(eg Roda Robles et al 2005 Van Lichterveld et al2008 Vieira et al 2011) Most lithian muscovites andlsquolsquomixed formrsquorsquo from the OIZ are richer in Fe2thornthornMg thornMn than those from the other zones due to their higherFe2thorn and Mg contents (Fig 4 Table 1)

In the Al-poorer micas from the OIZ ranging from zinn-waldite to lepidolite and FeMg-containing polylithionite(Fig 4) (AlIV thorn AlVI) Fe2thorn Mg Ti Mn and Zn contentsdecrease and Si and Licalccontents increase (Table 1) In theAl-richer micas ranging from muscovite to lithian muscoviteand lsquolsquomixed formrsquorsquo from the OIZ IIZa IIZb and Cc and alsoto lepidolite from most of those zones except from the OIZ(AlIV thorn AlVI) AlVI and OH contents and KRb ratio

Fig 4 Plots of micas from the Namivo granitic pegmatite Mozambique in the LindashR2thornndashR3thornthorn Ti diagram according to the classification ofFoster (1960) slightly modified (Rieder et al 1999) with R3thorn frac14 AlVI R2thorn frac14 (Fe2thornt thorn Mn2thornthorn Mg) showing the variety of micacompositions Two trends are defined one for Al-poorer micas (zinnwaldite lepidolite and FeMg-containing polylithionite) from theOIZ another for Al-richer micas (muscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepidolite) from all zones except lepidolite from the OIZOIZ IIZa IIZb and Cc as in Fig 2

972 A M R Neiva

eschweizerbart_xxx

generally decrease and Si Licalc Rb Cs and F contentsgenerally increase (Table 1)

42 Main substitution mechanisms

The 2Si thorn Li 3Altotal mechanism operates in the diocta-hedral micas (muscovite and lithian muscovite) (Fig 5a b)whereas the 3LiVI AlVIthorn 2ampVI (amp represents a vacancy)operates in the trioctahedral micas (lsquolsquomixed formrsquorsquo lepido-lite zinnwaldite and FeMg-containing polylithionite) (Fig5c d) which agrees with findings for micas from the Tancopegmatite (Van Lichtervelde et al 2008)

43 Textures and chemical compositions of zoned micacrystals

Backscattered-electron images combined with quantita-tive spot electron-microprobe analyses made it possibleto distinguish different micas in the Namivo graniticpegmatite Similar textural aspects and geochemicalobservations were found between some Al-richer micasfrom the OIZ IIZa IIZb and Cc Some selected zonedcrystals are documented (Table 1 Fig 3 and 6) In theOIZ lepidolite penetrates zinnwaldite along cleavagesand partially surrounds it and the contacts are sharp(Fig 3a) A chemical gap occurs between zinnwalditeand lepidolite compositions (Fig 6a b) Lepidolite withhigher Si Licalc F contents similar KRb value andlower (AlIV thorn AlVI) Ti Fe2thorn Mg (Fe2thornthorn Mn thorn Mg)Zn and OH contents (Table 1) replaces zinnwaldite Athin lepidolite rim partially surrounds lsquolsquomixed formrsquorsquoand the contact is sharp (Fig 3b) The lepidolite rimhas higher Si Mg Licalc Rb F contents and lowerAlVI Ti Fe2thorn Mn Na and OH contents and KRb ratiothan the lsquolsquomixed formrsquorsquo core (Table 1) The lepidoliterim is an Al-poorer mica whereas the lsquolsquomixed formrsquorsquocore is an Al-richer mica (Fig 4) The lepidolite rimcorresponds to an overgrowth The FeMg-containingpolylithionite partially surrounds and penetrates lepido-lite along cleavages and shows well defined contacts(Fig 3c) Both contain rutile cassiterite and columbi-tendashtantalite inclusions A continuous chemical evolutiontakes place from lepidolite to FeMg-containing poly-lithionite (Figs 4 6c) The latter has higher Si LicalcRb contents and lower AlVI Ti Fe2thorn Mn Mg Zn Nacontents and KRb ratio (Table 1) and replaces lepido-lite A lithian muscovite rim with rare FeMg-containingpolylithionite surrounds the lsquolsquomixed formrsquorsquo core and thispolylithionite penetrated lithian muscovite (Fig 3d)The contact between the lithian muscovite rim andlsquolsquomixed formrsquorsquo core is irregular suggesting disequili-brium or at a cleavage (Fig 3d d1) Two linear trendsone for the lithian muscovite rim and another for thelsquolsquomixed formrsquorsquo core are defined in the (Fe2thornthornMnthornMg)vs (AlIV thornAlVI) diagram (Fig 6d) The FeMg-contain-ing polylithionite rim does not belong to any of thesetrends and plots outside this diagram because it is an Al-poorer mica whereas the others are Al-richer micas

(Fig 4) The lithian muscovite rim has higher AlVI(AlIV thorn AlVI) OH contents and KRb ratio and lowerMg (Fe2thornthorn Mn thorn Mg) Licalc Rb F contents than thelsquolsquomixed formrsquorsquo core (Table 1 Fig 6d) The crystal isreversely zoned The FeMg-containing polylithioniterim has higher Si Licalc F contents and lower AlVI(AlIV thorn AlVI) Fe2thorn Mn (Fe2thornthorn Mn thorn Mg) Na andOH contents than the lsquolsquomixed formrsquorsquo core and lithianmuscovite rim (Table 1) and replaces lithian muscovite

In the IIZa some zoned crystals have a lithian muscovitecore and a lsquolsquomixed formrsquorsquo rim and the contacts are gradual(Fig 3e) A small discontinuity occurs in the trends fromthe lithian muscovite core to lsquolsquomixed formrsquorsquo rim in the(Fe2thornthorn Mn thorn Mg) vs (AlIV thorn AlVI) and Rb2O vs KRb(Fig 6e f) The lsquolsquomixed formrsquorsquo rim has higher Si Fe2thornMn (Fe2thornthornMn thornMg) Licalc K Rb Cs F contents andlower AlVI (AlIVthornAlVI) Na OH contents and KRb ratiothan the lithian muscovite core (Table 1 Fig 6e f) indi-cating progressive zoning Similar textural relationshipsand chemical evolutions were found in other zoned crystalsfrom the OIZ IIZb and Cc In another crystal from theIIZa lithian muscovite partially surrounds lsquolsquomixed formrsquorsquointergrown with lepidolite Lithian muscovite also partiallysurrounds muscovite (Fig 3f) The contacts betweenlsquolsquomixed formrsquorsquo and lepidolite and also between muscoviteand lithian muscovite are gradual (Fig 3f f1) whereasthey are well defined for muscovite withlsquolsquomixed formrsquorsquoand lepidolite (Fig 3f f1) The crystal has a lsquolsquomixed formrsquorsquoand lepidolite core and a partial rim of muscovite andlithian muscovite The lsquolsquomixed formrsquorsquo core evolved tolepidolite core as the Si Fe2thorn Mn (Fe2thornthorn Mn thorn Mg)Licalc K Rb Cs and F contents increase and the (AlIV thornAlVI) and KRb ratio decrease (Table 1 Fig 6g h) The SiFe2thorn Mn (Fe2thornthorn Mn thorn Mg) Licalc Rb and F contentsincrease and the (AlIV thorn AlVI) and KRb ratio decreasefrom the muscovite rim to the lithian muscovite rim (Table1 Fig 6g h) suggesting that the former evolved to thelatter The muscovite rim has higher AlVI (AlIV thorn AlVI)Na OH contents and KRb ratio and lower Si Fe2thorn Mn(Fe2thornthornMn thornMg) Zn Licalc Rb and F contents than thelsquolsquomixed formrsquorsquo core and lepidolite core (Table 1 Fig 6gh) Muscovite was probably reversely formed and evolvedafterwards to lithian muscovite

In the IIZb some crystals have a lithian muscovite coreand a thinner lepidolite rim (Fig 3g) and others show asmall muscovite core and a larger rim of lsquolsquomixed formrsquorsquointergrown with lepidolite (Fig 3h) The contacts betweenthe cores and rims are well defined There are increases inthe Si Mn (Fe2thornthorn Mn thorn Mg) Licalc Rb and F contentsand decreases in the AlVI (AlIVthornAlVI) and KRb ratio fromthe lsquolsquomixed formrsquorsquo rim to the intergrown lepidolite rim(Table 1 Figs 3h 6l) suggesting that the former evolvedto the latter as also found in IIZa and Cc In both crystalsthe rim compositions have higher Si (Fe2thornthorn Mn thorn Mg)Licalc Rb Cs F contents and lower AlVI (AlIVthorn AlVI) Naand OH contents and KRb ratio than the core (Table 1 Figs3g 6i j k 3h 6l) A compositional gap occurs between coreand rim in the diagrams for both crystals (Fig 6i j k l)suggesting that both rims correspond to overgrowths and no

Silicate and oxide minerals from a zoned granitic pegmatite 973

eschweizerbart_xxx

diffuse reequilibration took place in any crystal as thecontacts between core and rim are sharp

In the Cc lithian muscovite is surrounded and pene-trated by lsquolsquomixed formrsquorsquo showing well defined contacts(Fig 3i) The lsquolsquomixed formrsquorsquo has higher Si Fe2thorn Mn(Fe2thornthorn Mn thorn Mg) Licalc Rb Cs F contents and lowerAlVI (AlIV thorn AlVI) Na OH contents and KRb ratio thanthe lithian muscovite (Table 1 Fig 6m n) and a composi-tional gap occurs between both micas suggesting thatlsquolsquomixed formrsquorsquo replaced lithian muscovite In rare crystalsa small lepidolite core is surrounded by a large muscoviterim containing K-feldspar inclusions The contact betweenthe core and rim is sharp (Fig 3j) A thin partial rim oflithian muscovite surrounds muscovite and the contact isgradual The muscovite rim has higher AlVI (AlIVthornAlVI)Na K OH contents and a greater KRb value and lower SiFe2thorn Mn Licalc Rb Cs and F contents than the lepidolitecore (Table 1 Fig 6o p) and a compositional gap occursbetween them (Fig 6o p) indicating that either muscoviteforms an overgrowth or it is reversely formed From themuscovite rim to the lithian muscovite rim the Si Licalc

Rb F contents increase whereas the AlVI (AlIV thorn AlVI)and OH contents and KRb ratio decrease (Table 1 Fig 6op) suggesting that muscovite evolved to lithian muscoviteas also found in IIZa and IIZb

44 Evolution of mica compositions within each zoneand from the outer intermediate zone to the core of theNamivo granitic pegmatite

The KRb ratio is taken as the best fractionation index inmicas (eg Cerny et al 1985 Foord et al 1995 Wise1995 Pesquera et al 1999 Roda Robles et al 2006 2007)It is hard to establish trends in the evolution of mica com-position from muscovite and lithian muscovite to lsquolsquomixedformrsquorsquo and lepidolite within each zone because the KRbratio shows some partial overlapping particularly betweenthe lithian muscovite and lsquolsquomixed formrsquorsquo and also betweenthe latter and lepidolite However an evolution from mus-covites to lepidolite (Al-richer mica Fig 4) is clearer (Fig7) In general in IIZa IIZb and Cc the Si Licalc Rb Cs and

Fig 5 The main substitutions in micas from the Namivo granitic pegmatite Mozambique a b SiIVthorn LiVI versus AlIVthornAlVI showing the 2SithornLi 3Altotal substitution mechanism operating in dioctahedral micas (Mu muscovite and Lith mu lithian muscovite) c d AlVI thornamp VI

versus LiVI (where amp represents a vacancy) and showing the 3LiVI AlVI thorn 2 amp VI substitution mechanism operating in trioctahedral micas(Mix f ndashlsquolsquomixed formrsquorsquo Lep lepidolite Zin zinnwaldite and Pol-FeMg-containing polylithionite) OIZ IIZa IIZb and Cc as in Fig 2

974 A M R Neiva

eschweizerbart_xxx

F contents tend to increase and the (AlIV thorn AlVI) AlVI

contents and KRb ratio tend to decrease from muscoviteto lepidolite (Table 1 Fig 7) This sequence is consistentbut rarely in the Cc lepidolite is rimmed by muscovite (Fig3j) But in the OIZ the evolution stops in lsquolsquomixed formrsquorsquoparticularly shown by the large range of the KRb ratiowhich mainly overlaps that of lepidolite from this zone(Fig 7) because this lepidolite is an Al-poorer mica whereasthe others are Al-richer micas (Fig 4)

In the OIZ the lepidolite has more Si Licalc and F andless (AlIV thorn AlVI) Ti Fe2thorn Mn Mg and Zn than zinn-waldite (Table 1) but it has larger ranges of Rb and KRbratio than zinnwaldite (Fig 7) The FeMg-containingpolylithionite is the richest mica in Si Licalc and thepoorest in (AlIV thorn AlVI) (Table 1) But at this zone scalethe polylithionite has Rb Cs contents and KRb ratiowithin the ranges for lepidolite and close to those of zinn-waldite (Fig 7)

Fig 6 Variation diagrams of micas from selected zoned crystals from the zones of the Namivo granitic pegmatite Mozambique to showtheir relationships lith musc lithian muscovite OIZ IIZa IIZb and Cc an in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 975

eschweizerbart_xxx

From the OIZ to IIZa IIZb and Cc muscovite and lithianmuscovite generally show increases in the Si Licalc F and Rbcontents and decreases in the Fe2thorn and Mg contents and KRb ratio but the Mg content is very low in these micas fromthe IIZa IIZb and Cc (Table 1 Fig 7a) The lsquolsquomixed formrsquorsquoshows increases in the Si Licalc F Rb Cs contents anddecreases in the (AlIV thorn AlVI) and Mg contents and KRbratio but the Mg content is very low in this mica from theIIZb and Cc (Table 1 Fig 7b c) The lepidolite shows anincrease in the Si Licalc F Rb and Cs contents and a decreasein the KRb ratio from the IIZa to the IIZb and Cc (Table 1Fig 7d e) Furthermore the lepidolite from the OIZ has thelowest (AlIV thorn AlVI) AlVI and OH contents the highest SiFe2thorn Licalcand F contents and KRb ratio and the lowest Rband Cs contents compared to lepidolite from the other zones(Table 1 Fig 7d e)

5 Feldspars

Selected chemical analyses of albite and K-feldspar fromfive zones of the Namivo granitic pegmatite are given inTable 2 Strontium is the most abundant trace element inalbite (eg Cerny 1994) Anorthite and Sr contents and SrCa ratio of albite decrease from the WZ to the Cc (Fig 8Table 2) Rubidium is the most abundant trace element inK-feldspar followed by Cs in IIZa IIZb and Cc In gen-eral K Rb and Cs contents of K-feldspar increase and KRb and KCs values decrease from the WZ to the Cc (Table2 Fig 9)

The program SOLVCALC 20 (Wen amp Nekvasil 1994)using the Margules model Fuhrman amp Lindsley (1988) wasapplied for the purpose of thermometry The pairing ofplagioclase cores with the K-feldspars average of eachsample was used to estimate the crystallization temperaturesof primary magmatic feldspars They are 405 C (WZ)406ndash340 C (OIZ) 390ndash335 C (IIZa) 347ndash306 C (IIZb)and 333ndash289 C (Cc) at 3 kbar The metamorphic environ-ment of rare-element-Li granitic pegmatites is one of lowpressure 2ndash4 kbar (Cerny amp Ercit 2005) In general thedifference between the maximum and minimum calculatedtemperatures at 2 3 and 4 kbar for the same feldspar pairfrom the Namivo pegmatite is lower than 40 C The tem-perature decreases from the wall zone (WZ) to the core(Cc) A similar temperature behavior of feldspars wasfound in the pegmatite-aplite dike USA (Morgan ampLondon 1999)

6 Other silicates

Tourmaline of schorl composition was only found inthe OIZ (Table 2) because there was not enough Feand Mg for schorl to precipitate in the other zonesSpodumene only occurs in the Cc and its compositionis nearly pure (Table 2)

7 Columbite-tantalite

Representative chemical analyses of columbitendashtantalitefrom the Namivo granitic pegmatite are given in Table 3and plotted in the columbite quadrilateral (Fig 10a)Most crystals are unzoned but zoned crystals with dar-ker and lighter zones in BSE images are from the Cc Thelighter zone of columbite-(Mn) has higher Ta contentTa(Ta thorn Nb) and Mn(Mn thorn Fe) values and lower Nbcontent than the darker zone (Fig 10a b) The crystals ofthe columbitendashtantalite minerals are low in W Sn and Tiimpurities (Table 3)

The main trend starts from the columbite-(Mn) of theOIZ towards the more Mn-enriched and slightly Ta-enriched columbite-(Mn) from the IIZa and Cc The high-est Ta(Ta thorn Nb) values belong to the lighter zone ofcolumbite-(Mn) with Mn(Mn thorn Fe) frac14 10 from the CcThe richest columbite-(Mn) in Ta(TathornNb) and composi-tions of tantalite-(Fe) and tantalite-(Mn) were only foundin the OIZ (Fig 10a) and are associated with lepidolite andpolylithionite (Fig 3c)

8 Gahnite

Gahnite was rarely found in the OIZ and shows a darkerzone that partially surrounds a lighter zone in a BSE image(Fig 11a) The darker zone has a higher Zn content andlower Sn Ti Nb Ta Mn contents and SnZn value than thelighter zone (Table 4 Fig 11b c) These gahnite composi-tions fall within the igneous field of Batchelor amp Kinnaird(1984) The darker zone is closer in composition to thepure gahnite (Zn8Al16O32) than the lighter zone whichcontains up to 0983 apfu Sn 0195 apfu Ti 1029 apfutotal Fe2thorn 0101 apfu Mn (Table 4) and consequently hasa composition distinct from nigerite In general both thedarker and lighter zones have higher Sn Ti and Fe contentsthan gahnite from the granitic pegmatites of Nigeria(Batchelor amp Kinnaird 1984) Arga northern Portugal(Gomes et al 1995) and Cabanas northern Portugal(Neiva amp Champness 1997) Borborema province north-eastern Brazil (Soares et al 2007) The Zn=Fe2thornt values ofthe darker and lighter zones of gahnite from Namivo arelower than those reported in Neiva amp Champness (1997)and Soares et al (2007)

9 Discussion and conclusions

91 Evolution of micas in the zoned pegmatite

In general individual mica crystals show varying patternsand compositional zoning involving several elementsmainly Si AlVI (AlIV thorn AlVI) Fe2thorn Mn (Fe2thornthorn Mn thornMg) Licalc Rb Cs F and OH and the KRb ratioProgressively zoned crystals from the IIZa show grada-tional contacts between a lithian muscovite core and a

976 A M R Neiva

eschweizerbart_xxx

lsquolsquomixed formrsquorsquo rim (Figs 3e 6e f) and the zoning patternscorrespond to fractionation trends and probably reflect adrop in temperature during the crystallization of the grani-tic pegmatite melt Progressively zoned crystals also occurin OIZ IIZb and Cc Some crystals are reversely zonedwith a) a lsquolsquomixed formrsquorsquo core and a lithian muscovite rimfrom the OIZ (Figs 3d d1 6d) b) a core consisting oflsquolsquomixed formrsquorsquo and lepidolite and a rim of muscovite andlithian muscovite from the IIZa (Figs 3f f1 6g h) c) alepidolite core and a muscovite and lithian muscovite rimfrom the Cc (Figs 3j 6o p) which may be explained bythe hypothesis of oscillations in the compositions of themelt from which they grew alternating between an Li-enriched boundary layer and a bulk melt that is less frac-tionated The muscovite evolved to lithian muscovite inIIZa and Cc (Figs 3f 6g h 3j 6o p) Replacements (Figs3a 6a b 3c 6c 3i 6m n Table 1) occur in OIZ and Ccand overgrowths (Figs 3b g 6i j k 3h 6l Table 1) occurin OIZ and IIZb as found in BSE images

Muscovite evolved to lithian muscovite as observed inOIZ IIZa IIZb and Cc (Figs 3f 6g h 3j 6o p Table 1)Lithian muscovite evolved to lsquolsquomixed formrsquorsquo in OIZ IIZaIIZb and Cc (Figs 3e 6e f Table 1) and lsquolsquomixed formrsquorsquoevolved to lepidolite in IIZa IIZb and Cc (Figs 3f f1 6gh 3h 6l Table 1) All these evolutions are due to fractionalcrystallization

In the OIZ lepidolite has more Si Licalcand F butsimilar KRb to that of zinnwaldite and replaces it (Figs

3a 6a b 7d Table 1) An FeMg-containing polylithionitehas higher Si Licalcand Rb contents and a smaller KRbratio than the lepidolite that it replaces (Figs 3c 6c Table1) and a continuous chemical evolution from lepidolite topolylithionite is shown

The trends for major and trace elements of micas withineach zone are difficult to define due to some partial over-lapping but a progressive evolution from muscovite to lithianmuscovite lsquolsquomixed formrsquorsquo and lepidolite in IIZa IIZb and Ccis mainly shown by an increase in the Si Licalc F Rb and Cscontents and a decrease in the KRb ratio and this is simi-larly shown in the OIZ from muscovite to lsquolsquomixed formrsquorsquo(Table 1 Fig 7) In the OIZ Si and Licalccontents increaseprogressively from zinnwaldite to lepidolite and FeMg-containing polylithionite but a gap occurs between zinnwal-dite and lepidolite (Table 1 Fig 4) whereas a continuousevolution from lepidolite to polylithionite is observed TheKRb ratios of zinnwaldite and polylithionite are within therange of that of lepidolite (Fig 7d e)

Each Al-richer mica (muscovite lithian muscovite andlsquolsquomixed formrsquorsquo) exhibits an evolution from the OIZ to theIIZa and then to the IIZb and Cc particularly shown by anincrease in the Si Licalc F and Rb contents and adecrease in the KRb ratio but also an increase in theCs content in the lsquolsquomixed formrsquorsquo (Table 1 Fig 7) Theseelements and ratio have been used as petrogenetic indi-cators of evolution in micas from pegmatites (eg Cernyet al 2005 Roda Robles et al 2006 2007 Vieira et al

Fig 7 Plot of some variation diagrams of micas from the OIZ IIZa IIZb and Cc of the Namivo granitic pegmatite Mozambique showingthat the Rb2O and Cs2O contents increase and the KRb ratio decreases for micas from the OIZ to the Cc OIZ IIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 977

eschweizerbart_xxx

Tab

le2

R

epre

sen

tati

ve

elec

tro

nm

icro

pro

be

anal

yse

sin

wt

o

ffe

ldsp

ars

sch

orl

and

spo

du

men

efr

om

the

Nam

ivo

gra

nit

icp

egm

atit

eM

oza

mb

iqu

e

Alb

ite

K-f

eld

spar

Sch

orl

Sp

od

um

ene

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

OIZ

Zo

ne

Cc

SiO

26

75

76

78

86

87

06

84

76

84

1S

iO2

65

10

65

55

65

46

64

96

64

72

SiO

23

52

0S

iO2

64

65

TiO

20

02

mdash0

02

mdashmdash

TiO

2mdash

00

1mdash

mdashmdash

TiO

20

35

Al 2

O3

27

20

Al 2

O3

20

25

19

74

19

67

19

88

19

97

Al 2

O3

18

96

18

23

18

31

18

24

18

05

B2O

3

10

28

Fe 2

O3

00

6F

e 2O

3mdash

mdashmdash

mdash0

10

Fe 2

O3

mdash0

02

mdash0

03

mdashA

l 2O

33

17

2M

nO

01

3M

nO

00

6mdash

mdashmdash

mdashM

nO

mdash0

03

00

3mdash

mdashF

eO1

35

2M

gO

01

8M

gO

mdashmdash

mdashmdash

mdashM

gO

00

10

01

00

5mdash

mdashM

nO

03

3N

a 2O

01

9C

aO1

04

08

00

56

03

70

32

CaO

00

10

01

00

60

01

00

2M

gO

22

8L

i 2O

8

05

Na 2

O1

06

11

12

01

12

11

13

41

13

4N

a 2O

06

50

58

04

10

59

03

8C

aO0

23

To

tal

10

04

6K

2O

00

50

17

00

60

14

01

0K

2O

14

72

14

75

15

67

15

01

15

74

Li 2

O

02

2S

rO0

72

05

00

24

01

1mdash

Rb

2O

00

90

20

03

00

59

09

0N

a 2O

22

8S

i1

99

7P

2O

50

01

00

4mdash

mdashmdash

Cs 2

O

00

6

00

60

09

01

80

20

K2O

00

1A

lIV0

00

3T

ota

l1

00

33

10

03

31

00

46

10

03

11

00

24

P2O

5mdash

00

3mdash

mdashmdash

H2O

3

18

P2

00

To

tal

99

60

99

48

10

03

89

96

11

00

01

F0

78

AlV

I0

98

7S

rC

a(w

t)0

81

07

40

50

03

50

Cl

mdashF

e3thorn

00

01

KR

b(w

t)153

68

48

23

16

Sum

1003

8P

09

9S

i1

18

23

11

87

91

19

58

11

93

21

19

21

KC

s(w

t)4

07

20

41

63

73

69

O

F0

33

Li

10

00

P0

00

10

00

6mdash

mdashmdash

To

tal

10

00

5M

n0

00

3T

i0

00

3mdash

00

03

mdashmdash

Si

11

98

61

20

88

12

04

11

20

45

12

03

3M

g0

00

8A

l4

17

64

07

14

03

54

08

34

10

1P

mdash0

00

5mdash

mdashmdash

TS

i5

95

2N

a0

01

2F

e3thorn

mdashmdash

mdashmdash

00

13

Ti

mdash0

00

1mdash

mdashmdash

Al

00

48

P1

02

Mn

00

09

mdashmdash

mdashmdash

Al

41

14

39

62

39

70

39

86

39

55

B3

00

0M

gmdash

mdashmdash

mdashmdash

Fe3thorn

mdash0

00

3mdash

00

04

mdashZ

Al

60

00

Ca

01

95

01

50

01

04

00

69

00

60

Mn

mdash0

00

50

00

5mdash

mdashY

Al

02

74

Sr

00

73

00

51

00

24

00

11

mdashM

g0

00

30

00

30

01

4mdash

mdashT

i0

04

5N

a3

59

93

80

03

78

33

83

23

83

1C

a0

00

20

00

20

01

20

00

20

00

4M

g0

57

5K

00

11

00

38

00

13

00

31

00

22

Na

02

32

02

07

01

46

02

12

01

37

Mn

00

47

K3

45

73

47

03

67

73

55

03

73

3F

e2thorn

19

12

Z1

60

01

59

61

60

01

60

11

60

4R

b0

01

10

02

40

03

50

07

00

10

8L

i0

14

8X

38

94

04

39

33

94

39

1C

s0

00

20

00

50

00

70

01

40

01

6P

Y3

00

0m

ole

s

XC

a0

04

2A

n5

13

82

71

71

5Z

16

10

16

06

16

01

16

03

15

99

Na

07

47

Ab

94

69

53

97

09

75

97

9X

37

13

72

39

03

85

40

0K

00

02

Or

03

09

03

08

06

mo

les

amp

02

09

An

01

01

03

01

01

Ab

63

56

38

56

35

OH

35

83

Or

93

69

43

95

99

43

96

4F

04

17

Cl

mdash

WZ

ndashw

allzo

ne

OIZ

ndasho

ute

rin

term

edia

tezo

ne

IIZ

aan

dII

Zb

ndashin

ner

inte

rmed

iate

zon

esC

cndash

core

asin

Fig

2B

aOis

bel

ow

the

det

ecti

on

lim

itin

bo

thfe

ldsp

ars

Cs 2

Ofrac14

00

3w

tin

the

K-

feld

spar

fro

mth

eW

Z

mdashN

ot

det

ecte

d

Nu

mb

ero

fio

ns

on

the

bas

iso

f3

2o

xy

gen

sfo

ral

bit

ean

dK

-fel

dsp

ar

31

anio

ns

(O

OH

F

)fo

rsc

ho

rlan

d6

ox

yg

ens

for

spo

du

men

e

-A

mo

un

tin

ferr

edfr

om

con

sid

erat

ion

so

fst

oic

hio

met

ry

978 A M R Neiva

eschweizerbart_xxx

2011) Lepidolite from the OIZ is an Al-poorer mica (Fig4) and has the highest Si Licalcand F contents (Table 1)indicating that an evolution cannot be shown from thislepidolite to lepidolites from the other zones which areAl-richer micas (Fig 4) However there is a regulardecrease in the KRb ratio and a progressive increase inthe Rb and Cs contents from lepidolite of the OIZ tolepidolite of IIZa IIZb and Cc (Fig 7) which indicatesthat the KRb ratio and Rb and Cs contents must not beconsidered alone to show fractional crystallization in

lepidolites particularly if some are Al-richer micas andothers Al-poorer micas The high Licalcand F contents oflepidolite from the OIZ did not decrease its KRb ratioSuch an effect is considered to have taken place in lepi-dolite (an Al-richer mica) from the wall zone of the Tancopegmatite Manitoba Canada (Van Lichtervelde et al2008) An evolution from the lepidolite of the IIZa to thatof the Cc is generally shown by the increasing Si LicalcF Rb Cs contents and a decrease in the KRb ratio (Table1 Fig 7)

At the scale of crystals the pegmatite zones and alsothose from the OIZ to the Cc of the Namivo granitic pegma-tite Al-richer micas show fractionation because theyformed from the fractionation of an Li-rich pegmatite melt

The Al-poorer micas zinnwaldite lepidolite and FeMg-containing polylithionite only occur in the OIZ (Fig 4)Polylithionite is the mica richest in Si and Licalc and lepi-dolite from this zone is the richest in Si Licalcand F (Fig 4Table 1) The high Li contents of these micas reflect aconsiderably higher D(Li) at low temperature (Icenhoweramp London 1995) These Li-rich micas may have crystal-lized from an undercooled melt This hypothesis does notimply high Rb and Cs contents and low KRb ratios Thisagrees with the fact that these micas from the OIZ havesimilar Rb and Cs contents and KRb ratios to those of Al-richer micas (muscovite lithian muscovite and lsquolsquomixedformrsquorsquo) from the same pegmatite zone (Fig 7) Howeverthe lepidolite from the wall zone of the Tanco pegmatiteCanada of a similar origin has a low KRb ratio which isattributed to the complexly interrelated structural compo-nents of this lepidolite (Van Lichtervelde et al 2008) TheLi-rich micas from the OIZ may also represent disequili-brium These two hypotheses are considered the best forthese micas of primary magmatic origin

Another hypothesis was also considered They may havecrystallized in boundary layers which concentrate Li andF But this mechanism was suggested for the most fractio-nated tourmaline enriched in Li and F from the core of the

Fig 8 Plot of albite compositions from all zones of the Namivo granitic pegmatite Mozambique showing that the anorthite content of albitedecreases from the WZ to the Cc WZ OIZ IIZa IIZb and Cc as in Fig 2

Fig 9 The Rb vs Cs diagram of K-feldspar from all zones of theNamivo granitic pegmatite Mozambique showing that the Rb andCs contents of K-feldspar increase from the WZ to the Cc WZ OIZIIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 979

eschweizerbart_xxx

Little Three pegmatite dike USA (Morgan amp London1999) and the micas enriched in Li and F from theNamivo pegmatite belonging to the OIZ Furthermore ina boundary layer melt that became enriched in Li and F theKRb ratio of micas decreases strongly (Van Lichterveldeet al 2008) which was not found in these micas from theOIZ (Fig 7d) Nor can they have resulted from the crystal-lization of a late melt that would have reacted with the OIZbecause these micas are among those containing the high-est KRb values (Fig 7d)

92 The importance of feldspars micas andcolumbitendashtantalite compositions to the Namivogranitic pegmatite evolution

The trace elements Rb and Cs and the KRb and KCs ratioshave been used to show the evolution of K-feldspar inpegmatites (eg Cerny 1994 Cerny et al 2005 RodaRobles et al 2005) The Rb and Cs contents increase andthe KRb and KCs ratios of K-feldspar decrease from theWZ to the Cc (Fig 9 Table 2) reflecting the growth of K-feldspar from an increasingly fractionated melt withouthaving grown from or having been chemically modifiedby an aqueous fluid as in the Swamp pegmatite section atthe Little Three Mine USA (London et al 2012) Thecrystallization of K-feldspar from an exsolved aqueousfluid from melt will reverse the magmatic fractionation ofRb Cs KRb and KCs because Rb and especially Cs areso much more compatible in vapor that both Rb and Csremain in the fluid phase (London et al 2012) The feldsparsolvus pairs in the Namivo pegmatite record magmaticcrystallization temperatures that decrease from WZ to CcAlbite shows a decrease in the Ca Sr contents and SrCaratio from the WZ to the Cc (Fig 8 Table 2) Therefore thefeldspars and also Al-richer micas as already explainedshow fractionation in this zoned pegmatite

In general lepidolite from the Namivo pegmatite hassimilar Rb2O and Cs2O contents and KRb (wt) values tothose of lepidolite from the Rozna and Dobra Voda lepi-dolite-subtype pegmatites in the Czech Republic (Cernyet al 1995) but lower Rb2O and Cs2O contents thanlepidolite from the lepidolite-subtype pegmatite at RedCross Lake Manitoba Canada (Cerny et al 2012a) K-feldspar from the Namivo pegmatite also has lower Rb2O

Table 3 Representative electron microprobe analyses in wt of columbitendashtantalite from the Namivo granitic pegmatite Mozambique

Outer Intermediate Zone - OIZ Inner Intermediate Zone - IIZa

Core - Cc

D L L

WO3 022 059 079 113 101 351 050 007Ta2O5 5487 5123 2503 3186 2888 2519 3127 4542Nb2O5 2537 3000 5483 4635 5113 5144 4911 3686SnO2 008 015 024 049 020 026 017 012TiO2 263 161 136 254 202 145 125 016FeO 860 710 665 471 236 068 mdash mdashMnO 793 952 1099 1304 1400 1725 1748 1718Total 9970 10020 9989 10012 9960 9978 9978 9981W 0004 0011 0013 0019 0016 0057 0008 0001Ta 1065 0975 0422 0552 0495 0430 0543 0847Nb 0819 0949 1538 1336 1456 1460 1418 1143Sn 0002 0004 0006 0012 0005 0007 0004 0003Ti 0141 0085 0063 0122 0096 0068 0060 0008Fe 0513 0416 0345 0251 0124 0036 mdash mdashMn 0479 0564 0578 0704 0747 0917 0945 0998P

3023 3004 2965 2996 2939 2975 2978 3000Mn(Mn thorn Fe) 048 058 063 074 086 096 100 100Ta(Ta thorn Nb) 057 051 022 029 025 023 028 043Classification tant-(Fe) tant-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn)

D ndash darker L ndash lighter zones mdash Not detected tant-tantalite col-columbite Cation formula on the basis of 6 atoms of oxygen

Fig 10 Compositions of columbitendashtantalite from the Namivogranitic pegmatite Mozambique in the columbite quadrilateralshowing that Mn(Mn thorn Fe) of columbite-(Mn) increases from theOIZ to the Cc and the richest columbite-(Mn) in Ta(Ta thorn Nb)tantalite-(Fe) and tantalite-(Mn) only occur in the OIZ OIZ IIZaand Cc as in Fig 2

980 A M R Neiva

eschweizerbart_xxx

and Cs2O contents than K-feldspar from the lepidolite-subtype pegmatite at Red Cross Lake The Rb2O andCs2O contents of primary and late K-feldspar of this peg-matite at Red Cross Lake attained unprecedented levels(Cerny et al 2012a) The lowest KRb (wt) values ofmuscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepido-lite from the IIZb and Cc (Fig 7) and K-feldspar (KRb frac1414) from the Cc compare well with those found in theseminerals from the AC6frac143 lepidolite-subtype pegmatitefrom Greer Lake (Cerny et al 2005) and some of themost fractionated pegmatites worldwide which belong tothe petalite-subtype (eg Tanco Manitoba Cerny 2005Cerny et al 1998 Varutrask Sweden Cerny et al 2005)but muscovite lithian muscovite and lepidolite from theIIZb and Cc have lower Rb2O and Cs2O contents than thesemicas from the Tanco pegmatite (Cerny 2005a VanLichtervelde et al 2008) K-feldspar also has lower

contents of these oxides than the most evolved K-feldsparfrom the Tanco pegmatite (Cerny 2005a) The magmaticfractionation was strong from the WZ to IIZb and Cc of theNamivo lepidolite-subtype pegmatite

The compositional trend of columbite-(Mn) from the OIZto Cc of the Namivo granitic lepidolite-subtype pegmatite(Fig 10) is identical to that of columbite-group mineralsfrom the lepidolite-subtype complex granitic pegmatitesfrom the Dobra Voda in the Moldanubicum CzechRepublic (Novak amp Cerny 1998) and the HimalayaDistrict southern California (shown in Cerny et al 2004)Experimental data for the Fe-Mn pair (Linnen amp Cuney2005) suggest an increase in Fe with fractional crystalliza-tion which is not observed in nature Other phases seem tocontrol the bahavior of Fe and Mn in the melt eg thecrystallization of tourmaline causes a rapid increase of theMnFe in the melt (Van Lichtervelde et al 2006) When thecrystallization of tourmaline stopped the columbitendashtantaliteminerals showed a constant MnFe indicating that the Fe andMn contents in the melt remained constant Schorl onlyoccurs in the OIZ of the Namivo granitic pegmatite and itscrystallization cannot be responsible for the increase in theMnFe of the melt because Mn(Mn thorn Fe) of columbite-(Mn) increases progressively from the OIZ to the IIZa and Cc(Fig 10) Garnet zinnwaldite and gahnite containing Fe andMn also only occur in the OIZ and cannot also have causedthe increase of the MnFe in the melt The dominant Mnenrichment before Ta enrichment started in the columbitendash-tantalite composition from some granitic pegmatites isattributed to an increased alkali-fluoride activity at moderatemHF (Cerny et al 2004) and an increase in the activity offluorine (Martins et al 2011) Each Al-richer mica (musco-vite lithian muscovite and lsquolsquomixed formrsquorsquo) from the Namivogranitic pegmatite shows an increase in F content from theOIZ to the IIZa IIZb and Cc (Table 1) In general the Fcontent of lepidolite also increases from the IIZa to the IIZband Cc Therefore the extreme Fe-Mn fractionation beforeTa enrichment in columbite-(Mn) (Fig 10) may be due to anincrease in the activity of fluorine as a consequence offractional crystallization The increase in the Ta content ofcolumbite-(Mn) from the Namivo granitic pegmatite isattributed to fractional crystallization

The geochemical evolution of albite and K-feldsparfrom the WZ to the Cc Al-richer micas muscovite lithianmuscovite and lsquolsquomixed formrsquorsquo from the OIZ to the Cc andlepidolite from the IIZa to the Cc and columbite-(Mn) andalso beryl (Neiva amp Neiva 2005) from the OIZ to the Ccare caused by magma fractionation The pegmatite zonesare the product of primary crystallization from a volatile-rich silicate melt The pegmatite consolidated from the WZto the Cc The IIZb is one of the most evolved zones asalso suggested by the beryl composition (Neiva amp Neiva2005) and is the richest in lsquolsquomixed formrsquorsquo and lepidolite

The richest columbite-(Mn) in Ta(Ta thorn Nb) and com-positions of tantalite-(Fe) and tantalite-(Mn) only occur inthe OIZ (Fig 10a) associated with lepidolite and polythio-nite (Fig 3c) which may be due to the local depletion of Liand F in the melt which decreases the solubility of Ta andcauses Ta precipitation (Linnen 1998 Linnen amp Cuney

Fig 11 a Backscattered-electron image of a gahnite crystal with adarker zone partially surrounding a lighter zone from the OIZ of theNamivo granitic pegmatite b c Plot of gahnite compositions in theSn-Zn-Ti diagram (atomic proportions) showing a chemical distinc-tion between the lighter and darker zones OIZ as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 981

eschweizerbart_xxx

2005) At the Tanco pegmatite Ta oxides are also asso-ciated with lepidolite enriched in Li and F from the wallzone (Van Lichtervelde et al 2008)

93 Origin and evolution of the zoned graniticlepidolite-subtype pegmatite at Namivo

In general granitic pegmatites particularly those belong-ing to the rare-element class are accepted as having beenformed by the fractional crystallization of a granite melt(eg Cerny 1991a b 1992 Neiva et al 2008 2012 Roda-Robles et al 2012) But it also has been proposed thatpegmatites may be formed by partial melting of appropri-ate rock compositions (eg Nabelek et al 1992 Nabelekamp Russ-Nabelek 1992 Shearer et al 1992 Roda Robleset al 1999) The lepidolite-subtype pegmatites belong tothe LCT (lithium-cesium-tantalum) family (Cerny amp Ercit2005) They are derived by fractional crystallization of agranite magma (eg Cerny et al 2005 Neiva amp Ramos2010 Cerny et al 2012b) Experimental work by Londonet al (1989) and London (1990) using Macusani glass as astarting material equivalent to the bulk composition ofhighly fractionated rare-alkali-rich pegmatites underhighly evolved and hydrous but H2O undersaturatedmelt obtained the latest primary assemblage consisting

of an Li-rich mica thorn albite thorn quartz deposited directlyfrom the primary melt phase Other authors egZasedatelev (1974 1977) and Stewart (1978) argue thatlepidolite-bearing pegmatites are derived from direct ana-texis and Gordiyenko et al (1996) consider that they arederived from an undefined medium and the rare-elementmineralization is superimposed on preexisting barrenpegmatites

Lepidolite-subtype pegmatites may migrate a long wayfrom their parent granites because their volatile-rich highlyfluid pegmatite melts are stable at relatively low tempera-tures (eg Cerny et al 2005 Antunes et al 2013)Therefore the Namivo pegmatite is probably derived byfractional crystallization of an S-type granite magmawhich resulted from partial melting of metamorphosed juve-nile sediments containing micas that carry most of the traceelements that define the signature of the LCT pegmatites(eg Dahl et al 1993)

The two main models for the internal evolution of peg-matites that dominated for more than a century are a) thefractional crystallization of a flux-bearing granitic melt fromthe margins to the center of the pegmatite (Cameron et al1949) b) the interactions of an aqueous fluid with graniticmelt (Jahns amp Burnham 1969 Jahns 1982) The recentmodel of constitutional zone refining combines aspects ofboth models and invokes the formation of a flux-enriched

Table 4 Electron microprobe analyses in wt of zoned gahnite from the outer intermediate zone (OIZ) of the Namivo granitic pegmatiteMozambique

Darker Zone Lighter Zone

Mean s Range Mean s Range

SnO2 036 050 0ndash097 658 281 151ndash998TiO2 008 008 0ndash021 065 034 008ndash105Nb2O5 001 002 0ndash006 018 007 007ndash029Ta2O5 001 004 0ndash010 015 013 0ndash033ZnO 3998 123 3810ndash4109 3339 318 3004ndash3848FeO 367 048 331ndash442 433 065 306ndash498MnO 032 004 028ndash040 039 006 032ndash048MgO 003 004 0ndash010 ndash ndash ndashAl2O3 5507 050 5436ndash5572 5337 070 5257ndash5443SiO2 003 003 0ndash007 008 010 0ndash025Total 9956 9912n 8 8Sn 0035 0048 0ndash0095 0648 0278 0149ndash0983Ti 0015 0015 0ndash0038 0120 0064 0015ndash0195Nb ndash 0003 0ndash0006 0021 0009 0009ndash0037Ta ndash 0002 0ndash0006 0009 0009 0ndash0021Zn 7226 0182 6890ndash7382 6086 0568 5482ndash6965Fe2thornt 0752 0103 0675ndash0913 0894 0135 0628ndash1029Mn 0066 0008 0057ndash0083 0082 0013 0066ndash0101Mg 0010 0015 0ndash0037 ndash ndash ndashAl 15887 0052 15805ndash15954 15526 0170 15375ndash15853Si 0007 0008 0ndash0018 0019 0025 0ndash0062P

23998 23405Fe3thorn 0064 0230Fe2thorn 0686 0658SnZn 0005 0007 0ndash0014 0106 0052 0021ndash0179ZnFe2thornt 961 143 768ndash1093 681 190 536ndash1109

n number of analysis Cation formula based on 32 atoms of oxygen Fe2thornt total Fe2thorn estimated

982 A M R Neiva

eschweizerbart_xxx

boundary layer of silicate liquid in advance of a crystal-lization front (London 2008 London amp Morgan 2012)

Lepidolite-subtype pegmatites are generally scarce(Cerny et al 2005) particularly the zoned ones In thesymmetrically zoned lepidolite-subtype pegmatites ofRozna and Dobra Voda Czech Republic micas (Cernyet al 1995) tourmaline (Selway et al 1999) and colum-bite-group minerals (Novak amp Cerny 1998) evolve fromthe outermost zone to the innermost zone following thecrystallization sequence The same was found in tourma-line from the zoned Lastovicky Dolnı Bory and Raddovicelepidolite-subtype pegmatite dikes in the Czeck Republic(Selway et al 1999)

In general beryl (Neiva amp Neiva 2005) feldsparsmicas and columbite-(Mn) (in this paper) from theNamivo lepidolite-subtype pegmatite record the progres-sive chemical evolution of the pegmatite from the wallzone to the core These minerals were produced by crystal-lization from a silicate melt rather than an aqueous fluidphase The slow cooling of melt shown by the magmaticcrystallization temperatures of feldspars cannot explain theincrease in grain-size of minerals from the wall zone to thecore but fluxes will be necessary to promote the change oftexture particularly a flux-rich hydrosilicate liquidaccording to the experimental evidence (London 2009)The constitutional zone refining model will be the best forthis zoned pegmatite and probably for all lepidolite-sub-type pegmatites because this model also produces a higherfinal concentration of incompatible components in a smal-ler volume of rock than fractional crystallization does(Morgan amp London 1999)

The core margin at the Rozna pegmatite contains K-feld-spar and quartz and the core consists mainly of quartz but it issurrounded and penetrated by a quartz-bearing albitethorn lepi-dolite complex which contains several minerals At theDobra Voda pegmatite the center of the dike is occupiedby the lepidolite unit containing albite and other minerals(Cerny et al 1995) At the Namivo pegmatite the coremargin consists of quartz and beryl and the core containsmainly quartz and spodumene but also albite lepidolite andother minerals The last-unit assemblages of primary miner-als in most of the highly fractionated LCT pegmatites are richin albite and commonly contain lepidolite or spodumene andmost of the other rare phases These units represent the lastmost fractionated liquid that can be derived by fractionalcrystallization of a crustal melt (London 2008)

The Namivo granitic pegmatite shows a significant dis-tinction from the other zoned lepidolite-subtype pegmatitesand LCT pegmatites except the Tanco petalite-subtypepegmatite in Canada because the lepidolite richest in SiLi and F FeMg-containing polylithionite and associatedcolumbite-(Mn) with the highest Ta(Ta thorn Nb) ratio tanta-lite-(Fe) and tantalite-(Mn) only occur in the outer inter-mediate zone These minerals usually form late in theconsolidation of pegmatites The lepidolite and polylithio-nite are probably derived from the disequilibrium crystal-lization of an undercooled melt Tantalite may reflect a localdecrease in Li and F that caused Ta precipitation

This paper contributes to a better understanding of theorigin and evolution of the rare zoned lepidolite-subtypepegmatites and shows that although the pegmatite evolvedfrom the wall zone to the core it presents an unusualassociation of lepidolite polylithionite and tantalite in theouter intermediate zone

Acknowledgments Thanks are due to JM Cotelo Neivaand MB Dias for the samples and information providedand to MR Machado Leite and MF Guimaraes for theuse of the electron microprobe facilities at the LaboratorioNacional de Energia e Geologia (LNEG) PortugalFinancial support was provided by the PortugueseGovernment for the project Pest-OECTEUI00732011of the Geosciences Centre through the PortugueseFoundation for Science and Technology I would like tothank D London WB Simmons and the associated editorE Widom for their constructive reviews of this manuscriptand M Prieto for his editorial work

References

Alfonso P Melgarejo JC Yusta I Velasco F (2003)

Geochemistry of feldspars and muscovite in granitic pegmatite

from the Cap de Creus field Catalonia Spain Can Mineral 41

103ndash116

Antunes IMHR Neiva AMR Ramos JMF Silva PB

Silva MMVG Corfu F (2013) Petrogenetic links between

lepidolite-subtype aplite-pegmatite aplite veins and associated

granites at Segura (central Portugal) Chemie der Erde in press

httpdxdoiorg101016jchemer20121203

Batchelor RA amp Kinnaird JA (1984) Gahnite compositions

compared Mineral Mag 48 425ndash430

Beurlen H Da Silva MRR Thomas R Soares DR Olivier P

(2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-

element granitic pegmatite fractionation in the Borborema pro-

vince Northeastern Brazil Miner Deposita 43 207ndash228

Cameron EN Jahns RH McNair AH Page LR (1949)

Internal structure of granitic pegmatites Econ Geol

Monograph 2 115 p

Cerny P (1991a) Fertile granites of Precambrian rare-element

pegmatite fields is geochemistry controlled by tectonic setting

or source lithologies Precambrian Res 51 429ndash468

mdash (1991b) Rare-element granite pegmatites I Anatomy and inter-

nal evolution of pegmatite deposits Geoscience Canada 18

49ndash67

mdash (1992) Geochemical and petrogenetic features of mineralization

in rare-element granitic pegmatites in the light of current

research Applied Geochemistry 7 393ndash416

mdash (1994) Evolution of feldspars in granitic pegmatites in

lsquolsquoFeldspars and their Reactionsrsquorsquo I Parsons ed NATO

Advanced Study Institute Series C421 501ndash539

mdash (2005) The Tanco rare-element pegmatite deposit Manitoba

regional context internal anatomy and global comparisons in

lsquolsquoRare-element Geochemistry and Mineral Depositsrsquorsquo RL

Linnen amp IM Samson eds Geochemical Association of

Canada Short Course Notes St Catherines 17 127ndash158

Silicate and oxide minerals from a zoned granitic pegmatite 983

eschweizerbart_xxx

Cerny P amp Ercit TS (2005) The classification of granitic pegma-

tites revisited Can Mineral 43 2005ndash2026

Cerny P Meintzer RE Andersen AJ (1985) Extreme fractiona-

tion in rare-element granitic pegmatites selected examples of

data and mechanisms Can Mineral 23 381ndash421

Cerny P Goad BE Hawthorne FC Chapmann R (1986)

Fractionation trends of the Nb- and Ta-bearing oxide minerals

in the Greer Lake pegmatite granite and its pegmatite aureole

southeastern Manitoba Am Mineral 71 501ndash517

Cerny P Stanek J Novak M Baadsgaard H Rieder M

Ottolini L Kavalova M Chapman R (1995) Geochemical

and structural evolution of micas in the Rozna amp Dobra Voda

pegmatites Czech Republic Mineral Petrol 55 177ndash201

Cerny P Ercit TS Vanstone PJ (1998) Mineralogy and petrol-

ogy of the Tanco rare-element pegmatite deposit southeastern

Manitoba International Mineralogical Association 17th General

Meeting Toronto Field Guidebook B6

Cerny P Chapman R Ferreira K Smeds SA (2004)

Geochemistry of oxide minerals of Nb Ta Sn and Sb in

the Varutrask granitic pegmatite Sweden The case of an

lsquolsquoanomalousrsquorsquo columbitendashtantalite trend Am Mineral 89

505ndash518

Cerny P Masau M Goad BE Ferreira K (2005) The Greer

Lake leucogranite Manitoba and the origin of lepidolite-sub-

type granitic pegmatites Lithos 80 305ndash321

Cerny P Teertstra DK Chapman R Selway JB Hawthorne

FC Ferreira K Chackowsky LE Wang X-J Meintzer

RE (2012a) Extreme fractionation and deformation of the

leucogranite-pegmatite suite at Red Cross Lake Manitoba

Canada IV Mineralogy Can Mineral 50 1839ndash1875

Cerny P Halden NM Ferreira K Meintzer RE Brisbin WC

Chackowsky LE (2012b) Extreme fractionation and deforma-

tion of the leucogranite-pegmatite suite at Red Cross Lake

Manitoba Canada II Petrology of the leucogranites and peg-

matites Can Mineral 50 1807ndash1822

Dahl PS When DC Feldmann SG (1993) The systematics of

trace-element partitioning between coexisting muscovite and

biotite in metamorphic rocks from the Black Hills South

Dakota USA Geochim Cosmochim Acta 57 2487ndash2505

Dias MB amp Wilson WE (2000) The Alto Ligonha Pegmatites

Mozambique Mineral Record 31 459ndash497

Fleet ME (2003) Rock-Forming Minerals vol 3A Sheet silicates

micas The Geological Society London second edition chap 6

Lithium micas 651ndash690

Foord EE Cerny P Jackson LL Sherman DM Eby RK

(1995) Mineralogical and geochemical evolutions of micas

from miarolitic pegmatites of the anorogenic pikes-Peak

Batholith Colorado Mineral Petrol 55 1ndash26

Foster MD (1960) Interpretation of the composition of lithium

micas US Geol Surv Prof Paper 354-E 115ndash147

Fuhrman ML amp Lindsley DK (1988) Ternary-feldspar modeling

and thermometry Am Mineral 73 201ndash215

Gomes CL Castro P Alves C (1995) Caracterizacao das espi-

nelas zincıferas e do par ganite-nigerite no campo aplito-

pegmatıtico da Serra de Arga-Minho N de Portugal IV

Congresso Nacional de Geologia Resumos Alargados

Universidade do Porto Mem 4 629ndash633

Gordiyenko VV Ilyina AN Timochina LA Badamina EB

Stanek J (1996) Geochemical model of evolution of a pegma-

tite-forming ore-magmatic system of western Moravia Proc

Russ Mineral Soc 125 38ndash48 (in Russian)

Icenhower JP amp London D (1995) An experimental study for

element partitioning between biotite muscovite and coexisting

peraluminous granitic melt at 200 MPa (H2O) Am Mineral 80

1229ndash1251

Jahns RH (1982) Internal evolution of pegmatite bodies in lsquolsquoGranitic

Pegmatites in science and industryrsquorsquo P Cerny ed Mineralogical

Association of Canada Short Course Handbook 8 293ndash327

Jahns RH amp Burnham CW (1969) Experimental studies of

pegmatite genesis I A model for the derivation and crystal-

lization of granitic pegmatites Econ Geol 64 843ndash864

Jolliff BL Papike JJ Shearer CK (1987) Fractionation trends

in mica and tourmaline as indicators of pegmatite internal evo-

lution Bob Ingersoll pegmatite Black Hills South Dakota

USA GeochimCosmochim Acta 51 519ndash534

Kile DE amp Foord EE (1998) Micas from the Pikes Peak bath-

olith and its cogenetic granitic pegmatites Colorado optical

properties composition and correlation with pegmatite evolu-

tion Can Mineral 36 463ndash482

Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic

melts with Li and Li thorn F constraints for mineralization in rare

metal granites and pegmatites Econ Geol 93 1013ndash1025

Linnen RL amp Cuney M (2005) Granite-related rare-element

deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf

mineralization in lsquolsquoRare-element geochemistry and mineral

depositsrsquorsquo RL Linnen amp IM Samson eds Geochemical

Association of Canada Short Course Notes 17 45ndash68

London D (1990) Internal differentiation of rare-element pegmatites

a synthesis of recent research in lsquolsquoOre Bearing Granite Systems

Petrogenesis and Mineralizing Processesrsquorsquo HJ Stein amp JL

Hannah eds Geol Soc America Special Paper 246 35ndash50

mdash (2008) Pegmatites The Canadian Mineralogist Special

Publication 10 347 p

mdash (2009) The origin of primary textures in granitic pegmatites

Can Mineral 47 697ndash724

London D amp Morgan GB VI (2012) The pegmatite puzzle

Elements 8 263ndash268

London D Morgan GB VI Hervig RL (1989) Vapor-under-

saturated experiments in the system macusanite-H2O at 200

MPa and the internal differentiation of granitic pegmatites

Contrib Mineral Petrol 102 1ndash17

London D Morgan GB VI Paul KA Guttery BM (2012)

Internal evolution of miarolitic granitic pegmatites at the Little

Three mine Ramona California USA Can Mineral 50

1025ndash1054

Martins T Lima A Simmons WB Folster AU Noronha F

(2011) Geochemical fractionation of Nb-Ta oxides in Li-bear-

ing pegmatites from the Barroso-Alvao pegmatite field northern

Portugal Can Mineral 49 777ndash791

Monier G Charoy B Cuney M Ohnenstetter D Robert JL

(1987) Evolution spatiale et temporelle de la composition des

micas du granite albitique a topaze-lepidolite de Beauvoir

Geologie De La France 2ndash3 179ndash188

Monier G amp Robert JL (1986) Evolution of the miscibility gap

between muscovite and biotite solid solutions with increasing

lithium content an experimental study in the systems

K2OndashLi2OndashMgOndashAl2O3ndashSiO2ndashH2OndashHF at 600 C 2 kbar

PH2O comparison with natural lithium micas Mineral Mag

50 641ndash651

Morgan GBVI amp London D (1999) Crystallization of the little

three layered pegmatite-aplite dike Ramona District California

Contrib Mineral Petrol 136 310ndash330

984 A M R Neiva

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985

Page 3: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

very helpful for the interpretations Li2O contents ofzinnwaldite lepidolite polylithionite and lsquolsquomixedformrsquorsquo were calculated from the equation Li2O frac14 (0289 SiO2) 9658 and of muscovite and lithian muscovitefrom the equation Li2O frac14 03935 F1326 (Tischendorfet al 1997) Secondary micas replacing feldspars werenot analyzed

Variation in the chemical composition of micas from theNamivo granitic pegmatite is shown in Table 1 and Fig 4lsquolsquoMixed formrsquorsquo is of course not a proper mica mineral name(Rieder et al 1999) The chemical distinction between

dioctahedral and trioctahedral micas is the value of 25octahedral cations per formula unit in dioctahedral and25 octahedral cations in trioctahedral micas for a for-mula calculated on the basis of 12 O thorn F atoms (Riederet al 1999) The Li2O content of analyzed lsquolsquomixed formsrsquorsquois calculated for a trioctahedral mica and the value ofoctahedral cations per formula unit is 28 and totals ofanalyses are good (Table 1) indicating that they are trioc-tahedral micas If Li2O contents of these analyses arecalculated for a dioctahedral mica the value of octahedralcations per formula mainly ranges between 23 and 28 and

Fig 3 Backscattered-electron images of zoned micas from the Namivo granitic pegmatite Mozambique Micas a b c d d1 from the OIZ ef f1from the IIZa g h from the IIZb i j from the Cc d1 and f1 are details of d and f respectively Lep ndash lepidolite Zin ndash zinnwaldite Brl ndashberyl Mix f ndash lsquolsquomixed formrsquorsquo Q ndash quartz Pol ndash polylithionite Cst ndash cassiterite Rt ndash rutile Ct ndash columbitendashtantalite Lith mu ndash lithianmuscovite Ab ndash albite Mu ndash muscovite K-fel ndash K-feldspar

Silicate and oxide minerals from a zoned granitic pegmatite 969

eschweizerbart_xxx

Tab

le1

R

epre

sen

tati

ve

elec

tro

nm

icro

pro

be

anal

yse

sin

wt

o

fm

icas

fro

mth

eN

amiv

og

ran

itic

peg

mat

ite

Mo

zam

biq

ue

Ou

ter

Inte

rmed

iate

Zo

ne

-O

IZIn

ner

Inte

rmed

iate

Zo

ne

-II

Za

Zin

Lep

lsquolsquoM

ixed

Frsquorsquo

Lep

Lep

Po

llsquolsquo

Mix

edF

rsquorsquoL

ith

Mu

sP

ol

Lit

hM

us

lsquolsquoM

ixed

Frsquorsquo

lsquolsquoM

ixed

Frsquorsquo

Lep

Mu

sL

ith

Mu

s

Co

mp

osi

tio

nC

ore

Rim

Co

reR

imR

imC

ore

Rim

Co

reC

ore

Rim

Rim

SiO

24

37

15

42

04

52

45

63

75

23

45

87

64

67

14

63

35

91

84

58

54

85

74

81

24

94

64

55

44

61

1T

iO2

06

00

15

04

70

02

02

70

05

mdashmdash

00

2mdash

01

00

03

00

7mdash

00

4A

l 2O

32

21

81

76

52

97

81

59

01

82

11

48

13

12

63

53

31

49

43

71

92

68

82

83

32

46

43

77

03

55

0F

eO8

42

39

74

57

24

44

94

13

11

56

17

51

14

mdash2

68

11

01

50

01

21

15

Mn

O0

60

00

60

33

00

20

21

00

30

10

01

50

05

01

20

27

12

32

16

04

80

53

Mg

O5

15

17

21

06

14

01

33

10

10

87

06

80

94

00

50

09

mdash0

01

mdashmdash

Zn

O0

46

03

20

17

01

10

24

01

30

14

01

00

09

00

60

13

02

60

41

00

60

15

CaO

00

10

01

00

4mdash

00

10

02

00

30

05

00

1mdash

mdash0

02

00

10

02

mdashL

i 2O

2

97

60

13

42

66

35

47

73

23

84

03

07

45

04

34

38

42

54

64

01

60

45

Na 2

O0

08

00

60

23

01

10

23

00

70

29

03

30

06

04

40

13

02

60

13

03

80

28

K2O

10

00

98

41

00

91

02

01

05

89

77

93

39

98

95

09

91

10

28

97

79

95

99

39

81

Rb

2O

08

60

78

06

61

30

02

80

46

05

10

43

04

91

06

15

01

42

16

71

02

11

0C

s 2O

0

06

00

9

00

60

14

00

6

00

6

00

6

00

6

00

60

15

05

50

13

02

2

00

60

03

F5

10

89

92

24

10

50

10

14

10

05

24

60

81

98

41

06

53

84

89

74

10

50

11

0H

2O

18

30

23

33

9mdash

mdashmdash

33

54

12

mdash4

01

19

12

15

09

14

28

39

61

02

03

10

40

81

01

75

10

51

41

04

31

10

38

51

00

51

10

04

21

03

77

10

03

31

02

85

10

19

61

03

19

10

02

51

00

21

O

F2

14

37

80

94

44

14

26

42

21

03

03

44

13

04

52

26

20

53

11

02

10

46

To

tal

99

89

10

03

01

00

81

10

07

31

00

05

99

63

99

48

10

00

89

96

49

98

81

00

59

99

91

10

00

81

00

04

99

75

KR

b(w

t)1

11

21

47

13

41

91

62

11

88

56

26

25

48

98

1

Si

30

85

36

20

30

45

37

47

35

58

38

54

31

02

30

83

38

63

30

45

32

66

32

26

33

51

30

24

30

86

AlIV

09

15

03

80

09

55

02

53

04

42

01

46

08

98

09

17

01

37

09

55

07

34

07

74

06

49

09

76

09

14

PT

40

04

00

40

04

00

40

04

00

40

04

00

40

04

00

40

04

00

40

04

00

40

0A

lVI

09

31

10

09

14

07

09

92

10

17

09

99

15

49

18

54

10

12

19

56

13

96

14

65

13

19

19

74

18

87

Ti

00

32

00

08

00

24

00

01

00

14

00

02

mdashmdash

00

01

mdash0

00

50

00

20

00

4mdash

00

02

Fe2thorn

04

97

02

22

02

57

01

36

02

81

00

72

00

87

00

97

00

62

mdash0

15

10

06

20

08

50

00

70

06

4M

n0

03

60

00

30

01

90

00

10

01

20

00

20

00

60

00

80

00

30

00

70

01

50

07

00

12

40

02

70

03

0M

g0

54

20

17

10

10

60

13

90

13

50

09

90

08

60

06

70

09

10

00

50

00

9mdash

00

01

mdashmdash

Zn

00

24

00

16

00

08

00

05

00

12

00

06

00

07

00

05

00

04

00

03

00

06

00

13

00

21

00

03

00

07

Li

08

44

16

13

09

25

17

73

14

95

19

32

10

26

00

80

19

54

01

14

11

84

11

46

12

64

00

42

01

20

PR

29

13

04

27

53

05

29

73

11

27

62

11

31

32

09

27

72

76

28

22

05

21

1C

a0

00

10

00

10

00

3mdash

00

01

00

01

00

02

00

04

00

01

mdashmdash

00

01

00

01

00

01

mdashN

a0

01

10

00

80

03

00

01

40

03

00

00

90

03

70

04

30

00

80

05

70

01

70

03

40

01

70

04

90

03

6K

09

00

08

38

08

66

08

65

09

17

08

18

07

90

08

47

07

91

08

40

08

82

08

36

08

60

08

41

08

38

Rb

00

39

00

33

00

29

00

56

00

12

00

19

00

22

00

18

00

21

00

45

00

65

00

61

00

73

00

44

00

47

Cs

00

02

00

03

00

02

00

04

00

02

00

02

00

02

00

02

00

02

00

04

00

16

00

04

00

06

00

02

00

01

PA

09

50

88

09

30

94

09

60

85

08

50

91

08

20

95

09

80

94

09

60

94

09

2F

11

39

18

99

04

77

22

07

21

80

20

85

05

17

01

70

20

31

02

23

11

44

10

37

15

87

01

05

02

33

OH

0

86

10

10

11

52

3mdash

mdashmdash

14

83

18

30

mdash1

77

70

85

60

96

30

41

31

89

51

76

7Z

on

esL

DL

DL

DL

DD

D

LD

LD

L

F

igu

res

Fig

s3

a6

ab

Fig

3

bF

igs

3c

6c

Fig

s3

d

d1

6

dF

igs

3e

6e

fF

igs

3f

f1

6g

h

970 A M R Neiva

eschweizerbart_xxx

Tab

le1

C

on

tin

ued

Inn

erIn

term

edia

teZ

on

e-

IIZ

bC

ore

-C

c

Lit

hM

us

Lep

Mu

slsquolsquo

Mix

edF

rsquorsquoL

epL

ith

Mu

slsquolsquo

Mix

edF

rsquorsquoL

epM

us

Lit

hM

us

Co

reR

imC

ore

Rim

Rim

Co

reR

imR

im

SiO

24

69

25

21

64

62

24

90

64

99

94

71

84

90

15

09

54

63

44

65

6T

iO2

00

3mdash

00

40

03

00

30

02

00

1mdash

mdashmdash

Al 2

O3

35

72

22

89

36

17

28

04

24

87

35

10

26

26

23

49

36

31

35

53

FeO

00

10

61

00

70

05

00

70

04

21

81

55

00

10

03

Mn

O0

55

05

80

43

12

92

24

06

01

09

13

30

14

01

4M

gO

mdashmdash

mdashmdash

mdashmdash

mdashmdash

mdashmdash

Zn

O

00

60

10

00

8

00

60

19

0

06

02

50

07

0

06

0

06

CaO

00

30

04

mdashmdash

00

10

01

00

10

01

mdashmdash

Li 2

O

06

55

42

02

54

52

47

90

93

45

15

07

04

70

79

Na 2

O0

41

00

80

49

02

60

16

04

10

13

01

00

55

05

4K

2O

97

99

78

10

16

96

69

76

94

49

33

90

89

97

99

0R

b2O

12

42

30

14

31

79

21

01

34

17

52

13

14

81

69

Cs 2

O0

16

08

7

00

60

62

05

00

11

07

70

79

01

40

12

F1

46

83

40

70

49

97

63

19

25

55

73

51

15

16

9H

2O

38

30

52

41

62

14

08

23

61

18

20

95

39

63

70

10

08

61

03

69

10

02

61

02

51

10

31

61

00

77

10

26

71

02

87

10

05

81

00

75

O

F0

61

35

00

29

21

03

20

08

12

33

30

90

48

07

1T

ota

l1

00

25

10

01

99

99

71

00

41

99

96

99

96

10

03

49

97

81

00

10

10

00

4

KR

b(w

t)7

23

96

44

94

26

44

83

96

15

3

Si

31

10

34

98

30

84

32

68

33

76

31

30

33

02

34

42

30

82

31

02

AlIV

08

90

05

02

09

16

07

32

06

24

08

70

06

98

05

58

09

18

08

98

PT

40

04

00

40

04

00

40

04

00

40

04

00

40

04

00

AlV

I1

90

01

30

71

92

91

47

01

35

51

87

51

38

71

31

21

92

81

89

2T

i0

00

1mdash

00

02

00

02

00

02

00

01

00

01

mdashmdash

mdashF

e2thorn

00

01

00

34

00

04

00

03

00

04

00

02

01

23

00

88

00

01

00

02

Mn

00

31

00

33

00

24

00

73

01

28

00

34

00

62

00

76

00

08

00

08

Mg

mdashmdash

mdashmdash

mdashmdash

mdashmdash

mdashmdash

Zn

00

03

00

05

00

04

00

03

00

09

00

03

00

12

00

03

00

03

00

03

Li

01

73

14

61

00

66

12

11

13

01

02

49

12

21

13

76

01

27

02

11

PR

21

12

84

20

32

76

28

02

16

28

12

86

20

72

12

Ca

00

02

00

03

mdashmdash

00

01

00

01

00

01

00

01

mdashmdash

Na

00

53

00

10

00

63

00

34

00

21

00

53

00

17

00

13

00

71

00

70

K0

82

80

83

70

86

50

82

10

84

10

79

90

80

20

78

20

84

60

84

1R

b0

05

30

09

90

06

10

07

70

09

10

05

70

07

60

09

20

06

30

07

2C

s0

00

50

02

50

00

10

01

80

01

40

00

30

02

20

02

30

00

40

00

3P

A0

94

09

70

99

09

50

97

09

10

92

09

10

98

09

9F

03

06

17

69

01

48

10

51

16

30

04

03

11

83

15

70

02

42

03

56

OH

1

69

40

23

11

85

20

94

90

37

01

59

70

81

70

43

01

75

81

64

4Z

on

esD

LD

D

LD

LL

D

DF

igu

res

Fig

s3

g

6i

jk

Fig

s3

h

6l

Fig

s3

i6

m

nF

igs

3j

6o

p

OIZ

IIZ

aII

Zb

Cc

asin

Fig

2Z

inndash

zin

nw

ald

ite

Lep

ndashle

pid

oli

teF

ndashfo

rmP

olndash

po

lyli

thio

nit

eL

ith

Mu

sndash

lith

ian

mu

sco

vit

eM

us

ndashm

usc

ov

ite

Lndash

ligh

ter

zon

eD

ndashd

ark

erzo

ne

D

-th

ed

ark

estzo

ne

L

-th

eli

gh

test

zon

ein

BS

Eim

ages

BaO

isb

elo

wth

ed

etec

tio

nli

mit

Cal

cula

ted

nu

mb

ero

fio

ns

on

the

bas

iso

f1

2o

xy

genthorn

Fat

om

sL

i 2O

v

alu

esca

lcu

late

dfr

om

equ

atio

ns

of

Tis

chen

do

rff

eta

l

(19

97

)O

H

-ca

lcu

late

db

yd

iffe

ren

ceto

20

00

H

2O

-ca

lcu

late

db

yst

oic

hio

met

ry

Silicate and oxide minerals from a zoned granitic pegmatite 971

eschweizerbart_xxx

analytical totals are not good The analyzed lsquolsquomixedformsrsquorsquo are distinguished in backscattered-electron (BSE)images and chemically (Fig 3b d d1 e f f1 h i andFig 4) The chemical distinction between lsquolsquomixed formrsquorsquoand lepidolite from the OIZ (Fig 4) is clear in Fig 3bwhere lepidolite is darker than lsquolsquomixed formrsquorsquo because theformer has less Fe and Mn than the latter (Table 1) and inFig 3f f1 and 3h for micas from the IIZa and IIZbrespectively where lepidolite is lighter than lsquolsquomixedformrsquorsquo because the former has more Fe2thorn and Mn oronly more Mn than the latter (Table 1) The lsquolsquomixedformsrsquorsquo analyzed are distinguished in the BSE imagesfrom the lepidolite that falls in its fields in the Fig 4The fields of lepidolite composition in Foster (1960) arelarger than the field for lepidolite from the trilithionite tothe polylithionite (Rieder et al 1999) According to Fleet(2003) only a few lepidolite compositions plot on thetrilithionite-polylithionite join In general lepidolite hashigher Si Licalc Rb Cs F contents and lower AlVI andOH contents than lsquolsquomixed formrsquorsquo (Table 1 Fig4)lsquolsquoMixed formrsquorsquo is also clearly distinguished fromlithian muscovite in OIZ IIZa IIZb and Cc in BSEimages (Fig 3d d1 e f i) and chemically (Table 1 Fig4) as it generally has higher Si Licalc Rb Cs F contentsand lower AlVI and OH contents than lithian muscovite

Two distinct trends are defined in Fig 4 One trendconsists of Al-poorer micas which are zinnwaldite

lepidolite and FeMg-containing polylithionite from theOIZ A hiatus occurs between zinnwaldite and lepidolitebut the zinnwaldite series is continuous with the field oflepidolite at the high Li content (Fleet 2003) The othertrend consists of Al-richer micas (muscovite lithian mus-covite and lsquolsquomixed formrsquorsquo from the OIZ IIZa IIZb and Ccand also lepidolite from most of those zones except fromthe OIZ) There is a gap between lithian muscovite and thelsquolsquomixed formrsquorsquo which may be explained by a hiatus inmica stability (eg Jolliff et al 1987) but a solid solutionbetween dioctahedral and trioctahedral micas has beenindicated experimentally (Monier amp Robert 1986) whileother authors have shown that the octahedral site occu-pancy ranges continuously from muscovite to lepidolite(eg Roda Robles et al 2005 Van Lichterveld et al2008 Vieira et al 2011) Most lithian muscovites andlsquolsquomixed formrsquorsquo from the OIZ are richer in Fe2thornthornMg thornMn than those from the other zones due to their higherFe2thorn and Mg contents (Fig 4 Table 1)

In the Al-poorer micas from the OIZ ranging from zinn-waldite to lepidolite and FeMg-containing polylithionite(Fig 4) (AlIV thorn AlVI) Fe2thorn Mg Ti Mn and Zn contentsdecrease and Si and Licalccontents increase (Table 1) In theAl-richer micas ranging from muscovite to lithian muscoviteand lsquolsquomixed formrsquorsquo from the OIZ IIZa IIZb and Cc and alsoto lepidolite from most of those zones except from the OIZ(AlIV thorn AlVI) AlVI and OH contents and KRb ratio

Fig 4 Plots of micas from the Namivo granitic pegmatite Mozambique in the LindashR2thornndashR3thornthorn Ti diagram according to the classification ofFoster (1960) slightly modified (Rieder et al 1999) with R3thorn frac14 AlVI R2thorn frac14 (Fe2thornt thorn Mn2thornthorn Mg) showing the variety of micacompositions Two trends are defined one for Al-poorer micas (zinnwaldite lepidolite and FeMg-containing polylithionite) from theOIZ another for Al-richer micas (muscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepidolite) from all zones except lepidolite from the OIZOIZ IIZa IIZb and Cc as in Fig 2

972 A M R Neiva

eschweizerbart_xxx

generally decrease and Si Licalc Rb Cs and F contentsgenerally increase (Table 1)

42 Main substitution mechanisms

The 2Si thorn Li 3Altotal mechanism operates in the diocta-hedral micas (muscovite and lithian muscovite) (Fig 5a b)whereas the 3LiVI AlVIthorn 2ampVI (amp represents a vacancy)operates in the trioctahedral micas (lsquolsquomixed formrsquorsquo lepido-lite zinnwaldite and FeMg-containing polylithionite) (Fig5c d) which agrees with findings for micas from the Tancopegmatite (Van Lichtervelde et al 2008)

43 Textures and chemical compositions of zoned micacrystals

Backscattered-electron images combined with quantita-tive spot electron-microprobe analyses made it possibleto distinguish different micas in the Namivo graniticpegmatite Similar textural aspects and geochemicalobservations were found between some Al-richer micasfrom the OIZ IIZa IIZb and Cc Some selected zonedcrystals are documented (Table 1 Fig 3 and 6) In theOIZ lepidolite penetrates zinnwaldite along cleavagesand partially surrounds it and the contacts are sharp(Fig 3a) A chemical gap occurs between zinnwalditeand lepidolite compositions (Fig 6a b) Lepidolite withhigher Si Licalc F contents similar KRb value andlower (AlIV thorn AlVI) Ti Fe2thorn Mg (Fe2thornthorn Mn thorn Mg)Zn and OH contents (Table 1) replaces zinnwaldite Athin lepidolite rim partially surrounds lsquolsquomixed formrsquorsquoand the contact is sharp (Fig 3b) The lepidolite rimhas higher Si Mg Licalc Rb F contents and lowerAlVI Ti Fe2thorn Mn Na and OH contents and KRb ratiothan the lsquolsquomixed formrsquorsquo core (Table 1) The lepidoliterim is an Al-poorer mica whereas the lsquolsquomixed formrsquorsquocore is an Al-richer mica (Fig 4) The lepidolite rimcorresponds to an overgrowth The FeMg-containingpolylithionite partially surrounds and penetrates lepido-lite along cleavages and shows well defined contacts(Fig 3c) Both contain rutile cassiterite and columbi-tendashtantalite inclusions A continuous chemical evolutiontakes place from lepidolite to FeMg-containing poly-lithionite (Figs 4 6c) The latter has higher Si LicalcRb contents and lower AlVI Ti Fe2thorn Mn Mg Zn Nacontents and KRb ratio (Table 1) and replaces lepido-lite A lithian muscovite rim with rare FeMg-containingpolylithionite surrounds the lsquolsquomixed formrsquorsquo core and thispolylithionite penetrated lithian muscovite (Fig 3d)The contact between the lithian muscovite rim andlsquolsquomixed formrsquorsquo core is irregular suggesting disequili-brium or at a cleavage (Fig 3d d1) Two linear trendsone for the lithian muscovite rim and another for thelsquolsquomixed formrsquorsquo core are defined in the (Fe2thornthornMnthornMg)vs (AlIV thornAlVI) diagram (Fig 6d) The FeMg-contain-ing polylithionite rim does not belong to any of thesetrends and plots outside this diagram because it is an Al-poorer mica whereas the others are Al-richer micas

(Fig 4) The lithian muscovite rim has higher AlVI(AlIV thorn AlVI) OH contents and KRb ratio and lowerMg (Fe2thornthorn Mn thorn Mg) Licalc Rb F contents than thelsquolsquomixed formrsquorsquo core (Table 1 Fig 6d) The crystal isreversely zoned The FeMg-containing polylithioniterim has higher Si Licalc F contents and lower AlVI(AlIV thorn AlVI) Fe2thorn Mn (Fe2thornthorn Mn thorn Mg) Na andOH contents than the lsquolsquomixed formrsquorsquo core and lithianmuscovite rim (Table 1) and replaces lithian muscovite

In the IIZa some zoned crystals have a lithian muscovitecore and a lsquolsquomixed formrsquorsquo rim and the contacts are gradual(Fig 3e) A small discontinuity occurs in the trends fromthe lithian muscovite core to lsquolsquomixed formrsquorsquo rim in the(Fe2thornthorn Mn thorn Mg) vs (AlIV thorn AlVI) and Rb2O vs KRb(Fig 6e f) The lsquolsquomixed formrsquorsquo rim has higher Si Fe2thornMn (Fe2thornthornMn thornMg) Licalc K Rb Cs F contents andlower AlVI (AlIVthornAlVI) Na OH contents and KRb ratiothan the lithian muscovite core (Table 1 Fig 6e f) indi-cating progressive zoning Similar textural relationshipsand chemical evolutions were found in other zoned crystalsfrom the OIZ IIZb and Cc In another crystal from theIIZa lithian muscovite partially surrounds lsquolsquomixed formrsquorsquointergrown with lepidolite Lithian muscovite also partiallysurrounds muscovite (Fig 3f) The contacts betweenlsquolsquomixed formrsquorsquo and lepidolite and also between muscoviteand lithian muscovite are gradual (Fig 3f f1) whereasthey are well defined for muscovite withlsquolsquomixed formrsquorsquoand lepidolite (Fig 3f f1) The crystal has a lsquolsquomixed formrsquorsquoand lepidolite core and a partial rim of muscovite andlithian muscovite The lsquolsquomixed formrsquorsquo core evolved tolepidolite core as the Si Fe2thorn Mn (Fe2thornthorn Mn thorn Mg)Licalc K Rb Cs and F contents increase and the (AlIV thornAlVI) and KRb ratio decrease (Table 1 Fig 6g h) The SiFe2thorn Mn (Fe2thornthorn Mn thorn Mg) Licalc Rb and F contentsincrease and the (AlIV thorn AlVI) and KRb ratio decreasefrom the muscovite rim to the lithian muscovite rim (Table1 Fig 6g h) suggesting that the former evolved to thelatter The muscovite rim has higher AlVI (AlIV thorn AlVI)Na OH contents and KRb ratio and lower Si Fe2thorn Mn(Fe2thornthornMn thornMg) Zn Licalc Rb and F contents than thelsquolsquomixed formrsquorsquo core and lepidolite core (Table 1 Fig 6gh) Muscovite was probably reversely formed and evolvedafterwards to lithian muscovite

In the IIZb some crystals have a lithian muscovite coreand a thinner lepidolite rim (Fig 3g) and others show asmall muscovite core and a larger rim of lsquolsquomixed formrsquorsquointergrown with lepidolite (Fig 3h) The contacts betweenthe cores and rims are well defined There are increases inthe Si Mn (Fe2thornthorn Mn thorn Mg) Licalc Rb and F contentsand decreases in the AlVI (AlIVthornAlVI) and KRb ratio fromthe lsquolsquomixed formrsquorsquo rim to the intergrown lepidolite rim(Table 1 Figs 3h 6l) suggesting that the former evolvedto the latter as also found in IIZa and Cc In both crystalsthe rim compositions have higher Si (Fe2thornthorn Mn thorn Mg)Licalc Rb Cs F contents and lower AlVI (AlIVthorn AlVI) Naand OH contents and KRb ratio than the core (Table 1 Figs3g 6i j k 3h 6l) A compositional gap occurs between coreand rim in the diagrams for both crystals (Fig 6i j k l)suggesting that both rims correspond to overgrowths and no

Silicate and oxide minerals from a zoned granitic pegmatite 973

eschweizerbart_xxx

diffuse reequilibration took place in any crystal as thecontacts between core and rim are sharp

In the Cc lithian muscovite is surrounded and pene-trated by lsquolsquomixed formrsquorsquo showing well defined contacts(Fig 3i) The lsquolsquomixed formrsquorsquo has higher Si Fe2thorn Mn(Fe2thornthorn Mn thorn Mg) Licalc Rb Cs F contents and lowerAlVI (AlIV thorn AlVI) Na OH contents and KRb ratio thanthe lithian muscovite (Table 1 Fig 6m n) and a composi-tional gap occurs between both micas suggesting thatlsquolsquomixed formrsquorsquo replaced lithian muscovite In rare crystalsa small lepidolite core is surrounded by a large muscoviterim containing K-feldspar inclusions The contact betweenthe core and rim is sharp (Fig 3j) A thin partial rim oflithian muscovite surrounds muscovite and the contact isgradual The muscovite rim has higher AlVI (AlIVthornAlVI)Na K OH contents and a greater KRb value and lower SiFe2thorn Mn Licalc Rb Cs and F contents than the lepidolitecore (Table 1 Fig 6o p) and a compositional gap occursbetween them (Fig 6o p) indicating that either muscoviteforms an overgrowth or it is reversely formed From themuscovite rim to the lithian muscovite rim the Si Licalc

Rb F contents increase whereas the AlVI (AlIV thorn AlVI)and OH contents and KRb ratio decrease (Table 1 Fig 6op) suggesting that muscovite evolved to lithian muscoviteas also found in IIZa and IIZb

44 Evolution of mica compositions within each zoneand from the outer intermediate zone to the core of theNamivo granitic pegmatite

The KRb ratio is taken as the best fractionation index inmicas (eg Cerny et al 1985 Foord et al 1995 Wise1995 Pesquera et al 1999 Roda Robles et al 2006 2007)It is hard to establish trends in the evolution of mica com-position from muscovite and lithian muscovite to lsquolsquomixedformrsquorsquo and lepidolite within each zone because the KRbratio shows some partial overlapping particularly betweenthe lithian muscovite and lsquolsquomixed formrsquorsquo and also betweenthe latter and lepidolite However an evolution from mus-covites to lepidolite (Al-richer mica Fig 4) is clearer (Fig7) In general in IIZa IIZb and Cc the Si Licalc Rb Cs and

Fig 5 The main substitutions in micas from the Namivo granitic pegmatite Mozambique a b SiIVthorn LiVI versus AlIVthornAlVI showing the 2SithornLi 3Altotal substitution mechanism operating in dioctahedral micas (Mu muscovite and Lith mu lithian muscovite) c d AlVI thornamp VI

versus LiVI (where amp represents a vacancy) and showing the 3LiVI AlVI thorn 2 amp VI substitution mechanism operating in trioctahedral micas(Mix f ndashlsquolsquomixed formrsquorsquo Lep lepidolite Zin zinnwaldite and Pol-FeMg-containing polylithionite) OIZ IIZa IIZb and Cc as in Fig 2

974 A M R Neiva

eschweizerbart_xxx

F contents tend to increase and the (AlIV thorn AlVI) AlVI

contents and KRb ratio tend to decrease from muscoviteto lepidolite (Table 1 Fig 7) This sequence is consistentbut rarely in the Cc lepidolite is rimmed by muscovite (Fig3j) But in the OIZ the evolution stops in lsquolsquomixed formrsquorsquoparticularly shown by the large range of the KRb ratiowhich mainly overlaps that of lepidolite from this zone(Fig 7) because this lepidolite is an Al-poorer mica whereasthe others are Al-richer micas (Fig 4)

In the OIZ the lepidolite has more Si Licalc and F andless (AlIV thorn AlVI) Ti Fe2thorn Mn Mg and Zn than zinn-waldite (Table 1) but it has larger ranges of Rb and KRbratio than zinnwaldite (Fig 7) The FeMg-containingpolylithionite is the richest mica in Si Licalc and thepoorest in (AlIV thorn AlVI) (Table 1) But at this zone scalethe polylithionite has Rb Cs contents and KRb ratiowithin the ranges for lepidolite and close to those of zinn-waldite (Fig 7)

Fig 6 Variation diagrams of micas from selected zoned crystals from the zones of the Namivo granitic pegmatite Mozambique to showtheir relationships lith musc lithian muscovite OIZ IIZa IIZb and Cc an in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 975

eschweizerbart_xxx

From the OIZ to IIZa IIZb and Cc muscovite and lithianmuscovite generally show increases in the Si Licalc F and Rbcontents and decreases in the Fe2thorn and Mg contents and KRb ratio but the Mg content is very low in these micas fromthe IIZa IIZb and Cc (Table 1 Fig 7a) The lsquolsquomixed formrsquorsquoshows increases in the Si Licalc F Rb Cs contents anddecreases in the (AlIV thorn AlVI) and Mg contents and KRbratio but the Mg content is very low in this mica from theIIZb and Cc (Table 1 Fig 7b c) The lepidolite shows anincrease in the Si Licalc F Rb and Cs contents and a decreasein the KRb ratio from the IIZa to the IIZb and Cc (Table 1Fig 7d e) Furthermore the lepidolite from the OIZ has thelowest (AlIV thorn AlVI) AlVI and OH contents the highest SiFe2thorn Licalcand F contents and KRb ratio and the lowest Rband Cs contents compared to lepidolite from the other zones(Table 1 Fig 7d e)

5 Feldspars

Selected chemical analyses of albite and K-feldspar fromfive zones of the Namivo granitic pegmatite are given inTable 2 Strontium is the most abundant trace element inalbite (eg Cerny 1994) Anorthite and Sr contents and SrCa ratio of albite decrease from the WZ to the Cc (Fig 8Table 2) Rubidium is the most abundant trace element inK-feldspar followed by Cs in IIZa IIZb and Cc In gen-eral K Rb and Cs contents of K-feldspar increase and KRb and KCs values decrease from the WZ to the Cc (Table2 Fig 9)

The program SOLVCALC 20 (Wen amp Nekvasil 1994)using the Margules model Fuhrman amp Lindsley (1988) wasapplied for the purpose of thermometry The pairing ofplagioclase cores with the K-feldspars average of eachsample was used to estimate the crystallization temperaturesof primary magmatic feldspars They are 405 C (WZ)406ndash340 C (OIZ) 390ndash335 C (IIZa) 347ndash306 C (IIZb)and 333ndash289 C (Cc) at 3 kbar The metamorphic environ-ment of rare-element-Li granitic pegmatites is one of lowpressure 2ndash4 kbar (Cerny amp Ercit 2005) In general thedifference between the maximum and minimum calculatedtemperatures at 2 3 and 4 kbar for the same feldspar pairfrom the Namivo pegmatite is lower than 40 C The tem-perature decreases from the wall zone (WZ) to the core(Cc) A similar temperature behavior of feldspars wasfound in the pegmatite-aplite dike USA (Morgan ampLondon 1999)

6 Other silicates

Tourmaline of schorl composition was only found inthe OIZ (Table 2) because there was not enough Feand Mg for schorl to precipitate in the other zonesSpodumene only occurs in the Cc and its compositionis nearly pure (Table 2)

7 Columbite-tantalite

Representative chemical analyses of columbitendashtantalitefrom the Namivo granitic pegmatite are given in Table 3and plotted in the columbite quadrilateral (Fig 10a)Most crystals are unzoned but zoned crystals with dar-ker and lighter zones in BSE images are from the Cc Thelighter zone of columbite-(Mn) has higher Ta contentTa(Ta thorn Nb) and Mn(Mn thorn Fe) values and lower Nbcontent than the darker zone (Fig 10a b) The crystals ofthe columbitendashtantalite minerals are low in W Sn and Tiimpurities (Table 3)

The main trend starts from the columbite-(Mn) of theOIZ towards the more Mn-enriched and slightly Ta-enriched columbite-(Mn) from the IIZa and Cc The high-est Ta(Ta thorn Nb) values belong to the lighter zone ofcolumbite-(Mn) with Mn(Mn thorn Fe) frac14 10 from the CcThe richest columbite-(Mn) in Ta(TathornNb) and composi-tions of tantalite-(Fe) and tantalite-(Mn) were only foundin the OIZ (Fig 10a) and are associated with lepidolite andpolylithionite (Fig 3c)

8 Gahnite

Gahnite was rarely found in the OIZ and shows a darkerzone that partially surrounds a lighter zone in a BSE image(Fig 11a) The darker zone has a higher Zn content andlower Sn Ti Nb Ta Mn contents and SnZn value than thelighter zone (Table 4 Fig 11b c) These gahnite composi-tions fall within the igneous field of Batchelor amp Kinnaird(1984) The darker zone is closer in composition to thepure gahnite (Zn8Al16O32) than the lighter zone whichcontains up to 0983 apfu Sn 0195 apfu Ti 1029 apfutotal Fe2thorn 0101 apfu Mn (Table 4) and consequently hasa composition distinct from nigerite In general both thedarker and lighter zones have higher Sn Ti and Fe contentsthan gahnite from the granitic pegmatites of Nigeria(Batchelor amp Kinnaird 1984) Arga northern Portugal(Gomes et al 1995) and Cabanas northern Portugal(Neiva amp Champness 1997) Borborema province north-eastern Brazil (Soares et al 2007) The Zn=Fe2thornt values ofthe darker and lighter zones of gahnite from Namivo arelower than those reported in Neiva amp Champness (1997)and Soares et al (2007)

9 Discussion and conclusions

91 Evolution of micas in the zoned pegmatite

In general individual mica crystals show varying patternsand compositional zoning involving several elementsmainly Si AlVI (AlIV thorn AlVI) Fe2thorn Mn (Fe2thornthorn Mn thornMg) Licalc Rb Cs F and OH and the KRb ratioProgressively zoned crystals from the IIZa show grada-tional contacts between a lithian muscovite core and a

976 A M R Neiva

eschweizerbart_xxx

lsquolsquomixed formrsquorsquo rim (Figs 3e 6e f) and the zoning patternscorrespond to fractionation trends and probably reflect adrop in temperature during the crystallization of the grani-tic pegmatite melt Progressively zoned crystals also occurin OIZ IIZb and Cc Some crystals are reversely zonedwith a) a lsquolsquomixed formrsquorsquo core and a lithian muscovite rimfrom the OIZ (Figs 3d d1 6d) b) a core consisting oflsquolsquomixed formrsquorsquo and lepidolite and a rim of muscovite andlithian muscovite from the IIZa (Figs 3f f1 6g h) c) alepidolite core and a muscovite and lithian muscovite rimfrom the Cc (Figs 3j 6o p) which may be explained bythe hypothesis of oscillations in the compositions of themelt from which they grew alternating between an Li-enriched boundary layer and a bulk melt that is less frac-tionated The muscovite evolved to lithian muscovite inIIZa and Cc (Figs 3f 6g h 3j 6o p) Replacements (Figs3a 6a b 3c 6c 3i 6m n Table 1) occur in OIZ and Ccand overgrowths (Figs 3b g 6i j k 3h 6l Table 1) occurin OIZ and IIZb as found in BSE images

Muscovite evolved to lithian muscovite as observed inOIZ IIZa IIZb and Cc (Figs 3f 6g h 3j 6o p Table 1)Lithian muscovite evolved to lsquolsquomixed formrsquorsquo in OIZ IIZaIIZb and Cc (Figs 3e 6e f Table 1) and lsquolsquomixed formrsquorsquoevolved to lepidolite in IIZa IIZb and Cc (Figs 3f f1 6gh 3h 6l Table 1) All these evolutions are due to fractionalcrystallization

In the OIZ lepidolite has more Si Licalcand F butsimilar KRb to that of zinnwaldite and replaces it (Figs

3a 6a b 7d Table 1) An FeMg-containing polylithionitehas higher Si Licalcand Rb contents and a smaller KRbratio than the lepidolite that it replaces (Figs 3c 6c Table1) and a continuous chemical evolution from lepidolite topolylithionite is shown

The trends for major and trace elements of micas withineach zone are difficult to define due to some partial over-lapping but a progressive evolution from muscovite to lithianmuscovite lsquolsquomixed formrsquorsquo and lepidolite in IIZa IIZb and Ccis mainly shown by an increase in the Si Licalc F Rb and Cscontents and a decrease in the KRb ratio and this is simi-larly shown in the OIZ from muscovite to lsquolsquomixed formrsquorsquo(Table 1 Fig 7) In the OIZ Si and Licalccontents increaseprogressively from zinnwaldite to lepidolite and FeMg-containing polylithionite but a gap occurs between zinnwal-dite and lepidolite (Table 1 Fig 4) whereas a continuousevolution from lepidolite to polylithionite is observed TheKRb ratios of zinnwaldite and polylithionite are within therange of that of lepidolite (Fig 7d e)

Each Al-richer mica (muscovite lithian muscovite andlsquolsquomixed formrsquorsquo) exhibits an evolution from the OIZ to theIIZa and then to the IIZb and Cc particularly shown by anincrease in the Si Licalc F and Rb contents and adecrease in the KRb ratio but also an increase in theCs content in the lsquolsquomixed formrsquorsquo (Table 1 Fig 7) Theseelements and ratio have been used as petrogenetic indi-cators of evolution in micas from pegmatites (eg Cernyet al 2005 Roda Robles et al 2006 2007 Vieira et al

Fig 7 Plot of some variation diagrams of micas from the OIZ IIZa IIZb and Cc of the Namivo granitic pegmatite Mozambique showingthat the Rb2O and Cs2O contents increase and the KRb ratio decreases for micas from the OIZ to the Cc OIZ IIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 977

eschweizerbart_xxx

Tab

le2

R

epre

sen

tati

ve

elec

tro

nm

icro

pro

be

anal

yse

sin

wt

o

ffe

ldsp

ars

sch

orl

and

spo

du

men

efr

om

the

Nam

ivo

gra

nit

icp

egm

atit

eM

oza

mb

iqu

e

Alb

ite

K-f

eld

spar

Sch

orl

Sp

od

um

ene

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

OIZ

Zo

ne

Cc

SiO

26

75

76

78

86

87

06

84

76

84

1S

iO2

65

10

65

55

65

46

64

96

64

72

SiO

23

52

0S

iO2

64

65

TiO

20

02

mdash0

02

mdashmdash

TiO

2mdash

00

1mdash

mdashmdash

TiO

20

35

Al 2

O3

27

20

Al 2

O3

20

25

19

74

19

67

19

88

19

97

Al 2

O3

18

96

18

23

18

31

18

24

18

05

B2O

3

10

28

Fe 2

O3

00

6F

e 2O

3mdash

mdashmdash

mdash0

10

Fe 2

O3

mdash0

02

mdash0

03

mdashA

l 2O

33

17

2M

nO

01

3M

nO

00

6mdash

mdashmdash

mdashM

nO

mdash0

03

00

3mdash

mdashF

eO1

35

2M

gO

01

8M

gO

mdashmdash

mdashmdash

mdashM

gO

00

10

01

00

5mdash

mdashM

nO

03

3N

a 2O

01

9C

aO1

04

08

00

56

03

70

32

CaO

00

10

01

00

60

01

00

2M

gO

22

8L

i 2O

8

05

Na 2

O1

06

11

12

01

12

11

13

41

13

4N

a 2O

06

50

58

04

10

59

03

8C

aO0

23

To

tal

10

04

6K

2O

00

50

17

00

60

14

01

0K

2O

14

72

14

75

15

67

15

01

15

74

Li 2

O

02

2S

rO0

72

05

00

24

01

1mdash

Rb

2O

00

90

20

03

00

59

09

0N

a 2O

22

8S

i1

99

7P

2O

50

01

00

4mdash

mdashmdash

Cs 2

O

00

6

00

60

09

01

80

20

K2O

00

1A

lIV0

00

3T

ota

l1

00

33

10

03

31

00

46

10

03

11

00

24

P2O

5mdash

00

3mdash

mdashmdash

H2O

3

18

P2

00

To

tal

99

60

99

48

10

03

89

96

11

00

01

F0

78

AlV

I0

98

7S

rC

a(w

t)0

81

07

40

50

03

50

Cl

mdashF

e3thorn

00

01

KR

b(w

t)153

68

48

23

16

Sum

1003

8P

09

9S

i1

18

23

11

87

91

19

58

11

93

21

19

21

KC

s(w

t)4

07

20

41

63

73

69

O

F0

33

Li

10

00

P0

00

10

00

6mdash

mdashmdash

To

tal

10

00

5M

n0

00

3T

i0

00

3mdash

00

03

mdashmdash

Si

11

98

61

20

88

12

04

11

20

45

12

03

3M

g0

00

8A

l4

17

64

07

14

03

54

08

34

10

1P

mdash0

00

5mdash

mdashmdash

TS

i5

95

2N

a0

01

2F

e3thorn

mdashmdash

mdashmdash

00

13

Ti

mdash0

00

1mdash

mdashmdash

Al

00

48

P1

02

Mn

00

09

mdashmdash

mdashmdash

Al

41

14

39

62

39

70

39

86

39

55

B3

00

0M

gmdash

mdashmdash

mdashmdash

Fe3thorn

mdash0

00

3mdash

00

04

mdashZ

Al

60

00

Ca

01

95

01

50

01

04

00

69

00

60

Mn

mdash0

00

50

00

5mdash

mdashY

Al

02

74

Sr

00

73

00

51

00

24

00

11

mdashM

g0

00

30

00

30

01

4mdash

mdashT

i0

04

5N

a3

59

93

80

03

78

33

83

23

83

1C

a0

00

20

00

20

01

20

00

20

00

4M

g0

57

5K

00

11

00

38

00

13

00

31

00

22

Na

02

32

02

07

01

46

02

12

01

37

Mn

00

47

K3

45

73

47

03

67

73

55

03

73

3F

e2thorn

19

12

Z1

60

01

59

61

60

01

60

11

60

4R

b0

01

10

02

40

03

50

07

00

10

8L

i0

14

8X

38

94

04

39

33

94

39

1C

s0

00

20

00

50

00

70

01

40

01

6P

Y3

00

0m

ole

s

XC

a0

04

2A

n5

13

82

71

71

5Z

16

10

16

06

16

01

16

03

15

99

Na

07

47

Ab

94

69

53

97

09

75

97

9X

37

13

72

39

03

85

40

0K

00

02

Or

03

09

03

08

06

mo

les

amp

02

09

An

01

01

03

01

01

Ab

63

56

38

56

35

OH

35

83

Or

93

69

43

95

99

43

96

4F

04

17

Cl

mdash

WZ

ndashw

allzo

ne

OIZ

ndasho

ute

rin

term

edia

tezo

ne

IIZ

aan

dII

Zb

ndashin

ner

inte

rmed

iate

zon

esC

cndash

core

asin

Fig

2B

aOis

bel

ow

the

det

ecti

on

lim

itin

bo

thfe

ldsp

ars

Cs 2

Ofrac14

00

3w

tin

the

K-

feld

spar

fro

mth

eW

Z

mdashN

ot

det

ecte

d

Nu

mb

ero

fio

ns

on

the

bas

iso

f3

2o

xy

gen

sfo

ral

bit

ean

dK

-fel

dsp

ar

31

anio

ns

(O

OH

F

)fo

rsc

ho

rlan

d6

ox

yg

ens

for

spo

du

men

e

-A

mo

un

tin

ferr

edfr

om

con

sid

erat

ion

so

fst

oic

hio

met

ry

978 A M R Neiva

eschweizerbart_xxx

2011) Lepidolite from the OIZ is an Al-poorer mica (Fig4) and has the highest Si Licalcand F contents (Table 1)indicating that an evolution cannot be shown from thislepidolite to lepidolites from the other zones which areAl-richer micas (Fig 4) However there is a regulardecrease in the KRb ratio and a progressive increase inthe Rb and Cs contents from lepidolite of the OIZ tolepidolite of IIZa IIZb and Cc (Fig 7) which indicatesthat the KRb ratio and Rb and Cs contents must not beconsidered alone to show fractional crystallization in

lepidolites particularly if some are Al-richer micas andothers Al-poorer micas The high Licalcand F contents oflepidolite from the OIZ did not decrease its KRb ratioSuch an effect is considered to have taken place in lepi-dolite (an Al-richer mica) from the wall zone of the Tancopegmatite Manitoba Canada (Van Lichtervelde et al2008) An evolution from the lepidolite of the IIZa to thatof the Cc is generally shown by the increasing Si LicalcF Rb Cs contents and a decrease in the KRb ratio (Table1 Fig 7)

At the scale of crystals the pegmatite zones and alsothose from the OIZ to the Cc of the Namivo granitic pegma-tite Al-richer micas show fractionation because theyformed from the fractionation of an Li-rich pegmatite melt

The Al-poorer micas zinnwaldite lepidolite and FeMg-containing polylithionite only occur in the OIZ (Fig 4)Polylithionite is the mica richest in Si and Licalc and lepi-dolite from this zone is the richest in Si Licalcand F (Fig 4Table 1) The high Li contents of these micas reflect aconsiderably higher D(Li) at low temperature (Icenhoweramp London 1995) These Li-rich micas may have crystal-lized from an undercooled melt This hypothesis does notimply high Rb and Cs contents and low KRb ratios Thisagrees with the fact that these micas from the OIZ havesimilar Rb and Cs contents and KRb ratios to those of Al-richer micas (muscovite lithian muscovite and lsquolsquomixedformrsquorsquo) from the same pegmatite zone (Fig 7) Howeverthe lepidolite from the wall zone of the Tanco pegmatiteCanada of a similar origin has a low KRb ratio which isattributed to the complexly interrelated structural compo-nents of this lepidolite (Van Lichtervelde et al 2008) TheLi-rich micas from the OIZ may also represent disequili-brium These two hypotheses are considered the best forthese micas of primary magmatic origin

Another hypothesis was also considered They may havecrystallized in boundary layers which concentrate Li andF But this mechanism was suggested for the most fractio-nated tourmaline enriched in Li and F from the core of the

Fig 8 Plot of albite compositions from all zones of the Namivo granitic pegmatite Mozambique showing that the anorthite content of albitedecreases from the WZ to the Cc WZ OIZ IIZa IIZb and Cc as in Fig 2

Fig 9 The Rb vs Cs diagram of K-feldspar from all zones of theNamivo granitic pegmatite Mozambique showing that the Rb andCs contents of K-feldspar increase from the WZ to the Cc WZ OIZIIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 979

eschweizerbart_xxx

Little Three pegmatite dike USA (Morgan amp London1999) and the micas enriched in Li and F from theNamivo pegmatite belonging to the OIZ Furthermore ina boundary layer melt that became enriched in Li and F theKRb ratio of micas decreases strongly (Van Lichterveldeet al 2008) which was not found in these micas from theOIZ (Fig 7d) Nor can they have resulted from the crystal-lization of a late melt that would have reacted with the OIZbecause these micas are among those containing the high-est KRb values (Fig 7d)

92 The importance of feldspars micas andcolumbitendashtantalite compositions to the Namivogranitic pegmatite evolution

The trace elements Rb and Cs and the KRb and KCs ratioshave been used to show the evolution of K-feldspar inpegmatites (eg Cerny 1994 Cerny et al 2005 RodaRobles et al 2005) The Rb and Cs contents increase andthe KRb and KCs ratios of K-feldspar decrease from theWZ to the Cc (Fig 9 Table 2) reflecting the growth of K-feldspar from an increasingly fractionated melt withouthaving grown from or having been chemically modifiedby an aqueous fluid as in the Swamp pegmatite section atthe Little Three Mine USA (London et al 2012) Thecrystallization of K-feldspar from an exsolved aqueousfluid from melt will reverse the magmatic fractionation ofRb Cs KRb and KCs because Rb and especially Cs areso much more compatible in vapor that both Rb and Csremain in the fluid phase (London et al 2012) The feldsparsolvus pairs in the Namivo pegmatite record magmaticcrystallization temperatures that decrease from WZ to CcAlbite shows a decrease in the Ca Sr contents and SrCaratio from the WZ to the Cc (Fig 8 Table 2) Therefore thefeldspars and also Al-richer micas as already explainedshow fractionation in this zoned pegmatite

In general lepidolite from the Namivo pegmatite hassimilar Rb2O and Cs2O contents and KRb (wt) values tothose of lepidolite from the Rozna and Dobra Voda lepi-dolite-subtype pegmatites in the Czech Republic (Cernyet al 1995) but lower Rb2O and Cs2O contents thanlepidolite from the lepidolite-subtype pegmatite at RedCross Lake Manitoba Canada (Cerny et al 2012a) K-feldspar from the Namivo pegmatite also has lower Rb2O

Table 3 Representative electron microprobe analyses in wt of columbitendashtantalite from the Namivo granitic pegmatite Mozambique

Outer Intermediate Zone - OIZ Inner Intermediate Zone - IIZa

Core - Cc

D L L

WO3 022 059 079 113 101 351 050 007Ta2O5 5487 5123 2503 3186 2888 2519 3127 4542Nb2O5 2537 3000 5483 4635 5113 5144 4911 3686SnO2 008 015 024 049 020 026 017 012TiO2 263 161 136 254 202 145 125 016FeO 860 710 665 471 236 068 mdash mdashMnO 793 952 1099 1304 1400 1725 1748 1718Total 9970 10020 9989 10012 9960 9978 9978 9981W 0004 0011 0013 0019 0016 0057 0008 0001Ta 1065 0975 0422 0552 0495 0430 0543 0847Nb 0819 0949 1538 1336 1456 1460 1418 1143Sn 0002 0004 0006 0012 0005 0007 0004 0003Ti 0141 0085 0063 0122 0096 0068 0060 0008Fe 0513 0416 0345 0251 0124 0036 mdash mdashMn 0479 0564 0578 0704 0747 0917 0945 0998P

3023 3004 2965 2996 2939 2975 2978 3000Mn(Mn thorn Fe) 048 058 063 074 086 096 100 100Ta(Ta thorn Nb) 057 051 022 029 025 023 028 043Classification tant-(Fe) tant-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn)

D ndash darker L ndash lighter zones mdash Not detected tant-tantalite col-columbite Cation formula on the basis of 6 atoms of oxygen

Fig 10 Compositions of columbitendashtantalite from the Namivogranitic pegmatite Mozambique in the columbite quadrilateralshowing that Mn(Mn thorn Fe) of columbite-(Mn) increases from theOIZ to the Cc and the richest columbite-(Mn) in Ta(Ta thorn Nb)tantalite-(Fe) and tantalite-(Mn) only occur in the OIZ OIZ IIZaand Cc as in Fig 2

980 A M R Neiva

eschweizerbart_xxx

and Cs2O contents than K-feldspar from the lepidolite-subtype pegmatite at Red Cross Lake The Rb2O andCs2O contents of primary and late K-feldspar of this peg-matite at Red Cross Lake attained unprecedented levels(Cerny et al 2012a) The lowest KRb (wt) values ofmuscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepido-lite from the IIZb and Cc (Fig 7) and K-feldspar (KRb frac1414) from the Cc compare well with those found in theseminerals from the AC6frac143 lepidolite-subtype pegmatitefrom Greer Lake (Cerny et al 2005) and some of themost fractionated pegmatites worldwide which belong tothe petalite-subtype (eg Tanco Manitoba Cerny 2005Cerny et al 1998 Varutrask Sweden Cerny et al 2005)but muscovite lithian muscovite and lepidolite from theIIZb and Cc have lower Rb2O and Cs2O contents than thesemicas from the Tanco pegmatite (Cerny 2005a VanLichtervelde et al 2008) K-feldspar also has lower

contents of these oxides than the most evolved K-feldsparfrom the Tanco pegmatite (Cerny 2005a) The magmaticfractionation was strong from the WZ to IIZb and Cc of theNamivo lepidolite-subtype pegmatite

The compositional trend of columbite-(Mn) from the OIZto Cc of the Namivo granitic lepidolite-subtype pegmatite(Fig 10) is identical to that of columbite-group mineralsfrom the lepidolite-subtype complex granitic pegmatitesfrom the Dobra Voda in the Moldanubicum CzechRepublic (Novak amp Cerny 1998) and the HimalayaDistrict southern California (shown in Cerny et al 2004)Experimental data for the Fe-Mn pair (Linnen amp Cuney2005) suggest an increase in Fe with fractional crystalliza-tion which is not observed in nature Other phases seem tocontrol the bahavior of Fe and Mn in the melt eg thecrystallization of tourmaline causes a rapid increase of theMnFe in the melt (Van Lichtervelde et al 2006) When thecrystallization of tourmaline stopped the columbitendashtantaliteminerals showed a constant MnFe indicating that the Fe andMn contents in the melt remained constant Schorl onlyoccurs in the OIZ of the Namivo granitic pegmatite and itscrystallization cannot be responsible for the increase in theMnFe of the melt because Mn(Mn thorn Fe) of columbite-(Mn) increases progressively from the OIZ to the IIZa and Cc(Fig 10) Garnet zinnwaldite and gahnite containing Fe andMn also only occur in the OIZ and cannot also have causedthe increase of the MnFe in the melt The dominant Mnenrichment before Ta enrichment started in the columbitendash-tantalite composition from some granitic pegmatites isattributed to an increased alkali-fluoride activity at moderatemHF (Cerny et al 2004) and an increase in the activity offluorine (Martins et al 2011) Each Al-richer mica (musco-vite lithian muscovite and lsquolsquomixed formrsquorsquo) from the Namivogranitic pegmatite shows an increase in F content from theOIZ to the IIZa IIZb and Cc (Table 1) In general the Fcontent of lepidolite also increases from the IIZa to the IIZband Cc Therefore the extreme Fe-Mn fractionation beforeTa enrichment in columbite-(Mn) (Fig 10) may be due to anincrease in the activity of fluorine as a consequence offractional crystallization The increase in the Ta content ofcolumbite-(Mn) from the Namivo granitic pegmatite isattributed to fractional crystallization

The geochemical evolution of albite and K-feldsparfrom the WZ to the Cc Al-richer micas muscovite lithianmuscovite and lsquolsquomixed formrsquorsquo from the OIZ to the Cc andlepidolite from the IIZa to the Cc and columbite-(Mn) andalso beryl (Neiva amp Neiva 2005) from the OIZ to the Ccare caused by magma fractionation The pegmatite zonesare the product of primary crystallization from a volatile-rich silicate melt The pegmatite consolidated from the WZto the Cc The IIZb is one of the most evolved zones asalso suggested by the beryl composition (Neiva amp Neiva2005) and is the richest in lsquolsquomixed formrsquorsquo and lepidolite

The richest columbite-(Mn) in Ta(Ta thorn Nb) and com-positions of tantalite-(Fe) and tantalite-(Mn) only occur inthe OIZ (Fig 10a) associated with lepidolite and polythio-nite (Fig 3c) which may be due to the local depletion of Liand F in the melt which decreases the solubility of Ta andcauses Ta precipitation (Linnen 1998 Linnen amp Cuney

Fig 11 a Backscattered-electron image of a gahnite crystal with adarker zone partially surrounding a lighter zone from the OIZ of theNamivo granitic pegmatite b c Plot of gahnite compositions in theSn-Zn-Ti diagram (atomic proportions) showing a chemical distinc-tion between the lighter and darker zones OIZ as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 981

eschweizerbart_xxx

2005) At the Tanco pegmatite Ta oxides are also asso-ciated with lepidolite enriched in Li and F from the wallzone (Van Lichtervelde et al 2008)

93 Origin and evolution of the zoned graniticlepidolite-subtype pegmatite at Namivo

In general granitic pegmatites particularly those belong-ing to the rare-element class are accepted as having beenformed by the fractional crystallization of a granite melt(eg Cerny 1991a b 1992 Neiva et al 2008 2012 Roda-Robles et al 2012) But it also has been proposed thatpegmatites may be formed by partial melting of appropri-ate rock compositions (eg Nabelek et al 1992 Nabelekamp Russ-Nabelek 1992 Shearer et al 1992 Roda Robleset al 1999) The lepidolite-subtype pegmatites belong tothe LCT (lithium-cesium-tantalum) family (Cerny amp Ercit2005) They are derived by fractional crystallization of agranite magma (eg Cerny et al 2005 Neiva amp Ramos2010 Cerny et al 2012b) Experimental work by Londonet al (1989) and London (1990) using Macusani glass as astarting material equivalent to the bulk composition ofhighly fractionated rare-alkali-rich pegmatites underhighly evolved and hydrous but H2O undersaturatedmelt obtained the latest primary assemblage consisting

of an Li-rich mica thorn albite thorn quartz deposited directlyfrom the primary melt phase Other authors egZasedatelev (1974 1977) and Stewart (1978) argue thatlepidolite-bearing pegmatites are derived from direct ana-texis and Gordiyenko et al (1996) consider that they arederived from an undefined medium and the rare-elementmineralization is superimposed on preexisting barrenpegmatites

Lepidolite-subtype pegmatites may migrate a long wayfrom their parent granites because their volatile-rich highlyfluid pegmatite melts are stable at relatively low tempera-tures (eg Cerny et al 2005 Antunes et al 2013)Therefore the Namivo pegmatite is probably derived byfractional crystallization of an S-type granite magmawhich resulted from partial melting of metamorphosed juve-nile sediments containing micas that carry most of the traceelements that define the signature of the LCT pegmatites(eg Dahl et al 1993)

The two main models for the internal evolution of peg-matites that dominated for more than a century are a) thefractional crystallization of a flux-bearing granitic melt fromthe margins to the center of the pegmatite (Cameron et al1949) b) the interactions of an aqueous fluid with graniticmelt (Jahns amp Burnham 1969 Jahns 1982) The recentmodel of constitutional zone refining combines aspects ofboth models and invokes the formation of a flux-enriched

Table 4 Electron microprobe analyses in wt of zoned gahnite from the outer intermediate zone (OIZ) of the Namivo granitic pegmatiteMozambique

Darker Zone Lighter Zone

Mean s Range Mean s Range

SnO2 036 050 0ndash097 658 281 151ndash998TiO2 008 008 0ndash021 065 034 008ndash105Nb2O5 001 002 0ndash006 018 007 007ndash029Ta2O5 001 004 0ndash010 015 013 0ndash033ZnO 3998 123 3810ndash4109 3339 318 3004ndash3848FeO 367 048 331ndash442 433 065 306ndash498MnO 032 004 028ndash040 039 006 032ndash048MgO 003 004 0ndash010 ndash ndash ndashAl2O3 5507 050 5436ndash5572 5337 070 5257ndash5443SiO2 003 003 0ndash007 008 010 0ndash025Total 9956 9912n 8 8Sn 0035 0048 0ndash0095 0648 0278 0149ndash0983Ti 0015 0015 0ndash0038 0120 0064 0015ndash0195Nb ndash 0003 0ndash0006 0021 0009 0009ndash0037Ta ndash 0002 0ndash0006 0009 0009 0ndash0021Zn 7226 0182 6890ndash7382 6086 0568 5482ndash6965Fe2thornt 0752 0103 0675ndash0913 0894 0135 0628ndash1029Mn 0066 0008 0057ndash0083 0082 0013 0066ndash0101Mg 0010 0015 0ndash0037 ndash ndash ndashAl 15887 0052 15805ndash15954 15526 0170 15375ndash15853Si 0007 0008 0ndash0018 0019 0025 0ndash0062P

23998 23405Fe3thorn 0064 0230Fe2thorn 0686 0658SnZn 0005 0007 0ndash0014 0106 0052 0021ndash0179ZnFe2thornt 961 143 768ndash1093 681 190 536ndash1109

n number of analysis Cation formula based on 32 atoms of oxygen Fe2thornt total Fe2thorn estimated

982 A M R Neiva

eschweizerbart_xxx

boundary layer of silicate liquid in advance of a crystal-lization front (London 2008 London amp Morgan 2012)

Lepidolite-subtype pegmatites are generally scarce(Cerny et al 2005) particularly the zoned ones In thesymmetrically zoned lepidolite-subtype pegmatites ofRozna and Dobra Voda Czech Republic micas (Cernyet al 1995) tourmaline (Selway et al 1999) and colum-bite-group minerals (Novak amp Cerny 1998) evolve fromthe outermost zone to the innermost zone following thecrystallization sequence The same was found in tourma-line from the zoned Lastovicky Dolnı Bory and Raddovicelepidolite-subtype pegmatite dikes in the Czeck Republic(Selway et al 1999)

In general beryl (Neiva amp Neiva 2005) feldsparsmicas and columbite-(Mn) (in this paper) from theNamivo lepidolite-subtype pegmatite record the progres-sive chemical evolution of the pegmatite from the wallzone to the core These minerals were produced by crystal-lization from a silicate melt rather than an aqueous fluidphase The slow cooling of melt shown by the magmaticcrystallization temperatures of feldspars cannot explain theincrease in grain-size of minerals from the wall zone to thecore but fluxes will be necessary to promote the change oftexture particularly a flux-rich hydrosilicate liquidaccording to the experimental evidence (London 2009)The constitutional zone refining model will be the best forthis zoned pegmatite and probably for all lepidolite-sub-type pegmatites because this model also produces a higherfinal concentration of incompatible components in a smal-ler volume of rock than fractional crystallization does(Morgan amp London 1999)

The core margin at the Rozna pegmatite contains K-feld-spar and quartz and the core consists mainly of quartz but it issurrounded and penetrated by a quartz-bearing albitethorn lepi-dolite complex which contains several minerals At theDobra Voda pegmatite the center of the dike is occupiedby the lepidolite unit containing albite and other minerals(Cerny et al 1995) At the Namivo pegmatite the coremargin consists of quartz and beryl and the core containsmainly quartz and spodumene but also albite lepidolite andother minerals The last-unit assemblages of primary miner-als in most of the highly fractionated LCT pegmatites are richin albite and commonly contain lepidolite or spodumene andmost of the other rare phases These units represent the lastmost fractionated liquid that can be derived by fractionalcrystallization of a crustal melt (London 2008)

The Namivo granitic pegmatite shows a significant dis-tinction from the other zoned lepidolite-subtype pegmatitesand LCT pegmatites except the Tanco petalite-subtypepegmatite in Canada because the lepidolite richest in SiLi and F FeMg-containing polylithionite and associatedcolumbite-(Mn) with the highest Ta(Ta thorn Nb) ratio tanta-lite-(Fe) and tantalite-(Mn) only occur in the outer inter-mediate zone These minerals usually form late in theconsolidation of pegmatites The lepidolite and polylithio-nite are probably derived from the disequilibrium crystal-lization of an undercooled melt Tantalite may reflect a localdecrease in Li and F that caused Ta precipitation

This paper contributes to a better understanding of theorigin and evolution of the rare zoned lepidolite-subtypepegmatites and shows that although the pegmatite evolvedfrom the wall zone to the core it presents an unusualassociation of lepidolite polylithionite and tantalite in theouter intermediate zone

Acknowledgments Thanks are due to JM Cotelo Neivaand MB Dias for the samples and information providedand to MR Machado Leite and MF Guimaraes for theuse of the electron microprobe facilities at the LaboratorioNacional de Energia e Geologia (LNEG) PortugalFinancial support was provided by the PortugueseGovernment for the project Pest-OECTEUI00732011of the Geosciences Centre through the PortugueseFoundation for Science and Technology I would like tothank D London WB Simmons and the associated editorE Widom for their constructive reviews of this manuscriptand M Prieto for his editorial work

References

Alfonso P Melgarejo JC Yusta I Velasco F (2003)

Geochemistry of feldspars and muscovite in granitic pegmatite

from the Cap de Creus field Catalonia Spain Can Mineral 41

103ndash116

Antunes IMHR Neiva AMR Ramos JMF Silva PB

Silva MMVG Corfu F (2013) Petrogenetic links between

lepidolite-subtype aplite-pegmatite aplite veins and associated

granites at Segura (central Portugal) Chemie der Erde in press

httpdxdoiorg101016jchemer20121203

Batchelor RA amp Kinnaird JA (1984) Gahnite compositions

compared Mineral Mag 48 425ndash430

Beurlen H Da Silva MRR Thomas R Soares DR Olivier P

(2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-

element granitic pegmatite fractionation in the Borborema pro-

vince Northeastern Brazil Miner Deposita 43 207ndash228

Cameron EN Jahns RH McNair AH Page LR (1949)

Internal structure of granitic pegmatites Econ Geol

Monograph 2 115 p

Cerny P (1991a) Fertile granites of Precambrian rare-element

pegmatite fields is geochemistry controlled by tectonic setting

or source lithologies Precambrian Res 51 429ndash468

mdash (1991b) Rare-element granite pegmatites I Anatomy and inter-

nal evolution of pegmatite deposits Geoscience Canada 18

49ndash67

mdash (1992) Geochemical and petrogenetic features of mineralization

in rare-element granitic pegmatites in the light of current

research Applied Geochemistry 7 393ndash416

mdash (1994) Evolution of feldspars in granitic pegmatites in

lsquolsquoFeldspars and their Reactionsrsquorsquo I Parsons ed NATO

Advanced Study Institute Series C421 501ndash539

mdash (2005) The Tanco rare-element pegmatite deposit Manitoba

regional context internal anatomy and global comparisons in

lsquolsquoRare-element Geochemistry and Mineral Depositsrsquorsquo RL

Linnen amp IM Samson eds Geochemical Association of

Canada Short Course Notes St Catherines 17 127ndash158

Silicate and oxide minerals from a zoned granitic pegmatite 983

eschweizerbart_xxx

Cerny P amp Ercit TS (2005) The classification of granitic pegma-

tites revisited Can Mineral 43 2005ndash2026

Cerny P Meintzer RE Andersen AJ (1985) Extreme fractiona-

tion in rare-element granitic pegmatites selected examples of

data and mechanisms Can Mineral 23 381ndash421

Cerny P Goad BE Hawthorne FC Chapmann R (1986)

Fractionation trends of the Nb- and Ta-bearing oxide minerals

in the Greer Lake pegmatite granite and its pegmatite aureole

southeastern Manitoba Am Mineral 71 501ndash517

Cerny P Stanek J Novak M Baadsgaard H Rieder M

Ottolini L Kavalova M Chapman R (1995) Geochemical

and structural evolution of micas in the Rozna amp Dobra Voda

pegmatites Czech Republic Mineral Petrol 55 177ndash201

Cerny P Ercit TS Vanstone PJ (1998) Mineralogy and petrol-

ogy of the Tanco rare-element pegmatite deposit southeastern

Manitoba International Mineralogical Association 17th General

Meeting Toronto Field Guidebook B6

Cerny P Chapman R Ferreira K Smeds SA (2004)

Geochemistry of oxide minerals of Nb Ta Sn and Sb in

the Varutrask granitic pegmatite Sweden The case of an

lsquolsquoanomalousrsquorsquo columbitendashtantalite trend Am Mineral 89

505ndash518

Cerny P Masau M Goad BE Ferreira K (2005) The Greer

Lake leucogranite Manitoba and the origin of lepidolite-sub-

type granitic pegmatites Lithos 80 305ndash321

Cerny P Teertstra DK Chapman R Selway JB Hawthorne

FC Ferreira K Chackowsky LE Wang X-J Meintzer

RE (2012a) Extreme fractionation and deformation of the

leucogranite-pegmatite suite at Red Cross Lake Manitoba

Canada IV Mineralogy Can Mineral 50 1839ndash1875

Cerny P Halden NM Ferreira K Meintzer RE Brisbin WC

Chackowsky LE (2012b) Extreme fractionation and deforma-

tion of the leucogranite-pegmatite suite at Red Cross Lake

Manitoba Canada II Petrology of the leucogranites and peg-

matites Can Mineral 50 1807ndash1822

Dahl PS When DC Feldmann SG (1993) The systematics of

trace-element partitioning between coexisting muscovite and

biotite in metamorphic rocks from the Black Hills South

Dakota USA Geochim Cosmochim Acta 57 2487ndash2505

Dias MB amp Wilson WE (2000) The Alto Ligonha Pegmatites

Mozambique Mineral Record 31 459ndash497

Fleet ME (2003) Rock-Forming Minerals vol 3A Sheet silicates

micas The Geological Society London second edition chap 6

Lithium micas 651ndash690

Foord EE Cerny P Jackson LL Sherman DM Eby RK

(1995) Mineralogical and geochemical evolutions of micas

from miarolitic pegmatites of the anorogenic pikes-Peak

Batholith Colorado Mineral Petrol 55 1ndash26

Foster MD (1960) Interpretation of the composition of lithium

micas US Geol Surv Prof Paper 354-E 115ndash147

Fuhrman ML amp Lindsley DK (1988) Ternary-feldspar modeling

and thermometry Am Mineral 73 201ndash215

Gomes CL Castro P Alves C (1995) Caracterizacao das espi-

nelas zincıferas e do par ganite-nigerite no campo aplito-

pegmatıtico da Serra de Arga-Minho N de Portugal IV

Congresso Nacional de Geologia Resumos Alargados

Universidade do Porto Mem 4 629ndash633

Gordiyenko VV Ilyina AN Timochina LA Badamina EB

Stanek J (1996) Geochemical model of evolution of a pegma-

tite-forming ore-magmatic system of western Moravia Proc

Russ Mineral Soc 125 38ndash48 (in Russian)

Icenhower JP amp London D (1995) An experimental study for

element partitioning between biotite muscovite and coexisting

peraluminous granitic melt at 200 MPa (H2O) Am Mineral 80

1229ndash1251

Jahns RH (1982) Internal evolution of pegmatite bodies in lsquolsquoGranitic

Pegmatites in science and industryrsquorsquo P Cerny ed Mineralogical

Association of Canada Short Course Handbook 8 293ndash327

Jahns RH amp Burnham CW (1969) Experimental studies of

pegmatite genesis I A model for the derivation and crystal-

lization of granitic pegmatites Econ Geol 64 843ndash864

Jolliff BL Papike JJ Shearer CK (1987) Fractionation trends

in mica and tourmaline as indicators of pegmatite internal evo-

lution Bob Ingersoll pegmatite Black Hills South Dakota

USA GeochimCosmochim Acta 51 519ndash534

Kile DE amp Foord EE (1998) Micas from the Pikes Peak bath-

olith and its cogenetic granitic pegmatites Colorado optical

properties composition and correlation with pegmatite evolu-

tion Can Mineral 36 463ndash482

Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic

melts with Li and Li thorn F constraints for mineralization in rare

metal granites and pegmatites Econ Geol 93 1013ndash1025

Linnen RL amp Cuney M (2005) Granite-related rare-element

deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf

mineralization in lsquolsquoRare-element geochemistry and mineral

depositsrsquorsquo RL Linnen amp IM Samson eds Geochemical

Association of Canada Short Course Notes 17 45ndash68

London D (1990) Internal differentiation of rare-element pegmatites

a synthesis of recent research in lsquolsquoOre Bearing Granite Systems

Petrogenesis and Mineralizing Processesrsquorsquo HJ Stein amp JL

Hannah eds Geol Soc America Special Paper 246 35ndash50

mdash (2008) Pegmatites The Canadian Mineralogist Special

Publication 10 347 p

mdash (2009) The origin of primary textures in granitic pegmatites

Can Mineral 47 697ndash724

London D amp Morgan GB VI (2012) The pegmatite puzzle

Elements 8 263ndash268

London D Morgan GB VI Hervig RL (1989) Vapor-under-

saturated experiments in the system macusanite-H2O at 200

MPa and the internal differentiation of granitic pegmatites

Contrib Mineral Petrol 102 1ndash17

London D Morgan GB VI Paul KA Guttery BM (2012)

Internal evolution of miarolitic granitic pegmatites at the Little

Three mine Ramona California USA Can Mineral 50

1025ndash1054

Martins T Lima A Simmons WB Folster AU Noronha F

(2011) Geochemical fractionation of Nb-Ta oxides in Li-bear-

ing pegmatites from the Barroso-Alvao pegmatite field northern

Portugal Can Mineral 49 777ndash791

Monier G Charoy B Cuney M Ohnenstetter D Robert JL

(1987) Evolution spatiale et temporelle de la composition des

micas du granite albitique a topaze-lepidolite de Beauvoir

Geologie De La France 2ndash3 179ndash188

Monier G amp Robert JL (1986) Evolution of the miscibility gap

between muscovite and biotite solid solutions with increasing

lithium content an experimental study in the systems

K2OndashLi2OndashMgOndashAl2O3ndashSiO2ndashH2OndashHF at 600 C 2 kbar

PH2O comparison with natural lithium micas Mineral Mag

50 641ndash651

Morgan GBVI amp London D (1999) Crystallization of the little

three layered pegmatite-aplite dike Ramona District California

Contrib Mineral Petrol 136 310ndash330

984 A M R Neiva

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985

Page 4: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

Tab

le1

R

epre

sen

tati

ve

elec

tro

nm

icro

pro

be

anal

yse

sin

wt

o

fm

icas

fro

mth

eN

amiv

og

ran

itic

peg

mat

ite

Mo

zam

biq

ue

Ou

ter

Inte

rmed

iate

Zo

ne

-O

IZIn

ner

Inte

rmed

iate

Zo

ne

-II

Za

Zin

Lep

lsquolsquoM

ixed

Frsquorsquo

Lep

Lep

Po

llsquolsquo

Mix

edF

rsquorsquoL

ith

Mu

sP

ol

Lit

hM

us

lsquolsquoM

ixed

Frsquorsquo

lsquolsquoM

ixed

Frsquorsquo

Lep

Mu

sL

ith

Mu

s

Co

mp

osi

tio

nC

ore

Rim

Co

reR

imR

imC

ore

Rim

Co

reC

ore

Rim

Rim

SiO

24

37

15

42

04

52

45

63

75

23

45

87

64

67

14

63

35

91

84

58

54

85

74

81

24

94

64

55

44

61

1T

iO2

06

00

15

04

70

02

02

70

05

mdashmdash

00

2mdash

01

00

03

00

7mdash

00

4A

l 2O

32

21

81

76

52

97

81

59

01

82

11

48

13

12

63

53

31

49

43

71

92

68

82

83

32

46

43

77

03

55

0F

eO8

42

39

74

57

24

44

94

13

11

56

17

51

14

mdash2

68

11

01

50

01

21

15

Mn

O0

60

00

60

33

00

20

21

00

30

10

01

50

05

01

20

27

12

32

16

04

80

53

Mg

O5

15

17

21

06

14

01

33

10

10

87

06

80

94

00

50

09

mdash0

01

mdashmdash

Zn

O0

46

03

20

17

01

10

24

01

30

14

01

00

09

00

60

13

02

60

41

00

60

15

CaO

00

10

01

00

4mdash

00

10

02

00

30

05

00

1mdash

mdash0

02

00

10

02

mdashL

i 2O

2

97

60

13

42

66

35

47

73

23

84

03

07

45

04

34

38

42

54

64

01

60

45

Na 2

O0

08

00

60

23

01

10

23

00

70

29

03

30

06

04

40

13

02

60

13

03

80

28

K2O

10

00

98

41

00

91

02

01

05

89

77

93

39

98

95

09

91

10

28

97

79

95

99

39

81

Rb

2O

08

60

78

06

61

30

02

80

46

05

10

43

04

91

06

15

01

42

16

71

02

11

0C

s 2O

0

06

00

9

00

60

14

00

6

00

6

00

6

00

6

00

60

15

05

50

13

02

2

00

60

03

F5

10

89

92

24

10

50

10

14

10

05

24

60

81

98

41

06

53

84

89

74

10

50

11

0H

2O

18

30

23

33

9mdash

mdashmdash

33

54

12

mdash4

01

19

12

15

09

14

28

39

61

02

03

10

40

81

01

75

10

51

41

04

31

10

38

51

00

51

10

04

21

03

77

10

03

31

02

85

10

19

61

03

19

10

02

51

00

21

O

F2

14

37

80

94

44

14

26

42

21

03

03

44

13

04

52

26

20

53

11

02

10

46

To

tal

99

89

10

03

01

00

81

10

07

31

00

05

99

63

99

48

10

00

89

96

49

98

81

00

59

99

91

10

00

81

00

04

99

75

KR

b(w

t)1

11

21

47

13

41

91

62

11

88

56

26

25

48

98

1

Si

30

85

36

20

30

45

37

47

35

58

38

54

31

02

30

83

38

63

30

45

32

66

32

26

33

51

30

24

30

86

AlIV

09

15

03

80

09

55

02

53

04

42

01

46

08

98

09

17

01

37

09

55

07

34

07

74

06

49

09

76

09

14

PT

40

04

00

40

04

00

40

04

00

40

04

00

40

04

00

40

04

00

40

04

00

40

0A

lVI

09

31

10

09

14

07

09

92

10

17

09

99

15

49

18

54

10

12

19

56

13

96

14

65

13

19

19

74

18

87

Ti

00

32

00

08

00

24

00

01

00

14

00

02

mdashmdash

00

01

mdash0

00

50

00

20

00

4mdash

00

02

Fe2thorn

04

97

02

22

02

57

01

36

02

81

00

72

00

87

00

97

00

62

mdash0

15

10

06

20

08

50

00

70

06

4M

n0

03

60

00

30

01

90

00

10

01

20

00

20

00

60

00

80

00

30

00

70

01

50

07

00

12

40

02

70

03

0M

g0

54

20

17

10

10

60

13

90

13

50

09

90

08

60

06

70

09

10

00

50

00

9mdash

00

01

mdashmdash

Zn

00

24

00

16

00

08

00

05

00

12

00

06

00

07

00

05

00

04

00

03

00

06

00

13

00

21

00

03

00

07

Li

08

44

16

13

09

25

17

73

14

95

19

32

10

26

00

80

19

54

01

14

11

84

11

46

12

64

00

42

01

20

PR

29

13

04

27

53

05

29

73

11

27

62

11

31

32

09

27

72

76

28

22

05

21

1C

a0

00

10

00

10

00

3mdash

00

01

00

01

00

02

00

04

00

01

mdashmdash

00

01

00

01

00

01

mdashN

a0

01

10

00

80

03

00

01

40

03

00

00

90

03

70

04

30

00

80

05

70

01

70

03

40

01

70

04

90

03

6K

09

00

08

38

08

66

08

65

09

17

08

18

07

90

08

47

07

91

08

40

08

82

08

36

08

60

08

41

08

38

Rb

00

39

00

33

00

29

00

56

00

12

00

19

00

22

00

18

00

21

00

45

00

65

00

61

00

73

00

44

00

47

Cs

00

02

00

03

00

02

00

04

00

02

00

02

00

02

00

02

00

02

00

04

00

16

00

04

00

06

00

02

00

01

PA

09

50

88

09

30

94

09

60

85

08

50

91

08

20

95

09

80

94

09

60

94

09

2F

11

39

18

99

04

77

22

07

21

80

20

85

05

17

01

70

20

31

02

23

11

44

10

37

15

87

01

05

02

33

OH

0

86

10

10

11

52

3mdash

mdashmdash

14

83

18

30

mdash1

77

70

85

60

96

30

41

31

89

51

76

7Z

on

esL

DL

DL

DL

DD

D

LD

LD

L

F

igu

res

Fig

s3

a6

ab

Fig

3

bF

igs

3c

6c

Fig

s3

d

d1

6

dF

igs

3e

6e

fF

igs

3f

f1

6g

h

970 A M R Neiva

eschweizerbart_xxx

Tab

le1

C

on

tin

ued

Inn

erIn

term

edia

teZ

on

e-

IIZ

bC

ore

-C

c

Lit

hM

us

Lep

Mu

slsquolsquo

Mix

edF

rsquorsquoL

epL

ith

Mu

slsquolsquo

Mix

edF

rsquorsquoL

epM

us

Lit

hM

us

Co

reR

imC

ore

Rim

Rim

Co

reR

imR

im

SiO

24

69

25

21

64

62

24

90

64

99

94

71

84

90

15

09

54

63

44

65

6T

iO2

00

3mdash

00

40

03

00

30

02

00

1mdash

mdashmdash

Al 2

O3

35

72

22

89

36

17

28

04

24

87

35

10

26

26

23

49

36

31

35

53

FeO

00

10

61

00

70

05

00

70

04

21

81

55

00

10

03

Mn

O0

55

05

80

43

12

92

24

06

01

09

13

30

14

01

4M

gO

mdashmdash

mdashmdash

mdashmdash

mdashmdash

mdashmdash

Zn

O

00

60

10

00

8

00

60

19

0

06

02

50

07

0

06

0

06

CaO

00

30

04

mdashmdash

00

10

01

00

10

01

mdashmdash

Li 2

O

06

55

42

02

54

52

47

90

93

45

15

07

04

70

79

Na 2

O0

41

00

80

49

02

60

16

04

10

13

01

00

55

05

4K

2O

97

99

78

10

16

96

69

76

94

49

33

90

89

97

99

0R

b2O

12

42

30

14

31

79

21

01

34

17

52

13

14

81

69

Cs 2

O0

16

08

7

00

60

62

05

00

11

07

70

79

01

40

12

F1

46

83

40

70

49

97

63

19

25

55

73

51

15

16

9H

2O

38

30

52

41

62

14

08

23

61

18

20

95

39

63

70

10

08

61

03

69

10

02

61

02

51

10

31

61

00

77

10

26

71

02

87

10

05

81

00

75

O

F0

61

35

00

29

21

03

20

08

12

33

30

90

48

07

1T

ota

l1

00

25

10

01

99

99

71

00

41

99

96

99

96

10

03

49

97

81

00

10

10

00

4

KR

b(w

t)7

23

96

44

94

26

44

83

96

15

3

Si

31

10

34

98

30

84

32

68

33

76

31

30

33

02

34

42

30

82

31

02

AlIV

08

90

05

02

09

16

07

32

06

24

08

70

06

98

05

58

09

18

08

98

PT

40

04

00

40

04

00

40

04

00

40

04

00

40

04

00

AlV

I1

90

01

30

71

92

91

47

01

35

51

87

51

38

71

31

21

92

81

89

2T

i0

00

1mdash

00

02

00

02

00

02

00

01

00

01

mdashmdash

mdashF

e2thorn

00

01

00

34

00

04

00

03

00

04

00

02

01

23

00

88

00

01

00

02

Mn

00

31

00

33

00

24

00

73

01

28

00

34

00

62

00

76

00

08

00

08

Mg

mdashmdash

mdashmdash

mdashmdash

mdashmdash

mdashmdash

Zn

00

03

00

05

00

04

00

03

00

09

00

03

00

12

00

03

00

03

00

03

Li

01

73

14

61

00

66

12

11

13

01

02

49

12

21

13

76

01

27

02

11

PR

21

12

84

20

32

76

28

02

16

28

12

86

20

72

12

Ca

00

02

00

03

mdashmdash

00

01

00

01

00

01

00

01

mdashmdash

Na

00

53

00

10

00

63

00

34

00

21

00

53

00

17

00

13

00

71

00

70

K0

82

80

83

70

86

50

82

10

84

10

79

90

80

20

78

20

84

60

84

1R

b0

05

30

09

90

06

10

07

70

09

10

05

70

07

60

09

20

06

30

07

2C

s0

00

50

02

50

00

10

01

80

01

40

00

30

02

20

02

30

00

40

00

3P

A0

94

09

70

99

09

50

97

09

10

92

09

10

98

09

9F

03

06

17

69

01

48

10

51

16

30

04

03

11

83

15

70

02

42

03

56

OH

1

69

40

23

11

85

20

94

90

37

01

59

70

81

70

43

01

75

81

64

4Z

on

esD

LD

D

LD

LL

D

DF

igu

res

Fig

s3

g

6i

jk

Fig

s3

h

6l

Fig

s3

i6

m

nF

igs

3j

6o

p

OIZ

IIZ

aII

Zb

Cc

asin

Fig

2Z

inndash

zin

nw

ald

ite

Lep

ndashle

pid

oli

teF

ndashfo

rmP

olndash

po

lyli

thio

nit

eL

ith

Mu

sndash

lith

ian

mu

sco

vit

eM

us

ndashm

usc

ov

ite

Lndash

ligh

ter

zon

eD

ndashd

ark

erzo

ne

D

-th

ed

ark

estzo

ne

L

-th

eli

gh

test

zon

ein

BS

Eim

ages

BaO

isb

elo

wth

ed

etec

tio

nli

mit

Cal

cula

ted

nu

mb

ero

fio

ns

on

the

bas

iso

f1

2o

xy

genthorn

Fat

om

sL

i 2O

v

alu

esca

lcu

late

dfr

om

equ

atio

ns

of

Tis

chen

do

rff

eta

l

(19

97

)O

H

-ca

lcu

late

db

yd

iffe

ren

ceto

20

00

H

2O

-ca

lcu

late

db

yst

oic

hio

met

ry

Silicate and oxide minerals from a zoned granitic pegmatite 971

eschweizerbart_xxx

analytical totals are not good The analyzed lsquolsquomixedformsrsquorsquo are distinguished in backscattered-electron (BSE)images and chemically (Fig 3b d d1 e f f1 h i andFig 4) The chemical distinction between lsquolsquomixed formrsquorsquoand lepidolite from the OIZ (Fig 4) is clear in Fig 3bwhere lepidolite is darker than lsquolsquomixed formrsquorsquo because theformer has less Fe and Mn than the latter (Table 1) and inFig 3f f1 and 3h for micas from the IIZa and IIZbrespectively where lepidolite is lighter than lsquolsquomixedformrsquorsquo because the former has more Fe2thorn and Mn oronly more Mn than the latter (Table 1) The lsquolsquomixedformsrsquorsquo analyzed are distinguished in the BSE imagesfrom the lepidolite that falls in its fields in the Fig 4The fields of lepidolite composition in Foster (1960) arelarger than the field for lepidolite from the trilithionite tothe polylithionite (Rieder et al 1999) According to Fleet(2003) only a few lepidolite compositions plot on thetrilithionite-polylithionite join In general lepidolite hashigher Si Licalc Rb Cs F contents and lower AlVI andOH contents than lsquolsquomixed formrsquorsquo (Table 1 Fig4)lsquolsquoMixed formrsquorsquo is also clearly distinguished fromlithian muscovite in OIZ IIZa IIZb and Cc in BSEimages (Fig 3d d1 e f i) and chemically (Table 1 Fig4) as it generally has higher Si Licalc Rb Cs F contentsand lower AlVI and OH contents than lithian muscovite

Two distinct trends are defined in Fig 4 One trendconsists of Al-poorer micas which are zinnwaldite

lepidolite and FeMg-containing polylithionite from theOIZ A hiatus occurs between zinnwaldite and lepidolitebut the zinnwaldite series is continuous with the field oflepidolite at the high Li content (Fleet 2003) The othertrend consists of Al-richer micas (muscovite lithian mus-covite and lsquolsquomixed formrsquorsquo from the OIZ IIZa IIZb and Ccand also lepidolite from most of those zones except fromthe OIZ) There is a gap between lithian muscovite and thelsquolsquomixed formrsquorsquo which may be explained by a hiatus inmica stability (eg Jolliff et al 1987) but a solid solutionbetween dioctahedral and trioctahedral micas has beenindicated experimentally (Monier amp Robert 1986) whileother authors have shown that the octahedral site occu-pancy ranges continuously from muscovite to lepidolite(eg Roda Robles et al 2005 Van Lichterveld et al2008 Vieira et al 2011) Most lithian muscovites andlsquolsquomixed formrsquorsquo from the OIZ are richer in Fe2thornthornMg thornMn than those from the other zones due to their higherFe2thorn and Mg contents (Fig 4 Table 1)

In the Al-poorer micas from the OIZ ranging from zinn-waldite to lepidolite and FeMg-containing polylithionite(Fig 4) (AlIV thorn AlVI) Fe2thorn Mg Ti Mn and Zn contentsdecrease and Si and Licalccontents increase (Table 1) In theAl-richer micas ranging from muscovite to lithian muscoviteand lsquolsquomixed formrsquorsquo from the OIZ IIZa IIZb and Cc and alsoto lepidolite from most of those zones except from the OIZ(AlIV thorn AlVI) AlVI and OH contents and KRb ratio

Fig 4 Plots of micas from the Namivo granitic pegmatite Mozambique in the LindashR2thornndashR3thornthorn Ti diagram according to the classification ofFoster (1960) slightly modified (Rieder et al 1999) with R3thorn frac14 AlVI R2thorn frac14 (Fe2thornt thorn Mn2thornthorn Mg) showing the variety of micacompositions Two trends are defined one for Al-poorer micas (zinnwaldite lepidolite and FeMg-containing polylithionite) from theOIZ another for Al-richer micas (muscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepidolite) from all zones except lepidolite from the OIZOIZ IIZa IIZb and Cc as in Fig 2

972 A M R Neiva

eschweizerbart_xxx

generally decrease and Si Licalc Rb Cs and F contentsgenerally increase (Table 1)

42 Main substitution mechanisms

The 2Si thorn Li 3Altotal mechanism operates in the diocta-hedral micas (muscovite and lithian muscovite) (Fig 5a b)whereas the 3LiVI AlVIthorn 2ampVI (amp represents a vacancy)operates in the trioctahedral micas (lsquolsquomixed formrsquorsquo lepido-lite zinnwaldite and FeMg-containing polylithionite) (Fig5c d) which agrees with findings for micas from the Tancopegmatite (Van Lichtervelde et al 2008)

43 Textures and chemical compositions of zoned micacrystals

Backscattered-electron images combined with quantita-tive spot electron-microprobe analyses made it possibleto distinguish different micas in the Namivo graniticpegmatite Similar textural aspects and geochemicalobservations were found between some Al-richer micasfrom the OIZ IIZa IIZb and Cc Some selected zonedcrystals are documented (Table 1 Fig 3 and 6) In theOIZ lepidolite penetrates zinnwaldite along cleavagesand partially surrounds it and the contacts are sharp(Fig 3a) A chemical gap occurs between zinnwalditeand lepidolite compositions (Fig 6a b) Lepidolite withhigher Si Licalc F contents similar KRb value andlower (AlIV thorn AlVI) Ti Fe2thorn Mg (Fe2thornthorn Mn thorn Mg)Zn and OH contents (Table 1) replaces zinnwaldite Athin lepidolite rim partially surrounds lsquolsquomixed formrsquorsquoand the contact is sharp (Fig 3b) The lepidolite rimhas higher Si Mg Licalc Rb F contents and lowerAlVI Ti Fe2thorn Mn Na and OH contents and KRb ratiothan the lsquolsquomixed formrsquorsquo core (Table 1) The lepidoliterim is an Al-poorer mica whereas the lsquolsquomixed formrsquorsquocore is an Al-richer mica (Fig 4) The lepidolite rimcorresponds to an overgrowth The FeMg-containingpolylithionite partially surrounds and penetrates lepido-lite along cleavages and shows well defined contacts(Fig 3c) Both contain rutile cassiterite and columbi-tendashtantalite inclusions A continuous chemical evolutiontakes place from lepidolite to FeMg-containing poly-lithionite (Figs 4 6c) The latter has higher Si LicalcRb contents and lower AlVI Ti Fe2thorn Mn Mg Zn Nacontents and KRb ratio (Table 1) and replaces lepido-lite A lithian muscovite rim with rare FeMg-containingpolylithionite surrounds the lsquolsquomixed formrsquorsquo core and thispolylithionite penetrated lithian muscovite (Fig 3d)The contact between the lithian muscovite rim andlsquolsquomixed formrsquorsquo core is irregular suggesting disequili-brium or at a cleavage (Fig 3d d1) Two linear trendsone for the lithian muscovite rim and another for thelsquolsquomixed formrsquorsquo core are defined in the (Fe2thornthornMnthornMg)vs (AlIV thornAlVI) diagram (Fig 6d) The FeMg-contain-ing polylithionite rim does not belong to any of thesetrends and plots outside this diagram because it is an Al-poorer mica whereas the others are Al-richer micas

(Fig 4) The lithian muscovite rim has higher AlVI(AlIV thorn AlVI) OH contents and KRb ratio and lowerMg (Fe2thornthorn Mn thorn Mg) Licalc Rb F contents than thelsquolsquomixed formrsquorsquo core (Table 1 Fig 6d) The crystal isreversely zoned The FeMg-containing polylithioniterim has higher Si Licalc F contents and lower AlVI(AlIV thorn AlVI) Fe2thorn Mn (Fe2thornthorn Mn thorn Mg) Na andOH contents than the lsquolsquomixed formrsquorsquo core and lithianmuscovite rim (Table 1) and replaces lithian muscovite

In the IIZa some zoned crystals have a lithian muscovitecore and a lsquolsquomixed formrsquorsquo rim and the contacts are gradual(Fig 3e) A small discontinuity occurs in the trends fromthe lithian muscovite core to lsquolsquomixed formrsquorsquo rim in the(Fe2thornthorn Mn thorn Mg) vs (AlIV thorn AlVI) and Rb2O vs KRb(Fig 6e f) The lsquolsquomixed formrsquorsquo rim has higher Si Fe2thornMn (Fe2thornthornMn thornMg) Licalc K Rb Cs F contents andlower AlVI (AlIVthornAlVI) Na OH contents and KRb ratiothan the lithian muscovite core (Table 1 Fig 6e f) indi-cating progressive zoning Similar textural relationshipsand chemical evolutions were found in other zoned crystalsfrom the OIZ IIZb and Cc In another crystal from theIIZa lithian muscovite partially surrounds lsquolsquomixed formrsquorsquointergrown with lepidolite Lithian muscovite also partiallysurrounds muscovite (Fig 3f) The contacts betweenlsquolsquomixed formrsquorsquo and lepidolite and also between muscoviteand lithian muscovite are gradual (Fig 3f f1) whereasthey are well defined for muscovite withlsquolsquomixed formrsquorsquoand lepidolite (Fig 3f f1) The crystal has a lsquolsquomixed formrsquorsquoand lepidolite core and a partial rim of muscovite andlithian muscovite The lsquolsquomixed formrsquorsquo core evolved tolepidolite core as the Si Fe2thorn Mn (Fe2thornthorn Mn thorn Mg)Licalc K Rb Cs and F contents increase and the (AlIV thornAlVI) and KRb ratio decrease (Table 1 Fig 6g h) The SiFe2thorn Mn (Fe2thornthorn Mn thorn Mg) Licalc Rb and F contentsincrease and the (AlIV thorn AlVI) and KRb ratio decreasefrom the muscovite rim to the lithian muscovite rim (Table1 Fig 6g h) suggesting that the former evolved to thelatter The muscovite rim has higher AlVI (AlIV thorn AlVI)Na OH contents and KRb ratio and lower Si Fe2thorn Mn(Fe2thornthornMn thornMg) Zn Licalc Rb and F contents than thelsquolsquomixed formrsquorsquo core and lepidolite core (Table 1 Fig 6gh) Muscovite was probably reversely formed and evolvedafterwards to lithian muscovite

In the IIZb some crystals have a lithian muscovite coreand a thinner lepidolite rim (Fig 3g) and others show asmall muscovite core and a larger rim of lsquolsquomixed formrsquorsquointergrown with lepidolite (Fig 3h) The contacts betweenthe cores and rims are well defined There are increases inthe Si Mn (Fe2thornthorn Mn thorn Mg) Licalc Rb and F contentsand decreases in the AlVI (AlIVthornAlVI) and KRb ratio fromthe lsquolsquomixed formrsquorsquo rim to the intergrown lepidolite rim(Table 1 Figs 3h 6l) suggesting that the former evolvedto the latter as also found in IIZa and Cc In both crystalsthe rim compositions have higher Si (Fe2thornthorn Mn thorn Mg)Licalc Rb Cs F contents and lower AlVI (AlIVthorn AlVI) Naand OH contents and KRb ratio than the core (Table 1 Figs3g 6i j k 3h 6l) A compositional gap occurs between coreand rim in the diagrams for both crystals (Fig 6i j k l)suggesting that both rims correspond to overgrowths and no

Silicate and oxide minerals from a zoned granitic pegmatite 973

eschweizerbart_xxx

diffuse reequilibration took place in any crystal as thecontacts between core and rim are sharp

In the Cc lithian muscovite is surrounded and pene-trated by lsquolsquomixed formrsquorsquo showing well defined contacts(Fig 3i) The lsquolsquomixed formrsquorsquo has higher Si Fe2thorn Mn(Fe2thornthorn Mn thorn Mg) Licalc Rb Cs F contents and lowerAlVI (AlIV thorn AlVI) Na OH contents and KRb ratio thanthe lithian muscovite (Table 1 Fig 6m n) and a composi-tional gap occurs between both micas suggesting thatlsquolsquomixed formrsquorsquo replaced lithian muscovite In rare crystalsa small lepidolite core is surrounded by a large muscoviterim containing K-feldspar inclusions The contact betweenthe core and rim is sharp (Fig 3j) A thin partial rim oflithian muscovite surrounds muscovite and the contact isgradual The muscovite rim has higher AlVI (AlIVthornAlVI)Na K OH contents and a greater KRb value and lower SiFe2thorn Mn Licalc Rb Cs and F contents than the lepidolitecore (Table 1 Fig 6o p) and a compositional gap occursbetween them (Fig 6o p) indicating that either muscoviteforms an overgrowth or it is reversely formed From themuscovite rim to the lithian muscovite rim the Si Licalc

Rb F contents increase whereas the AlVI (AlIV thorn AlVI)and OH contents and KRb ratio decrease (Table 1 Fig 6op) suggesting that muscovite evolved to lithian muscoviteas also found in IIZa and IIZb

44 Evolution of mica compositions within each zoneand from the outer intermediate zone to the core of theNamivo granitic pegmatite

The KRb ratio is taken as the best fractionation index inmicas (eg Cerny et al 1985 Foord et al 1995 Wise1995 Pesquera et al 1999 Roda Robles et al 2006 2007)It is hard to establish trends in the evolution of mica com-position from muscovite and lithian muscovite to lsquolsquomixedformrsquorsquo and lepidolite within each zone because the KRbratio shows some partial overlapping particularly betweenthe lithian muscovite and lsquolsquomixed formrsquorsquo and also betweenthe latter and lepidolite However an evolution from mus-covites to lepidolite (Al-richer mica Fig 4) is clearer (Fig7) In general in IIZa IIZb and Cc the Si Licalc Rb Cs and

Fig 5 The main substitutions in micas from the Namivo granitic pegmatite Mozambique a b SiIVthorn LiVI versus AlIVthornAlVI showing the 2SithornLi 3Altotal substitution mechanism operating in dioctahedral micas (Mu muscovite and Lith mu lithian muscovite) c d AlVI thornamp VI

versus LiVI (where amp represents a vacancy) and showing the 3LiVI AlVI thorn 2 amp VI substitution mechanism operating in trioctahedral micas(Mix f ndashlsquolsquomixed formrsquorsquo Lep lepidolite Zin zinnwaldite and Pol-FeMg-containing polylithionite) OIZ IIZa IIZb and Cc as in Fig 2

974 A M R Neiva

eschweizerbart_xxx

F contents tend to increase and the (AlIV thorn AlVI) AlVI

contents and KRb ratio tend to decrease from muscoviteto lepidolite (Table 1 Fig 7) This sequence is consistentbut rarely in the Cc lepidolite is rimmed by muscovite (Fig3j) But in the OIZ the evolution stops in lsquolsquomixed formrsquorsquoparticularly shown by the large range of the KRb ratiowhich mainly overlaps that of lepidolite from this zone(Fig 7) because this lepidolite is an Al-poorer mica whereasthe others are Al-richer micas (Fig 4)

In the OIZ the lepidolite has more Si Licalc and F andless (AlIV thorn AlVI) Ti Fe2thorn Mn Mg and Zn than zinn-waldite (Table 1) but it has larger ranges of Rb and KRbratio than zinnwaldite (Fig 7) The FeMg-containingpolylithionite is the richest mica in Si Licalc and thepoorest in (AlIV thorn AlVI) (Table 1) But at this zone scalethe polylithionite has Rb Cs contents and KRb ratiowithin the ranges for lepidolite and close to those of zinn-waldite (Fig 7)

Fig 6 Variation diagrams of micas from selected zoned crystals from the zones of the Namivo granitic pegmatite Mozambique to showtheir relationships lith musc lithian muscovite OIZ IIZa IIZb and Cc an in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 975

eschweizerbart_xxx

From the OIZ to IIZa IIZb and Cc muscovite and lithianmuscovite generally show increases in the Si Licalc F and Rbcontents and decreases in the Fe2thorn and Mg contents and KRb ratio but the Mg content is very low in these micas fromthe IIZa IIZb and Cc (Table 1 Fig 7a) The lsquolsquomixed formrsquorsquoshows increases in the Si Licalc F Rb Cs contents anddecreases in the (AlIV thorn AlVI) and Mg contents and KRbratio but the Mg content is very low in this mica from theIIZb and Cc (Table 1 Fig 7b c) The lepidolite shows anincrease in the Si Licalc F Rb and Cs contents and a decreasein the KRb ratio from the IIZa to the IIZb and Cc (Table 1Fig 7d e) Furthermore the lepidolite from the OIZ has thelowest (AlIV thorn AlVI) AlVI and OH contents the highest SiFe2thorn Licalcand F contents and KRb ratio and the lowest Rband Cs contents compared to lepidolite from the other zones(Table 1 Fig 7d e)

5 Feldspars

Selected chemical analyses of albite and K-feldspar fromfive zones of the Namivo granitic pegmatite are given inTable 2 Strontium is the most abundant trace element inalbite (eg Cerny 1994) Anorthite and Sr contents and SrCa ratio of albite decrease from the WZ to the Cc (Fig 8Table 2) Rubidium is the most abundant trace element inK-feldspar followed by Cs in IIZa IIZb and Cc In gen-eral K Rb and Cs contents of K-feldspar increase and KRb and KCs values decrease from the WZ to the Cc (Table2 Fig 9)

The program SOLVCALC 20 (Wen amp Nekvasil 1994)using the Margules model Fuhrman amp Lindsley (1988) wasapplied for the purpose of thermometry The pairing ofplagioclase cores with the K-feldspars average of eachsample was used to estimate the crystallization temperaturesof primary magmatic feldspars They are 405 C (WZ)406ndash340 C (OIZ) 390ndash335 C (IIZa) 347ndash306 C (IIZb)and 333ndash289 C (Cc) at 3 kbar The metamorphic environ-ment of rare-element-Li granitic pegmatites is one of lowpressure 2ndash4 kbar (Cerny amp Ercit 2005) In general thedifference between the maximum and minimum calculatedtemperatures at 2 3 and 4 kbar for the same feldspar pairfrom the Namivo pegmatite is lower than 40 C The tem-perature decreases from the wall zone (WZ) to the core(Cc) A similar temperature behavior of feldspars wasfound in the pegmatite-aplite dike USA (Morgan ampLondon 1999)

6 Other silicates

Tourmaline of schorl composition was only found inthe OIZ (Table 2) because there was not enough Feand Mg for schorl to precipitate in the other zonesSpodumene only occurs in the Cc and its compositionis nearly pure (Table 2)

7 Columbite-tantalite

Representative chemical analyses of columbitendashtantalitefrom the Namivo granitic pegmatite are given in Table 3and plotted in the columbite quadrilateral (Fig 10a)Most crystals are unzoned but zoned crystals with dar-ker and lighter zones in BSE images are from the Cc Thelighter zone of columbite-(Mn) has higher Ta contentTa(Ta thorn Nb) and Mn(Mn thorn Fe) values and lower Nbcontent than the darker zone (Fig 10a b) The crystals ofthe columbitendashtantalite minerals are low in W Sn and Tiimpurities (Table 3)

The main trend starts from the columbite-(Mn) of theOIZ towards the more Mn-enriched and slightly Ta-enriched columbite-(Mn) from the IIZa and Cc The high-est Ta(Ta thorn Nb) values belong to the lighter zone ofcolumbite-(Mn) with Mn(Mn thorn Fe) frac14 10 from the CcThe richest columbite-(Mn) in Ta(TathornNb) and composi-tions of tantalite-(Fe) and tantalite-(Mn) were only foundin the OIZ (Fig 10a) and are associated with lepidolite andpolylithionite (Fig 3c)

8 Gahnite

Gahnite was rarely found in the OIZ and shows a darkerzone that partially surrounds a lighter zone in a BSE image(Fig 11a) The darker zone has a higher Zn content andlower Sn Ti Nb Ta Mn contents and SnZn value than thelighter zone (Table 4 Fig 11b c) These gahnite composi-tions fall within the igneous field of Batchelor amp Kinnaird(1984) The darker zone is closer in composition to thepure gahnite (Zn8Al16O32) than the lighter zone whichcontains up to 0983 apfu Sn 0195 apfu Ti 1029 apfutotal Fe2thorn 0101 apfu Mn (Table 4) and consequently hasa composition distinct from nigerite In general both thedarker and lighter zones have higher Sn Ti and Fe contentsthan gahnite from the granitic pegmatites of Nigeria(Batchelor amp Kinnaird 1984) Arga northern Portugal(Gomes et al 1995) and Cabanas northern Portugal(Neiva amp Champness 1997) Borborema province north-eastern Brazil (Soares et al 2007) The Zn=Fe2thornt values ofthe darker and lighter zones of gahnite from Namivo arelower than those reported in Neiva amp Champness (1997)and Soares et al (2007)

9 Discussion and conclusions

91 Evolution of micas in the zoned pegmatite

In general individual mica crystals show varying patternsand compositional zoning involving several elementsmainly Si AlVI (AlIV thorn AlVI) Fe2thorn Mn (Fe2thornthorn Mn thornMg) Licalc Rb Cs F and OH and the KRb ratioProgressively zoned crystals from the IIZa show grada-tional contacts between a lithian muscovite core and a

976 A M R Neiva

eschweizerbart_xxx

lsquolsquomixed formrsquorsquo rim (Figs 3e 6e f) and the zoning patternscorrespond to fractionation trends and probably reflect adrop in temperature during the crystallization of the grani-tic pegmatite melt Progressively zoned crystals also occurin OIZ IIZb and Cc Some crystals are reversely zonedwith a) a lsquolsquomixed formrsquorsquo core and a lithian muscovite rimfrom the OIZ (Figs 3d d1 6d) b) a core consisting oflsquolsquomixed formrsquorsquo and lepidolite and a rim of muscovite andlithian muscovite from the IIZa (Figs 3f f1 6g h) c) alepidolite core and a muscovite and lithian muscovite rimfrom the Cc (Figs 3j 6o p) which may be explained bythe hypothesis of oscillations in the compositions of themelt from which they grew alternating between an Li-enriched boundary layer and a bulk melt that is less frac-tionated The muscovite evolved to lithian muscovite inIIZa and Cc (Figs 3f 6g h 3j 6o p) Replacements (Figs3a 6a b 3c 6c 3i 6m n Table 1) occur in OIZ and Ccand overgrowths (Figs 3b g 6i j k 3h 6l Table 1) occurin OIZ and IIZb as found in BSE images

Muscovite evolved to lithian muscovite as observed inOIZ IIZa IIZb and Cc (Figs 3f 6g h 3j 6o p Table 1)Lithian muscovite evolved to lsquolsquomixed formrsquorsquo in OIZ IIZaIIZb and Cc (Figs 3e 6e f Table 1) and lsquolsquomixed formrsquorsquoevolved to lepidolite in IIZa IIZb and Cc (Figs 3f f1 6gh 3h 6l Table 1) All these evolutions are due to fractionalcrystallization

In the OIZ lepidolite has more Si Licalcand F butsimilar KRb to that of zinnwaldite and replaces it (Figs

3a 6a b 7d Table 1) An FeMg-containing polylithionitehas higher Si Licalcand Rb contents and a smaller KRbratio than the lepidolite that it replaces (Figs 3c 6c Table1) and a continuous chemical evolution from lepidolite topolylithionite is shown

The trends for major and trace elements of micas withineach zone are difficult to define due to some partial over-lapping but a progressive evolution from muscovite to lithianmuscovite lsquolsquomixed formrsquorsquo and lepidolite in IIZa IIZb and Ccis mainly shown by an increase in the Si Licalc F Rb and Cscontents and a decrease in the KRb ratio and this is simi-larly shown in the OIZ from muscovite to lsquolsquomixed formrsquorsquo(Table 1 Fig 7) In the OIZ Si and Licalccontents increaseprogressively from zinnwaldite to lepidolite and FeMg-containing polylithionite but a gap occurs between zinnwal-dite and lepidolite (Table 1 Fig 4) whereas a continuousevolution from lepidolite to polylithionite is observed TheKRb ratios of zinnwaldite and polylithionite are within therange of that of lepidolite (Fig 7d e)

Each Al-richer mica (muscovite lithian muscovite andlsquolsquomixed formrsquorsquo) exhibits an evolution from the OIZ to theIIZa and then to the IIZb and Cc particularly shown by anincrease in the Si Licalc F and Rb contents and adecrease in the KRb ratio but also an increase in theCs content in the lsquolsquomixed formrsquorsquo (Table 1 Fig 7) Theseelements and ratio have been used as petrogenetic indi-cators of evolution in micas from pegmatites (eg Cernyet al 2005 Roda Robles et al 2006 2007 Vieira et al

Fig 7 Plot of some variation diagrams of micas from the OIZ IIZa IIZb and Cc of the Namivo granitic pegmatite Mozambique showingthat the Rb2O and Cs2O contents increase and the KRb ratio decreases for micas from the OIZ to the Cc OIZ IIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 977

eschweizerbart_xxx

Tab

le2

R

epre

sen

tati

ve

elec

tro

nm

icro

pro

be

anal

yse

sin

wt

o

ffe

ldsp

ars

sch

orl

and

spo

du

men

efr

om

the

Nam

ivo

gra

nit

icp

egm

atit

eM

oza

mb

iqu

e

Alb

ite

K-f

eld

spar

Sch

orl

Sp

od

um

ene

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

OIZ

Zo

ne

Cc

SiO

26

75

76

78

86

87

06

84

76

84

1S

iO2

65

10

65

55

65

46

64

96

64

72

SiO

23

52

0S

iO2

64

65

TiO

20

02

mdash0

02

mdashmdash

TiO

2mdash

00

1mdash

mdashmdash

TiO

20

35

Al 2

O3

27

20

Al 2

O3

20

25

19

74

19

67

19

88

19

97

Al 2

O3

18

96

18

23

18

31

18

24

18

05

B2O

3

10

28

Fe 2

O3

00

6F

e 2O

3mdash

mdashmdash

mdash0

10

Fe 2

O3

mdash0

02

mdash0

03

mdashA

l 2O

33

17

2M

nO

01

3M

nO

00

6mdash

mdashmdash

mdashM

nO

mdash0

03

00

3mdash

mdashF

eO1

35

2M

gO

01

8M

gO

mdashmdash

mdashmdash

mdashM

gO

00

10

01

00

5mdash

mdashM

nO

03

3N

a 2O

01

9C

aO1

04

08

00

56

03

70

32

CaO

00

10

01

00

60

01

00

2M

gO

22

8L

i 2O

8

05

Na 2

O1

06

11

12

01

12

11

13

41

13

4N

a 2O

06

50

58

04

10

59

03

8C

aO0

23

To

tal

10

04

6K

2O

00

50

17

00

60

14

01

0K

2O

14

72

14

75

15

67

15

01

15

74

Li 2

O

02

2S

rO0

72

05

00

24

01

1mdash

Rb

2O

00

90

20

03

00

59

09

0N

a 2O

22

8S

i1

99

7P

2O

50

01

00

4mdash

mdashmdash

Cs 2

O

00

6

00

60

09

01

80

20

K2O

00

1A

lIV0

00

3T

ota

l1

00

33

10

03

31

00

46

10

03

11

00

24

P2O

5mdash

00

3mdash

mdashmdash

H2O

3

18

P2

00

To

tal

99

60

99

48

10

03

89

96

11

00

01

F0

78

AlV

I0

98

7S

rC

a(w

t)0

81

07

40

50

03

50

Cl

mdashF

e3thorn

00

01

KR

b(w

t)153

68

48

23

16

Sum

1003

8P

09

9S

i1

18

23

11

87

91

19

58

11

93

21

19

21

KC

s(w

t)4

07

20

41

63

73

69

O

F0

33

Li

10

00

P0

00

10

00

6mdash

mdashmdash

To

tal

10

00

5M

n0

00

3T

i0

00

3mdash

00

03

mdashmdash

Si

11

98

61

20

88

12

04

11

20

45

12

03

3M

g0

00

8A

l4

17

64

07

14

03

54

08

34

10

1P

mdash0

00

5mdash

mdashmdash

TS

i5

95

2N

a0

01

2F

e3thorn

mdashmdash

mdashmdash

00

13

Ti

mdash0

00

1mdash

mdashmdash

Al

00

48

P1

02

Mn

00

09

mdashmdash

mdashmdash

Al

41

14

39

62

39

70

39

86

39

55

B3

00

0M

gmdash

mdashmdash

mdashmdash

Fe3thorn

mdash0

00

3mdash

00

04

mdashZ

Al

60

00

Ca

01

95

01

50

01

04

00

69

00

60

Mn

mdash0

00

50

00

5mdash

mdashY

Al

02

74

Sr

00

73

00

51

00

24

00

11

mdashM

g0

00

30

00

30

01

4mdash

mdashT

i0

04

5N

a3

59

93

80

03

78

33

83

23

83

1C

a0

00

20

00

20

01

20

00

20

00

4M

g0

57

5K

00

11

00

38

00

13

00

31

00

22

Na

02

32

02

07

01

46

02

12

01

37

Mn

00

47

K3

45

73

47

03

67

73

55

03

73

3F

e2thorn

19

12

Z1

60

01

59

61

60

01

60

11

60

4R

b0

01

10

02

40

03

50

07

00

10

8L

i0

14

8X

38

94

04

39

33

94

39

1C

s0

00

20

00

50

00

70

01

40

01

6P

Y3

00

0m

ole

s

XC

a0

04

2A

n5

13

82

71

71

5Z

16

10

16

06

16

01

16

03

15

99

Na

07

47

Ab

94

69

53

97

09

75

97

9X

37

13

72

39

03

85

40

0K

00

02

Or

03

09

03

08

06

mo

les

amp

02

09

An

01

01

03

01

01

Ab

63

56

38

56

35

OH

35

83

Or

93

69

43

95

99

43

96

4F

04

17

Cl

mdash

WZ

ndashw

allzo

ne

OIZ

ndasho

ute

rin

term

edia

tezo

ne

IIZ

aan

dII

Zb

ndashin

ner

inte

rmed

iate

zon

esC

cndash

core

asin

Fig

2B

aOis

bel

ow

the

det

ecti

on

lim

itin

bo

thfe

ldsp

ars

Cs 2

Ofrac14

00

3w

tin

the

K-

feld

spar

fro

mth

eW

Z

mdashN

ot

det

ecte

d

Nu

mb

ero

fio

ns

on

the

bas

iso

f3

2o

xy

gen

sfo

ral

bit

ean

dK

-fel

dsp

ar

31

anio

ns

(O

OH

F

)fo

rsc

ho

rlan

d6

ox

yg

ens

for

spo

du

men

e

-A

mo

un

tin

ferr

edfr

om

con

sid

erat

ion

so

fst

oic

hio

met

ry

978 A M R Neiva

eschweizerbart_xxx

2011) Lepidolite from the OIZ is an Al-poorer mica (Fig4) and has the highest Si Licalcand F contents (Table 1)indicating that an evolution cannot be shown from thislepidolite to lepidolites from the other zones which areAl-richer micas (Fig 4) However there is a regulardecrease in the KRb ratio and a progressive increase inthe Rb and Cs contents from lepidolite of the OIZ tolepidolite of IIZa IIZb and Cc (Fig 7) which indicatesthat the KRb ratio and Rb and Cs contents must not beconsidered alone to show fractional crystallization in

lepidolites particularly if some are Al-richer micas andothers Al-poorer micas The high Licalcand F contents oflepidolite from the OIZ did not decrease its KRb ratioSuch an effect is considered to have taken place in lepi-dolite (an Al-richer mica) from the wall zone of the Tancopegmatite Manitoba Canada (Van Lichtervelde et al2008) An evolution from the lepidolite of the IIZa to thatof the Cc is generally shown by the increasing Si LicalcF Rb Cs contents and a decrease in the KRb ratio (Table1 Fig 7)

At the scale of crystals the pegmatite zones and alsothose from the OIZ to the Cc of the Namivo granitic pegma-tite Al-richer micas show fractionation because theyformed from the fractionation of an Li-rich pegmatite melt

The Al-poorer micas zinnwaldite lepidolite and FeMg-containing polylithionite only occur in the OIZ (Fig 4)Polylithionite is the mica richest in Si and Licalc and lepi-dolite from this zone is the richest in Si Licalcand F (Fig 4Table 1) The high Li contents of these micas reflect aconsiderably higher D(Li) at low temperature (Icenhoweramp London 1995) These Li-rich micas may have crystal-lized from an undercooled melt This hypothesis does notimply high Rb and Cs contents and low KRb ratios Thisagrees with the fact that these micas from the OIZ havesimilar Rb and Cs contents and KRb ratios to those of Al-richer micas (muscovite lithian muscovite and lsquolsquomixedformrsquorsquo) from the same pegmatite zone (Fig 7) Howeverthe lepidolite from the wall zone of the Tanco pegmatiteCanada of a similar origin has a low KRb ratio which isattributed to the complexly interrelated structural compo-nents of this lepidolite (Van Lichtervelde et al 2008) TheLi-rich micas from the OIZ may also represent disequili-brium These two hypotheses are considered the best forthese micas of primary magmatic origin

Another hypothesis was also considered They may havecrystallized in boundary layers which concentrate Li andF But this mechanism was suggested for the most fractio-nated tourmaline enriched in Li and F from the core of the

Fig 8 Plot of albite compositions from all zones of the Namivo granitic pegmatite Mozambique showing that the anorthite content of albitedecreases from the WZ to the Cc WZ OIZ IIZa IIZb and Cc as in Fig 2

Fig 9 The Rb vs Cs diagram of K-feldspar from all zones of theNamivo granitic pegmatite Mozambique showing that the Rb andCs contents of K-feldspar increase from the WZ to the Cc WZ OIZIIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 979

eschweizerbart_xxx

Little Three pegmatite dike USA (Morgan amp London1999) and the micas enriched in Li and F from theNamivo pegmatite belonging to the OIZ Furthermore ina boundary layer melt that became enriched in Li and F theKRb ratio of micas decreases strongly (Van Lichterveldeet al 2008) which was not found in these micas from theOIZ (Fig 7d) Nor can they have resulted from the crystal-lization of a late melt that would have reacted with the OIZbecause these micas are among those containing the high-est KRb values (Fig 7d)

92 The importance of feldspars micas andcolumbitendashtantalite compositions to the Namivogranitic pegmatite evolution

The trace elements Rb and Cs and the KRb and KCs ratioshave been used to show the evolution of K-feldspar inpegmatites (eg Cerny 1994 Cerny et al 2005 RodaRobles et al 2005) The Rb and Cs contents increase andthe KRb and KCs ratios of K-feldspar decrease from theWZ to the Cc (Fig 9 Table 2) reflecting the growth of K-feldspar from an increasingly fractionated melt withouthaving grown from or having been chemically modifiedby an aqueous fluid as in the Swamp pegmatite section atthe Little Three Mine USA (London et al 2012) Thecrystallization of K-feldspar from an exsolved aqueousfluid from melt will reverse the magmatic fractionation ofRb Cs KRb and KCs because Rb and especially Cs areso much more compatible in vapor that both Rb and Csremain in the fluid phase (London et al 2012) The feldsparsolvus pairs in the Namivo pegmatite record magmaticcrystallization temperatures that decrease from WZ to CcAlbite shows a decrease in the Ca Sr contents and SrCaratio from the WZ to the Cc (Fig 8 Table 2) Therefore thefeldspars and also Al-richer micas as already explainedshow fractionation in this zoned pegmatite

In general lepidolite from the Namivo pegmatite hassimilar Rb2O and Cs2O contents and KRb (wt) values tothose of lepidolite from the Rozna and Dobra Voda lepi-dolite-subtype pegmatites in the Czech Republic (Cernyet al 1995) but lower Rb2O and Cs2O contents thanlepidolite from the lepidolite-subtype pegmatite at RedCross Lake Manitoba Canada (Cerny et al 2012a) K-feldspar from the Namivo pegmatite also has lower Rb2O

Table 3 Representative electron microprobe analyses in wt of columbitendashtantalite from the Namivo granitic pegmatite Mozambique

Outer Intermediate Zone - OIZ Inner Intermediate Zone - IIZa

Core - Cc

D L L

WO3 022 059 079 113 101 351 050 007Ta2O5 5487 5123 2503 3186 2888 2519 3127 4542Nb2O5 2537 3000 5483 4635 5113 5144 4911 3686SnO2 008 015 024 049 020 026 017 012TiO2 263 161 136 254 202 145 125 016FeO 860 710 665 471 236 068 mdash mdashMnO 793 952 1099 1304 1400 1725 1748 1718Total 9970 10020 9989 10012 9960 9978 9978 9981W 0004 0011 0013 0019 0016 0057 0008 0001Ta 1065 0975 0422 0552 0495 0430 0543 0847Nb 0819 0949 1538 1336 1456 1460 1418 1143Sn 0002 0004 0006 0012 0005 0007 0004 0003Ti 0141 0085 0063 0122 0096 0068 0060 0008Fe 0513 0416 0345 0251 0124 0036 mdash mdashMn 0479 0564 0578 0704 0747 0917 0945 0998P

3023 3004 2965 2996 2939 2975 2978 3000Mn(Mn thorn Fe) 048 058 063 074 086 096 100 100Ta(Ta thorn Nb) 057 051 022 029 025 023 028 043Classification tant-(Fe) tant-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn)

D ndash darker L ndash lighter zones mdash Not detected tant-tantalite col-columbite Cation formula on the basis of 6 atoms of oxygen

Fig 10 Compositions of columbitendashtantalite from the Namivogranitic pegmatite Mozambique in the columbite quadrilateralshowing that Mn(Mn thorn Fe) of columbite-(Mn) increases from theOIZ to the Cc and the richest columbite-(Mn) in Ta(Ta thorn Nb)tantalite-(Fe) and tantalite-(Mn) only occur in the OIZ OIZ IIZaand Cc as in Fig 2

980 A M R Neiva

eschweizerbart_xxx

and Cs2O contents than K-feldspar from the lepidolite-subtype pegmatite at Red Cross Lake The Rb2O andCs2O contents of primary and late K-feldspar of this peg-matite at Red Cross Lake attained unprecedented levels(Cerny et al 2012a) The lowest KRb (wt) values ofmuscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepido-lite from the IIZb and Cc (Fig 7) and K-feldspar (KRb frac1414) from the Cc compare well with those found in theseminerals from the AC6frac143 lepidolite-subtype pegmatitefrom Greer Lake (Cerny et al 2005) and some of themost fractionated pegmatites worldwide which belong tothe petalite-subtype (eg Tanco Manitoba Cerny 2005Cerny et al 1998 Varutrask Sweden Cerny et al 2005)but muscovite lithian muscovite and lepidolite from theIIZb and Cc have lower Rb2O and Cs2O contents than thesemicas from the Tanco pegmatite (Cerny 2005a VanLichtervelde et al 2008) K-feldspar also has lower

contents of these oxides than the most evolved K-feldsparfrom the Tanco pegmatite (Cerny 2005a) The magmaticfractionation was strong from the WZ to IIZb and Cc of theNamivo lepidolite-subtype pegmatite

The compositional trend of columbite-(Mn) from the OIZto Cc of the Namivo granitic lepidolite-subtype pegmatite(Fig 10) is identical to that of columbite-group mineralsfrom the lepidolite-subtype complex granitic pegmatitesfrom the Dobra Voda in the Moldanubicum CzechRepublic (Novak amp Cerny 1998) and the HimalayaDistrict southern California (shown in Cerny et al 2004)Experimental data for the Fe-Mn pair (Linnen amp Cuney2005) suggest an increase in Fe with fractional crystalliza-tion which is not observed in nature Other phases seem tocontrol the bahavior of Fe and Mn in the melt eg thecrystallization of tourmaline causes a rapid increase of theMnFe in the melt (Van Lichtervelde et al 2006) When thecrystallization of tourmaline stopped the columbitendashtantaliteminerals showed a constant MnFe indicating that the Fe andMn contents in the melt remained constant Schorl onlyoccurs in the OIZ of the Namivo granitic pegmatite and itscrystallization cannot be responsible for the increase in theMnFe of the melt because Mn(Mn thorn Fe) of columbite-(Mn) increases progressively from the OIZ to the IIZa and Cc(Fig 10) Garnet zinnwaldite and gahnite containing Fe andMn also only occur in the OIZ and cannot also have causedthe increase of the MnFe in the melt The dominant Mnenrichment before Ta enrichment started in the columbitendash-tantalite composition from some granitic pegmatites isattributed to an increased alkali-fluoride activity at moderatemHF (Cerny et al 2004) and an increase in the activity offluorine (Martins et al 2011) Each Al-richer mica (musco-vite lithian muscovite and lsquolsquomixed formrsquorsquo) from the Namivogranitic pegmatite shows an increase in F content from theOIZ to the IIZa IIZb and Cc (Table 1) In general the Fcontent of lepidolite also increases from the IIZa to the IIZband Cc Therefore the extreme Fe-Mn fractionation beforeTa enrichment in columbite-(Mn) (Fig 10) may be due to anincrease in the activity of fluorine as a consequence offractional crystallization The increase in the Ta content ofcolumbite-(Mn) from the Namivo granitic pegmatite isattributed to fractional crystallization

The geochemical evolution of albite and K-feldsparfrom the WZ to the Cc Al-richer micas muscovite lithianmuscovite and lsquolsquomixed formrsquorsquo from the OIZ to the Cc andlepidolite from the IIZa to the Cc and columbite-(Mn) andalso beryl (Neiva amp Neiva 2005) from the OIZ to the Ccare caused by magma fractionation The pegmatite zonesare the product of primary crystallization from a volatile-rich silicate melt The pegmatite consolidated from the WZto the Cc The IIZb is one of the most evolved zones asalso suggested by the beryl composition (Neiva amp Neiva2005) and is the richest in lsquolsquomixed formrsquorsquo and lepidolite

The richest columbite-(Mn) in Ta(Ta thorn Nb) and com-positions of tantalite-(Fe) and tantalite-(Mn) only occur inthe OIZ (Fig 10a) associated with lepidolite and polythio-nite (Fig 3c) which may be due to the local depletion of Liand F in the melt which decreases the solubility of Ta andcauses Ta precipitation (Linnen 1998 Linnen amp Cuney

Fig 11 a Backscattered-electron image of a gahnite crystal with adarker zone partially surrounding a lighter zone from the OIZ of theNamivo granitic pegmatite b c Plot of gahnite compositions in theSn-Zn-Ti diagram (atomic proportions) showing a chemical distinc-tion between the lighter and darker zones OIZ as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 981

eschweizerbart_xxx

2005) At the Tanco pegmatite Ta oxides are also asso-ciated with lepidolite enriched in Li and F from the wallzone (Van Lichtervelde et al 2008)

93 Origin and evolution of the zoned graniticlepidolite-subtype pegmatite at Namivo

In general granitic pegmatites particularly those belong-ing to the rare-element class are accepted as having beenformed by the fractional crystallization of a granite melt(eg Cerny 1991a b 1992 Neiva et al 2008 2012 Roda-Robles et al 2012) But it also has been proposed thatpegmatites may be formed by partial melting of appropri-ate rock compositions (eg Nabelek et al 1992 Nabelekamp Russ-Nabelek 1992 Shearer et al 1992 Roda Robleset al 1999) The lepidolite-subtype pegmatites belong tothe LCT (lithium-cesium-tantalum) family (Cerny amp Ercit2005) They are derived by fractional crystallization of agranite magma (eg Cerny et al 2005 Neiva amp Ramos2010 Cerny et al 2012b) Experimental work by Londonet al (1989) and London (1990) using Macusani glass as astarting material equivalent to the bulk composition ofhighly fractionated rare-alkali-rich pegmatites underhighly evolved and hydrous but H2O undersaturatedmelt obtained the latest primary assemblage consisting

of an Li-rich mica thorn albite thorn quartz deposited directlyfrom the primary melt phase Other authors egZasedatelev (1974 1977) and Stewart (1978) argue thatlepidolite-bearing pegmatites are derived from direct ana-texis and Gordiyenko et al (1996) consider that they arederived from an undefined medium and the rare-elementmineralization is superimposed on preexisting barrenpegmatites

Lepidolite-subtype pegmatites may migrate a long wayfrom their parent granites because their volatile-rich highlyfluid pegmatite melts are stable at relatively low tempera-tures (eg Cerny et al 2005 Antunes et al 2013)Therefore the Namivo pegmatite is probably derived byfractional crystallization of an S-type granite magmawhich resulted from partial melting of metamorphosed juve-nile sediments containing micas that carry most of the traceelements that define the signature of the LCT pegmatites(eg Dahl et al 1993)

The two main models for the internal evolution of peg-matites that dominated for more than a century are a) thefractional crystallization of a flux-bearing granitic melt fromthe margins to the center of the pegmatite (Cameron et al1949) b) the interactions of an aqueous fluid with graniticmelt (Jahns amp Burnham 1969 Jahns 1982) The recentmodel of constitutional zone refining combines aspects ofboth models and invokes the formation of a flux-enriched

Table 4 Electron microprobe analyses in wt of zoned gahnite from the outer intermediate zone (OIZ) of the Namivo granitic pegmatiteMozambique

Darker Zone Lighter Zone

Mean s Range Mean s Range

SnO2 036 050 0ndash097 658 281 151ndash998TiO2 008 008 0ndash021 065 034 008ndash105Nb2O5 001 002 0ndash006 018 007 007ndash029Ta2O5 001 004 0ndash010 015 013 0ndash033ZnO 3998 123 3810ndash4109 3339 318 3004ndash3848FeO 367 048 331ndash442 433 065 306ndash498MnO 032 004 028ndash040 039 006 032ndash048MgO 003 004 0ndash010 ndash ndash ndashAl2O3 5507 050 5436ndash5572 5337 070 5257ndash5443SiO2 003 003 0ndash007 008 010 0ndash025Total 9956 9912n 8 8Sn 0035 0048 0ndash0095 0648 0278 0149ndash0983Ti 0015 0015 0ndash0038 0120 0064 0015ndash0195Nb ndash 0003 0ndash0006 0021 0009 0009ndash0037Ta ndash 0002 0ndash0006 0009 0009 0ndash0021Zn 7226 0182 6890ndash7382 6086 0568 5482ndash6965Fe2thornt 0752 0103 0675ndash0913 0894 0135 0628ndash1029Mn 0066 0008 0057ndash0083 0082 0013 0066ndash0101Mg 0010 0015 0ndash0037 ndash ndash ndashAl 15887 0052 15805ndash15954 15526 0170 15375ndash15853Si 0007 0008 0ndash0018 0019 0025 0ndash0062P

23998 23405Fe3thorn 0064 0230Fe2thorn 0686 0658SnZn 0005 0007 0ndash0014 0106 0052 0021ndash0179ZnFe2thornt 961 143 768ndash1093 681 190 536ndash1109

n number of analysis Cation formula based on 32 atoms of oxygen Fe2thornt total Fe2thorn estimated

982 A M R Neiva

eschweizerbart_xxx

boundary layer of silicate liquid in advance of a crystal-lization front (London 2008 London amp Morgan 2012)

Lepidolite-subtype pegmatites are generally scarce(Cerny et al 2005) particularly the zoned ones In thesymmetrically zoned lepidolite-subtype pegmatites ofRozna and Dobra Voda Czech Republic micas (Cernyet al 1995) tourmaline (Selway et al 1999) and colum-bite-group minerals (Novak amp Cerny 1998) evolve fromthe outermost zone to the innermost zone following thecrystallization sequence The same was found in tourma-line from the zoned Lastovicky Dolnı Bory and Raddovicelepidolite-subtype pegmatite dikes in the Czeck Republic(Selway et al 1999)

In general beryl (Neiva amp Neiva 2005) feldsparsmicas and columbite-(Mn) (in this paper) from theNamivo lepidolite-subtype pegmatite record the progres-sive chemical evolution of the pegmatite from the wallzone to the core These minerals were produced by crystal-lization from a silicate melt rather than an aqueous fluidphase The slow cooling of melt shown by the magmaticcrystallization temperatures of feldspars cannot explain theincrease in grain-size of minerals from the wall zone to thecore but fluxes will be necessary to promote the change oftexture particularly a flux-rich hydrosilicate liquidaccording to the experimental evidence (London 2009)The constitutional zone refining model will be the best forthis zoned pegmatite and probably for all lepidolite-sub-type pegmatites because this model also produces a higherfinal concentration of incompatible components in a smal-ler volume of rock than fractional crystallization does(Morgan amp London 1999)

The core margin at the Rozna pegmatite contains K-feld-spar and quartz and the core consists mainly of quartz but it issurrounded and penetrated by a quartz-bearing albitethorn lepi-dolite complex which contains several minerals At theDobra Voda pegmatite the center of the dike is occupiedby the lepidolite unit containing albite and other minerals(Cerny et al 1995) At the Namivo pegmatite the coremargin consists of quartz and beryl and the core containsmainly quartz and spodumene but also albite lepidolite andother minerals The last-unit assemblages of primary miner-als in most of the highly fractionated LCT pegmatites are richin albite and commonly contain lepidolite or spodumene andmost of the other rare phases These units represent the lastmost fractionated liquid that can be derived by fractionalcrystallization of a crustal melt (London 2008)

The Namivo granitic pegmatite shows a significant dis-tinction from the other zoned lepidolite-subtype pegmatitesand LCT pegmatites except the Tanco petalite-subtypepegmatite in Canada because the lepidolite richest in SiLi and F FeMg-containing polylithionite and associatedcolumbite-(Mn) with the highest Ta(Ta thorn Nb) ratio tanta-lite-(Fe) and tantalite-(Mn) only occur in the outer inter-mediate zone These minerals usually form late in theconsolidation of pegmatites The lepidolite and polylithio-nite are probably derived from the disequilibrium crystal-lization of an undercooled melt Tantalite may reflect a localdecrease in Li and F that caused Ta precipitation

This paper contributes to a better understanding of theorigin and evolution of the rare zoned lepidolite-subtypepegmatites and shows that although the pegmatite evolvedfrom the wall zone to the core it presents an unusualassociation of lepidolite polylithionite and tantalite in theouter intermediate zone

Acknowledgments Thanks are due to JM Cotelo Neivaand MB Dias for the samples and information providedand to MR Machado Leite and MF Guimaraes for theuse of the electron microprobe facilities at the LaboratorioNacional de Energia e Geologia (LNEG) PortugalFinancial support was provided by the PortugueseGovernment for the project Pest-OECTEUI00732011of the Geosciences Centre through the PortugueseFoundation for Science and Technology I would like tothank D London WB Simmons and the associated editorE Widom for their constructive reviews of this manuscriptand M Prieto for his editorial work

References

Alfonso P Melgarejo JC Yusta I Velasco F (2003)

Geochemistry of feldspars and muscovite in granitic pegmatite

from the Cap de Creus field Catalonia Spain Can Mineral 41

103ndash116

Antunes IMHR Neiva AMR Ramos JMF Silva PB

Silva MMVG Corfu F (2013) Petrogenetic links between

lepidolite-subtype aplite-pegmatite aplite veins and associated

granites at Segura (central Portugal) Chemie der Erde in press

httpdxdoiorg101016jchemer20121203

Batchelor RA amp Kinnaird JA (1984) Gahnite compositions

compared Mineral Mag 48 425ndash430

Beurlen H Da Silva MRR Thomas R Soares DR Olivier P

(2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-

element granitic pegmatite fractionation in the Borborema pro-

vince Northeastern Brazil Miner Deposita 43 207ndash228

Cameron EN Jahns RH McNair AH Page LR (1949)

Internal structure of granitic pegmatites Econ Geol

Monograph 2 115 p

Cerny P (1991a) Fertile granites of Precambrian rare-element

pegmatite fields is geochemistry controlled by tectonic setting

or source lithologies Precambrian Res 51 429ndash468

mdash (1991b) Rare-element granite pegmatites I Anatomy and inter-

nal evolution of pegmatite deposits Geoscience Canada 18

49ndash67

mdash (1992) Geochemical and petrogenetic features of mineralization

in rare-element granitic pegmatites in the light of current

research Applied Geochemistry 7 393ndash416

mdash (1994) Evolution of feldspars in granitic pegmatites in

lsquolsquoFeldspars and their Reactionsrsquorsquo I Parsons ed NATO

Advanced Study Institute Series C421 501ndash539

mdash (2005) The Tanco rare-element pegmatite deposit Manitoba

regional context internal anatomy and global comparisons in

lsquolsquoRare-element Geochemistry and Mineral Depositsrsquorsquo RL

Linnen amp IM Samson eds Geochemical Association of

Canada Short Course Notes St Catherines 17 127ndash158

Silicate and oxide minerals from a zoned granitic pegmatite 983

eschweizerbart_xxx

Cerny P amp Ercit TS (2005) The classification of granitic pegma-

tites revisited Can Mineral 43 2005ndash2026

Cerny P Meintzer RE Andersen AJ (1985) Extreme fractiona-

tion in rare-element granitic pegmatites selected examples of

data and mechanisms Can Mineral 23 381ndash421

Cerny P Goad BE Hawthorne FC Chapmann R (1986)

Fractionation trends of the Nb- and Ta-bearing oxide minerals

in the Greer Lake pegmatite granite and its pegmatite aureole

southeastern Manitoba Am Mineral 71 501ndash517

Cerny P Stanek J Novak M Baadsgaard H Rieder M

Ottolini L Kavalova M Chapman R (1995) Geochemical

and structural evolution of micas in the Rozna amp Dobra Voda

pegmatites Czech Republic Mineral Petrol 55 177ndash201

Cerny P Ercit TS Vanstone PJ (1998) Mineralogy and petrol-

ogy of the Tanco rare-element pegmatite deposit southeastern

Manitoba International Mineralogical Association 17th General

Meeting Toronto Field Guidebook B6

Cerny P Chapman R Ferreira K Smeds SA (2004)

Geochemistry of oxide minerals of Nb Ta Sn and Sb in

the Varutrask granitic pegmatite Sweden The case of an

lsquolsquoanomalousrsquorsquo columbitendashtantalite trend Am Mineral 89

505ndash518

Cerny P Masau M Goad BE Ferreira K (2005) The Greer

Lake leucogranite Manitoba and the origin of lepidolite-sub-

type granitic pegmatites Lithos 80 305ndash321

Cerny P Teertstra DK Chapman R Selway JB Hawthorne

FC Ferreira K Chackowsky LE Wang X-J Meintzer

RE (2012a) Extreme fractionation and deformation of the

leucogranite-pegmatite suite at Red Cross Lake Manitoba

Canada IV Mineralogy Can Mineral 50 1839ndash1875

Cerny P Halden NM Ferreira K Meintzer RE Brisbin WC

Chackowsky LE (2012b) Extreme fractionation and deforma-

tion of the leucogranite-pegmatite suite at Red Cross Lake

Manitoba Canada II Petrology of the leucogranites and peg-

matites Can Mineral 50 1807ndash1822

Dahl PS When DC Feldmann SG (1993) The systematics of

trace-element partitioning between coexisting muscovite and

biotite in metamorphic rocks from the Black Hills South

Dakota USA Geochim Cosmochim Acta 57 2487ndash2505

Dias MB amp Wilson WE (2000) The Alto Ligonha Pegmatites

Mozambique Mineral Record 31 459ndash497

Fleet ME (2003) Rock-Forming Minerals vol 3A Sheet silicates

micas The Geological Society London second edition chap 6

Lithium micas 651ndash690

Foord EE Cerny P Jackson LL Sherman DM Eby RK

(1995) Mineralogical and geochemical evolutions of micas

from miarolitic pegmatites of the anorogenic pikes-Peak

Batholith Colorado Mineral Petrol 55 1ndash26

Foster MD (1960) Interpretation of the composition of lithium

micas US Geol Surv Prof Paper 354-E 115ndash147

Fuhrman ML amp Lindsley DK (1988) Ternary-feldspar modeling

and thermometry Am Mineral 73 201ndash215

Gomes CL Castro P Alves C (1995) Caracterizacao das espi-

nelas zincıferas e do par ganite-nigerite no campo aplito-

pegmatıtico da Serra de Arga-Minho N de Portugal IV

Congresso Nacional de Geologia Resumos Alargados

Universidade do Porto Mem 4 629ndash633

Gordiyenko VV Ilyina AN Timochina LA Badamina EB

Stanek J (1996) Geochemical model of evolution of a pegma-

tite-forming ore-magmatic system of western Moravia Proc

Russ Mineral Soc 125 38ndash48 (in Russian)

Icenhower JP amp London D (1995) An experimental study for

element partitioning between biotite muscovite and coexisting

peraluminous granitic melt at 200 MPa (H2O) Am Mineral 80

1229ndash1251

Jahns RH (1982) Internal evolution of pegmatite bodies in lsquolsquoGranitic

Pegmatites in science and industryrsquorsquo P Cerny ed Mineralogical

Association of Canada Short Course Handbook 8 293ndash327

Jahns RH amp Burnham CW (1969) Experimental studies of

pegmatite genesis I A model for the derivation and crystal-

lization of granitic pegmatites Econ Geol 64 843ndash864

Jolliff BL Papike JJ Shearer CK (1987) Fractionation trends

in mica and tourmaline as indicators of pegmatite internal evo-

lution Bob Ingersoll pegmatite Black Hills South Dakota

USA GeochimCosmochim Acta 51 519ndash534

Kile DE amp Foord EE (1998) Micas from the Pikes Peak bath-

olith and its cogenetic granitic pegmatites Colorado optical

properties composition and correlation with pegmatite evolu-

tion Can Mineral 36 463ndash482

Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic

melts with Li and Li thorn F constraints for mineralization in rare

metal granites and pegmatites Econ Geol 93 1013ndash1025

Linnen RL amp Cuney M (2005) Granite-related rare-element

deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf

mineralization in lsquolsquoRare-element geochemistry and mineral

depositsrsquorsquo RL Linnen amp IM Samson eds Geochemical

Association of Canada Short Course Notes 17 45ndash68

London D (1990) Internal differentiation of rare-element pegmatites

a synthesis of recent research in lsquolsquoOre Bearing Granite Systems

Petrogenesis and Mineralizing Processesrsquorsquo HJ Stein amp JL

Hannah eds Geol Soc America Special Paper 246 35ndash50

mdash (2008) Pegmatites The Canadian Mineralogist Special

Publication 10 347 p

mdash (2009) The origin of primary textures in granitic pegmatites

Can Mineral 47 697ndash724

London D amp Morgan GB VI (2012) The pegmatite puzzle

Elements 8 263ndash268

London D Morgan GB VI Hervig RL (1989) Vapor-under-

saturated experiments in the system macusanite-H2O at 200

MPa and the internal differentiation of granitic pegmatites

Contrib Mineral Petrol 102 1ndash17

London D Morgan GB VI Paul KA Guttery BM (2012)

Internal evolution of miarolitic granitic pegmatites at the Little

Three mine Ramona California USA Can Mineral 50

1025ndash1054

Martins T Lima A Simmons WB Folster AU Noronha F

(2011) Geochemical fractionation of Nb-Ta oxides in Li-bear-

ing pegmatites from the Barroso-Alvao pegmatite field northern

Portugal Can Mineral 49 777ndash791

Monier G Charoy B Cuney M Ohnenstetter D Robert JL

(1987) Evolution spatiale et temporelle de la composition des

micas du granite albitique a topaze-lepidolite de Beauvoir

Geologie De La France 2ndash3 179ndash188

Monier G amp Robert JL (1986) Evolution of the miscibility gap

between muscovite and biotite solid solutions with increasing

lithium content an experimental study in the systems

K2OndashLi2OndashMgOndashAl2O3ndashSiO2ndashH2OndashHF at 600 C 2 kbar

PH2O comparison with natural lithium micas Mineral Mag

50 641ndash651

Morgan GBVI amp London D (1999) Crystallization of the little

three layered pegmatite-aplite dike Ramona District California

Contrib Mineral Petrol 136 310ndash330

984 A M R Neiva

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985

Page 5: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

Tab

le1

C

on

tin

ued

Inn

erIn

term

edia

teZ

on

e-

IIZ

bC

ore

-C

c

Lit

hM

us

Lep

Mu

slsquolsquo

Mix

edF

rsquorsquoL

epL

ith

Mu

slsquolsquo

Mix

edF

rsquorsquoL

epM

us

Lit

hM

us

Co

reR

imC

ore

Rim

Rim

Co

reR

imR

im

SiO

24

69

25

21

64

62

24

90

64

99

94

71

84

90

15

09

54

63

44

65

6T

iO2

00

3mdash

00

40

03

00

30

02

00

1mdash

mdashmdash

Al 2

O3

35

72

22

89

36

17

28

04

24

87

35

10

26

26

23

49

36

31

35

53

FeO

00

10

61

00

70

05

00

70

04

21

81

55

00

10

03

Mn

O0

55

05

80

43

12

92

24

06

01

09

13

30

14

01

4M

gO

mdashmdash

mdashmdash

mdashmdash

mdashmdash

mdashmdash

Zn

O

00

60

10

00

8

00

60

19

0

06

02

50

07

0

06

0

06

CaO

00

30

04

mdashmdash

00

10

01

00

10

01

mdashmdash

Li 2

O

06

55

42

02

54

52

47

90

93

45

15

07

04

70

79

Na 2

O0

41

00

80

49

02

60

16

04

10

13

01

00

55

05

4K

2O

97

99

78

10

16

96

69

76

94

49

33

90

89

97

99

0R

b2O

12

42

30

14

31

79

21

01

34

17

52

13

14

81

69

Cs 2

O0

16

08

7

00

60

62

05

00

11

07

70

79

01

40

12

F1

46

83

40

70

49

97

63

19

25

55

73

51

15

16

9H

2O

38

30

52

41

62

14

08

23

61

18

20

95

39

63

70

10

08

61

03

69

10

02

61

02

51

10

31

61

00

77

10

26

71

02

87

10

05

81

00

75

O

F0

61

35

00

29

21

03

20

08

12

33

30

90

48

07

1T

ota

l1

00

25

10

01

99

99

71

00

41

99

96

99

96

10

03

49

97

81

00

10

10

00

4

KR

b(w

t)7

23

96

44

94

26

44

83

96

15

3

Si

31

10

34

98

30

84

32

68

33

76

31

30

33

02

34

42

30

82

31

02

AlIV

08

90

05

02

09

16

07

32

06

24

08

70

06

98

05

58

09

18

08

98

PT

40

04

00

40

04

00

40

04

00

40

04

00

40

04

00

AlV

I1

90

01

30

71

92

91

47

01

35

51

87

51

38

71

31

21

92

81

89

2T

i0

00

1mdash

00

02

00

02

00

02

00

01

00

01

mdashmdash

mdashF

e2thorn

00

01

00

34

00

04

00

03

00

04

00

02

01

23

00

88

00

01

00

02

Mn

00

31

00

33

00

24

00

73

01

28

00

34

00

62

00

76

00

08

00

08

Mg

mdashmdash

mdashmdash

mdashmdash

mdashmdash

mdashmdash

Zn

00

03

00

05

00

04

00

03

00

09

00

03

00

12

00

03

00

03

00

03

Li

01

73

14

61

00

66

12

11

13

01

02

49

12

21

13

76

01

27

02

11

PR

21

12

84

20

32

76

28

02

16

28

12

86

20

72

12

Ca

00

02

00

03

mdashmdash

00

01

00

01

00

01

00

01

mdashmdash

Na

00

53

00

10

00

63

00

34

00

21

00

53

00

17

00

13

00

71

00

70

K0

82

80

83

70

86

50

82

10

84

10

79

90

80

20

78

20

84

60

84

1R

b0

05

30

09

90

06

10

07

70

09

10

05

70

07

60

09

20

06

30

07

2C

s0

00

50

02

50

00

10

01

80

01

40

00

30

02

20

02

30

00

40

00

3P

A0

94

09

70

99

09

50

97

09

10

92

09

10

98

09

9F

03

06

17

69

01

48

10

51

16

30

04

03

11

83

15

70

02

42

03

56

OH

1

69

40

23

11

85

20

94

90

37

01

59

70

81

70

43

01

75

81

64

4Z

on

esD

LD

D

LD

LL

D

DF

igu

res

Fig

s3

g

6i

jk

Fig

s3

h

6l

Fig

s3

i6

m

nF

igs

3j

6o

p

OIZ

IIZ

aII

Zb

Cc

asin

Fig

2Z

inndash

zin

nw

ald

ite

Lep

ndashle

pid

oli

teF

ndashfo

rmP

olndash

po

lyli

thio

nit

eL

ith

Mu

sndash

lith

ian

mu

sco

vit

eM

us

ndashm

usc

ov

ite

Lndash

ligh

ter

zon

eD

ndashd

ark

erzo

ne

D

-th

ed

ark

estzo

ne

L

-th

eli

gh

test

zon

ein

BS

Eim

ages

BaO

isb

elo

wth

ed

etec

tio

nli

mit

Cal

cula

ted

nu

mb

ero

fio

ns

on

the

bas

iso

f1

2o

xy

genthorn

Fat

om

sL

i 2O

v

alu

esca

lcu

late

dfr

om

equ

atio

ns

of

Tis

chen

do

rff

eta

l

(19

97

)O

H

-ca

lcu

late

db

yd

iffe

ren

ceto

20

00

H

2O

-ca

lcu

late

db

yst

oic

hio

met

ry

Silicate and oxide minerals from a zoned granitic pegmatite 971

eschweizerbart_xxx

analytical totals are not good The analyzed lsquolsquomixedformsrsquorsquo are distinguished in backscattered-electron (BSE)images and chemically (Fig 3b d d1 e f f1 h i andFig 4) The chemical distinction between lsquolsquomixed formrsquorsquoand lepidolite from the OIZ (Fig 4) is clear in Fig 3bwhere lepidolite is darker than lsquolsquomixed formrsquorsquo because theformer has less Fe and Mn than the latter (Table 1) and inFig 3f f1 and 3h for micas from the IIZa and IIZbrespectively where lepidolite is lighter than lsquolsquomixedformrsquorsquo because the former has more Fe2thorn and Mn oronly more Mn than the latter (Table 1) The lsquolsquomixedformsrsquorsquo analyzed are distinguished in the BSE imagesfrom the lepidolite that falls in its fields in the Fig 4The fields of lepidolite composition in Foster (1960) arelarger than the field for lepidolite from the trilithionite tothe polylithionite (Rieder et al 1999) According to Fleet(2003) only a few lepidolite compositions plot on thetrilithionite-polylithionite join In general lepidolite hashigher Si Licalc Rb Cs F contents and lower AlVI andOH contents than lsquolsquomixed formrsquorsquo (Table 1 Fig4)lsquolsquoMixed formrsquorsquo is also clearly distinguished fromlithian muscovite in OIZ IIZa IIZb and Cc in BSEimages (Fig 3d d1 e f i) and chemically (Table 1 Fig4) as it generally has higher Si Licalc Rb Cs F contentsand lower AlVI and OH contents than lithian muscovite

Two distinct trends are defined in Fig 4 One trendconsists of Al-poorer micas which are zinnwaldite

lepidolite and FeMg-containing polylithionite from theOIZ A hiatus occurs between zinnwaldite and lepidolitebut the zinnwaldite series is continuous with the field oflepidolite at the high Li content (Fleet 2003) The othertrend consists of Al-richer micas (muscovite lithian mus-covite and lsquolsquomixed formrsquorsquo from the OIZ IIZa IIZb and Ccand also lepidolite from most of those zones except fromthe OIZ) There is a gap between lithian muscovite and thelsquolsquomixed formrsquorsquo which may be explained by a hiatus inmica stability (eg Jolliff et al 1987) but a solid solutionbetween dioctahedral and trioctahedral micas has beenindicated experimentally (Monier amp Robert 1986) whileother authors have shown that the octahedral site occu-pancy ranges continuously from muscovite to lepidolite(eg Roda Robles et al 2005 Van Lichterveld et al2008 Vieira et al 2011) Most lithian muscovites andlsquolsquomixed formrsquorsquo from the OIZ are richer in Fe2thornthornMg thornMn than those from the other zones due to their higherFe2thorn and Mg contents (Fig 4 Table 1)

In the Al-poorer micas from the OIZ ranging from zinn-waldite to lepidolite and FeMg-containing polylithionite(Fig 4) (AlIV thorn AlVI) Fe2thorn Mg Ti Mn and Zn contentsdecrease and Si and Licalccontents increase (Table 1) In theAl-richer micas ranging from muscovite to lithian muscoviteand lsquolsquomixed formrsquorsquo from the OIZ IIZa IIZb and Cc and alsoto lepidolite from most of those zones except from the OIZ(AlIV thorn AlVI) AlVI and OH contents and KRb ratio

Fig 4 Plots of micas from the Namivo granitic pegmatite Mozambique in the LindashR2thornndashR3thornthorn Ti diagram according to the classification ofFoster (1960) slightly modified (Rieder et al 1999) with R3thorn frac14 AlVI R2thorn frac14 (Fe2thornt thorn Mn2thornthorn Mg) showing the variety of micacompositions Two trends are defined one for Al-poorer micas (zinnwaldite lepidolite and FeMg-containing polylithionite) from theOIZ another for Al-richer micas (muscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepidolite) from all zones except lepidolite from the OIZOIZ IIZa IIZb and Cc as in Fig 2

972 A M R Neiva

eschweizerbart_xxx

generally decrease and Si Licalc Rb Cs and F contentsgenerally increase (Table 1)

42 Main substitution mechanisms

The 2Si thorn Li 3Altotal mechanism operates in the diocta-hedral micas (muscovite and lithian muscovite) (Fig 5a b)whereas the 3LiVI AlVIthorn 2ampVI (amp represents a vacancy)operates in the trioctahedral micas (lsquolsquomixed formrsquorsquo lepido-lite zinnwaldite and FeMg-containing polylithionite) (Fig5c d) which agrees with findings for micas from the Tancopegmatite (Van Lichtervelde et al 2008)

43 Textures and chemical compositions of zoned micacrystals

Backscattered-electron images combined with quantita-tive spot electron-microprobe analyses made it possibleto distinguish different micas in the Namivo graniticpegmatite Similar textural aspects and geochemicalobservations were found between some Al-richer micasfrom the OIZ IIZa IIZb and Cc Some selected zonedcrystals are documented (Table 1 Fig 3 and 6) In theOIZ lepidolite penetrates zinnwaldite along cleavagesand partially surrounds it and the contacts are sharp(Fig 3a) A chemical gap occurs between zinnwalditeand lepidolite compositions (Fig 6a b) Lepidolite withhigher Si Licalc F contents similar KRb value andlower (AlIV thorn AlVI) Ti Fe2thorn Mg (Fe2thornthorn Mn thorn Mg)Zn and OH contents (Table 1) replaces zinnwaldite Athin lepidolite rim partially surrounds lsquolsquomixed formrsquorsquoand the contact is sharp (Fig 3b) The lepidolite rimhas higher Si Mg Licalc Rb F contents and lowerAlVI Ti Fe2thorn Mn Na and OH contents and KRb ratiothan the lsquolsquomixed formrsquorsquo core (Table 1) The lepidoliterim is an Al-poorer mica whereas the lsquolsquomixed formrsquorsquocore is an Al-richer mica (Fig 4) The lepidolite rimcorresponds to an overgrowth The FeMg-containingpolylithionite partially surrounds and penetrates lepido-lite along cleavages and shows well defined contacts(Fig 3c) Both contain rutile cassiterite and columbi-tendashtantalite inclusions A continuous chemical evolutiontakes place from lepidolite to FeMg-containing poly-lithionite (Figs 4 6c) The latter has higher Si LicalcRb contents and lower AlVI Ti Fe2thorn Mn Mg Zn Nacontents and KRb ratio (Table 1) and replaces lepido-lite A lithian muscovite rim with rare FeMg-containingpolylithionite surrounds the lsquolsquomixed formrsquorsquo core and thispolylithionite penetrated lithian muscovite (Fig 3d)The contact between the lithian muscovite rim andlsquolsquomixed formrsquorsquo core is irregular suggesting disequili-brium or at a cleavage (Fig 3d d1) Two linear trendsone for the lithian muscovite rim and another for thelsquolsquomixed formrsquorsquo core are defined in the (Fe2thornthornMnthornMg)vs (AlIV thornAlVI) diagram (Fig 6d) The FeMg-contain-ing polylithionite rim does not belong to any of thesetrends and plots outside this diagram because it is an Al-poorer mica whereas the others are Al-richer micas

(Fig 4) The lithian muscovite rim has higher AlVI(AlIV thorn AlVI) OH contents and KRb ratio and lowerMg (Fe2thornthorn Mn thorn Mg) Licalc Rb F contents than thelsquolsquomixed formrsquorsquo core (Table 1 Fig 6d) The crystal isreversely zoned The FeMg-containing polylithioniterim has higher Si Licalc F contents and lower AlVI(AlIV thorn AlVI) Fe2thorn Mn (Fe2thornthorn Mn thorn Mg) Na andOH contents than the lsquolsquomixed formrsquorsquo core and lithianmuscovite rim (Table 1) and replaces lithian muscovite

In the IIZa some zoned crystals have a lithian muscovitecore and a lsquolsquomixed formrsquorsquo rim and the contacts are gradual(Fig 3e) A small discontinuity occurs in the trends fromthe lithian muscovite core to lsquolsquomixed formrsquorsquo rim in the(Fe2thornthorn Mn thorn Mg) vs (AlIV thorn AlVI) and Rb2O vs KRb(Fig 6e f) The lsquolsquomixed formrsquorsquo rim has higher Si Fe2thornMn (Fe2thornthornMn thornMg) Licalc K Rb Cs F contents andlower AlVI (AlIVthornAlVI) Na OH contents and KRb ratiothan the lithian muscovite core (Table 1 Fig 6e f) indi-cating progressive zoning Similar textural relationshipsand chemical evolutions were found in other zoned crystalsfrom the OIZ IIZb and Cc In another crystal from theIIZa lithian muscovite partially surrounds lsquolsquomixed formrsquorsquointergrown with lepidolite Lithian muscovite also partiallysurrounds muscovite (Fig 3f) The contacts betweenlsquolsquomixed formrsquorsquo and lepidolite and also between muscoviteand lithian muscovite are gradual (Fig 3f f1) whereasthey are well defined for muscovite withlsquolsquomixed formrsquorsquoand lepidolite (Fig 3f f1) The crystal has a lsquolsquomixed formrsquorsquoand lepidolite core and a partial rim of muscovite andlithian muscovite The lsquolsquomixed formrsquorsquo core evolved tolepidolite core as the Si Fe2thorn Mn (Fe2thornthorn Mn thorn Mg)Licalc K Rb Cs and F contents increase and the (AlIV thornAlVI) and KRb ratio decrease (Table 1 Fig 6g h) The SiFe2thorn Mn (Fe2thornthorn Mn thorn Mg) Licalc Rb and F contentsincrease and the (AlIV thorn AlVI) and KRb ratio decreasefrom the muscovite rim to the lithian muscovite rim (Table1 Fig 6g h) suggesting that the former evolved to thelatter The muscovite rim has higher AlVI (AlIV thorn AlVI)Na OH contents and KRb ratio and lower Si Fe2thorn Mn(Fe2thornthornMn thornMg) Zn Licalc Rb and F contents than thelsquolsquomixed formrsquorsquo core and lepidolite core (Table 1 Fig 6gh) Muscovite was probably reversely formed and evolvedafterwards to lithian muscovite

In the IIZb some crystals have a lithian muscovite coreand a thinner lepidolite rim (Fig 3g) and others show asmall muscovite core and a larger rim of lsquolsquomixed formrsquorsquointergrown with lepidolite (Fig 3h) The contacts betweenthe cores and rims are well defined There are increases inthe Si Mn (Fe2thornthorn Mn thorn Mg) Licalc Rb and F contentsand decreases in the AlVI (AlIVthornAlVI) and KRb ratio fromthe lsquolsquomixed formrsquorsquo rim to the intergrown lepidolite rim(Table 1 Figs 3h 6l) suggesting that the former evolvedto the latter as also found in IIZa and Cc In both crystalsthe rim compositions have higher Si (Fe2thornthorn Mn thorn Mg)Licalc Rb Cs F contents and lower AlVI (AlIVthorn AlVI) Naand OH contents and KRb ratio than the core (Table 1 Figs3g 6i j k 3h 6l) A compositional gap occurs between coreand rim in the diagrams for both crystals (Fig 6i j k l)suggesting that both rims correspond to overgrowths and no

Silicate and oxide minerals from a zoned granitic pegmatite 973

eschweizerbart_xxx

diffuse reequilibration took place in any crystal as thecontacts between core and rim are sharp

In the Cc lithian muscovite is surrounded and pene-trated by lsquolsquomixed formrsquorsquo showing well defined contacts(Fig 3i) The lsquolsquomixed formrsquorsquo has higher Si Fe2thorn Mn(Fe2thornthorn Mn thorn Mg) Licalc Rb Cs F contents and lowerAlVI (AlIV thorn AlVI) Na OH contents and KRb ratio thanthe lithian muscovite (Table 1 Fig 6m n) and a composi-tional gap occurs between both micas suggesting thatlsquolsquomixed formrsquorsquo replaced lithian muscovite In rare crystalsa small lepidolite core is surrounded by a large muscoviterim containing K-feldspar inclusions The contact betweenthe core and rim is sharp (Fig 3j) A thin partial rim oflithian muscovite surrounds muscovite and the contact isgradual The muscovite rim has higher AlVI (AlIVthornAlVI)Na K OH contents and a greater KRb value and lower SiFe2thorn Mn Licalc Rb Cs and F contents than the lepidolitecore (Table 1 Fig 6o p) and a compositional gap occursbetween them (Fig 6o p) indicating that either muscoviteforms an overgrowth or it is reversely formed From themuscovite rim to the lithian muscovite rim the Si Licalc

Rb F contents increase whereas the AlVI (AlIV thorn AlVI)and OH contents and KRb ratio decrease (Table 1 Fig 6op) suggesting that muscovite evolved to lithian muscoviteas also found in IIZa and IIZb

44 Evolution of mica compositions within each zoneand from the outer intermediate zone to the core of theNamivo granitic pegmatite

The KRb ratio is taken as the best fractionation index inmicas (eg Cerny et al 1985 Foord et al 1995 Wise1995 Pesquera et al 1999 Roda Robles et al 2006 2007)It is hard to establish trends in the evolution of mica com-position from muscovite and lithian muscovite to lsquolsquomixedformrsquorsquo and lepidolite within each zone because the KRbratio shows some partial overlapping particularly betweenthe lithian muscovite and lsquolsquomixed formrsquorsquo and also betweenthe latter and lepidolite However an evolution from mus-covites to lepidolite (Al-richer mica Fig 4) is clearer (Fig7) In general in IIZa IIZb and Cc the Si Licalc Rb Cs and

Fig 5 The main substitutions in micas from the Namivo granitic pegmatite Mozambique a b SiIVthorn LiVI versus AlIVthornAlVI showing the 2SithornLi 3Altotal substitution mechanism operating in dioctahedral micas (Mu muscovite and Lith mu lithian muscovite) c d AlVI thornamp VI

versus LiVI (where amp represents a vacancy) and showing the 3LiVI AlVI thorn 2 amp VI substitution mechanism operating in trioctahedral micas(Mix f ndashlsquolsquomixed formrsquorsquo Lep lepidolite Zin zinnwaldite and Pol-FeMg-containing polylithionite) OIZ IIZa IIZb and Cc as in Fig 2

974 A M R Neiva

eschweizerbart_xxx

F contents tend to increase and the (AlIV thorn AlVI) AlVI

contents and KRb ratio tend to decrease from muscoviteto lepidolite (Table 1 Fig 7) This sequence is consistentbut rarely in the Cc lepidolite is rimmed by muscovite (Fig3j) But in the OIZ the evolution stops in lsquolsquomixed formrsquorsquoparticularly shown by the large range of the KRb ratiowhich mainly overlaps that of lepidolite from this zone(Fig 7) because this lepidolite is an Al-poorer mica whereasthe others are Al-richer micas (Fig 4)

In the OIZ the lepidolite has more Si Licalc and F andless (AlIV thorn AlVI) Ti Fe2thorn Mn Mg and Zn than zinn-waldite (Table 1) but it has larger ranges of Rb and KRbratio than zinnwaldite (Fig 7) The FeMg-containingpolylithionite is the richest mica in Si Licalc and thepoorest in (AlIV thorn AlVI) (Table 1) But at this zone scalethe polylithionite has Rb Cs contents and KRb ratiowithin the ranges for lepidolite and close to those of zinn-waldite (Fig 7)

Fig 6 Variation diagrams of micas from selected zoned crystals from the zones of the Namivo granitic pegmatite Mozambique to showtheir relationships lith musc lithian muscovite OIZ IIZa IIZb and Cc an in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 975

eschweizerbart_xxx

From the OIZ to IIZa IIZb and Cc muscovite and lithianmuscovite generally show increases in the Si Licalc F and Rbcontents and decreases in the Fe2thorn and Mg contents and KRb ratio but the Mg content is very low in these micas fromthe IIZa IIZb and Cc (Table 1 Fig 7a) The lsquolsquomixed formrsquorsquoshows increases in the Si Licalc F Rb Cs contents anddecreases in the (AlIV thorn AlVI) and Mg contents and KRbratio but the Mg content is very low in this mica from theIIZb and Cc (Table 1 Fig 7b c) The lepidolite shows anincrease in the Si Licalc F Rb and Cs contents and a decreasein the KRb ratio from the IIZa to the IIZb and Cc (Table 1Fig 7d e) Furthermore the lepidolite from the OIZ has thelowest (AlIV thorn AlVI) AlVI and OH contents the highest SiFe2thorn Licalcand F contents and KRb ratio and the lowest Rband Cs contents compared to lepidolite from the other zones(Table 1 Fig 7d e)

5 Feldspars

Selected chemical analyses of albite and K-feldspar fromfive zones of the Namivo granitic pegmatite are given inTable 2 Strontium is the most abundant trace element inalbite (eg Cerny 1994) Anorthite and Sr contents and SrCa ratio of albite decrease from the WZ to the Cc (Fig 8Table 2) Rubidium is the most abundant trace element inK-feldspar followed by Cs in IIZa IIZb and Cc In gen-eral K Rb and Cs contents of K-feldspar increase and KRb and KCs values decrease from the WZ to the Cc (Table2 Fig 9)

The program SOLVCALC 20 (Wen amp Nekvasil 1994)using the Margules model Fuhrman amp Lindsley (1988) wasapplied for the purpose of thermometry The pairing ofplagioclase cores with the K-feldspars average of eachsample was used to estimate the crystallization temperaturesof primary magmatic feldspars They are 405 C (WZ)406ndash340 C (OIZ) 390ndash335 C (IIZa) 347ndash306 C (IIZb)and 333ndash289 C (Cc) at 3 kbar The metamorphic environ-ment of rare-element-Li granitic pegmatites is one of lowpressure 2ndash4 kbar (Cerny amp Ercit 2005) In general thedifference between the maximum and minimum calculatedtemperatures at 2 3 and 4 kbar for the same feldspar pairfrom the Namivo pegmatite is lower than 40 C The tem-perature decreases from the wall zone (WZ) to the core(Cc) A similar temperature behavior of feldspars wasfound in the pegmatite-aplite dike USA (Morgan ampLondon 1999)

6 Other silicates

Tourmaline of schorl composition was only found inthe OIZ (Table 2) because there was not enough Feand Mg for schorl to precipitate in the other zonesSpodumene only occurs in the Cc and its compositionis nearly pure (Table 2)

7 Columbite-tantalite

Representative chemical analyses of columbitendashtantalitefrom the Namivo granitic pegmatite are given in Table 3and plotted in the columbite quadrilateral (Fig 10a)Most crystals are unzoned but zoned crystals with dar-ker and lighter zones in BSE images are from the Cc Thelighter zone of columbite-(Mn) has higher Ta contentTa(Ta thorn Nb) and Mn(Mn thorn Fe) values and lower Nbcontent than the darker zone (Fig 10a b) The crystals ofthe columbitendashtantalite minerals are low in W Sn and Tiimpurities (Table 3)

The main trend starts from the columbite-(Mn) of theOIZ towards the more Mn-enriched and slightly Ta-enriched columbite-(Mn) from the IIZa and Cc The high-est Ta(Ta thorn Nb) values belong to the lighter zone ofcolumbite-(Mn) with Mn(Mn thorn Fe) frac14 10 from the CcThe richest columbite-(Mn) in Ta(TathornNb) and composi-tions of tantalite-(Fe) and tantalite-(Mn) were only foundin the OIZ (Fig 10a) and are associated with lepidolite andpolylithionite (Fig 3c)

8 Gahnite

Gahnite was rarely found in the OIZ and shows a darkerzone that partially surrounds a lighter zone in a BSE image(Fig 11a) The darker zone has a higher Zn content andlower Sn Ti Nb Ta Mn contents and SnZn value than thelighter zone (Table 4 Fig 11b c) These gahnite composi-tions fall within the igneous field of Batchelor amp Kinnaird(1984) The darker zone is closer in composition to thepure gahnite (Zn8Al16O32) than the lighter zone whichcontains up to 0983 apfu Sn 0195 apfu Ti 1029 apfutotal Fe2thorn 0101 apfu Mn (Table 4) and consequently hasa composition distinct from nigerite In general both thedarker and lighter zones have higher Sn Ti and Fe contentsthan gahnite from the granitic pegmatites of Nigeria(Batchelor amp Kinnaird 1984) Arga northern Portugal(Gomes et al 1995) and Cabanas northern Portugal(Neiva amp Champness 1997) Borborema province north-eastern Brazil (Soares et al 2007) The Zn=Fe2thornt values ofthe darker and lighter zones of gahnite from Namivo arelower than those reported in Neiva amp Champness (1997)and Soares et al (2007)

9 Discussion and conclusions

91 Evolution of micas in the zoned pegmatite

In general individual mica crystals show varying patternsand compositional zoning involving several elementsmainly Si AlVI (AlIV thorn AlVI) Fe2thorn Mn (Fe2thornthorn Mn thornMg) Licalc Rb Cs F and OH and the KRb ratioProgressively zoned crystals from the IIZa show grada-tional contacts between a lithian muscovite core and a

976 A M R Neiva

eschweizerbart_xxx

lsquolsquomixed formrsquorsquo rim (Figs 3e 6e f) and the zoning patternscorrespond to fractionation trends and probably reflect adrop in temperature during the crystallization of the grani-tic pegmatite melt Progressively zoned crystals also occurin OIZ IIZb and Cc Some crystals are reversely zonedwith a) a lsquolsquomixed formrsquorsquo core and a lithian muscovite rimfrom the OIZ (Figs 3d d1 6d) b) a core consisting oflsquolsquomixed formrsquorsquo and lepidolite and a rim of muscovite andlithian muscovite from the IIZa (Figs 3f f1 6g h) c) alepidolite core and a muscovite and lithian muscovite rimfrom the Cc (Figs 3j 6o p) which may be explained bythe hypothesis of oscillations in the compositions of themelt from which they grew alternating between an Li-enriched boundary layer and a bulk melt that is less frac-tionated The muscovite evolved to lithian muscovite inIIZa and Cc (Figs 3f 6g h 3j 6o p) Replacements (Figs3a 6a b 3c 6c 3i 6m n Table 1) occur in OIZ and Ccand overgrowths (Figs 3b g 6i j k 3h 6l Table 1) occurin OIZ and IIZb as found in BSE images

Muscovite evolved to lithian muscovite as observed inOIZ IIZa IIZb and Cc (Figs 3f 6g h 3j 6o p Table 1)Lithian muscovite evolved to lsquolsquomixed formrsquorsquo in OIZ IIZaIIZb and Cc (Figs 3e 6e f Table 1) and lsquolsquomixed formrsquorsquoevolved to lepidolite in IIZa IIZb and Cc (Figs 3f f1 6gh 3h 6l Table 1) All these evolutions are due to fractionalcrystallization

In the OIZ lepidolite has more Si Licalcand F butsimilar KRb to that of zinnwaldite and replaces it (Figs

3a 6a b 7d Table 1) An FeMg-containing polylithionitehas higher Si Licalcand Rb contents and a smaller KRbratio than the lepidolite that it replaces (Figs 3c 6c Table1) and a continuous chemical evolution from lepidolite topolylithionite is shown

The trends for major and trace elements of micas withineach zone are difficult to define due to some partial over-lapping but a progressive evolution from muscovite to lithianmuscovite lsquolsquomixed formrsquorsquo and lepidolite in IIZa IIZb and Ccis mainly shown by an increase in the Si Licalc F Rb and Cscontents and a decrease in the KRb ratio and this is simi-larly shown in the OIZ from muscovite to lsquolsquomixed formrsquorsquo(Table 1 Fig 7) In the OIZ Si and Licalccontents increaseprogressively from zinnwaldite to lepidolite and FeMg-containing polylithionite but a gap occurs between zinnwal-dite and lepidolite (Table 1 Fig 4) whereas a continuousevolution from lepidolite to polylithionite is observed TheKRb ratios of zinnwaldite and polylithionite are within therange of that of lepidolite (Fig 7d e)

Each Al-richer mica (muscovite lithian muscovite andlsquolsquomixed formrsquorsquo) exhibits an evolution from the OIZ to theIIZa and then to the IIZb and Cc particularly shown by anincrease in the Si Licalc F and Rb contents and adecrease in the KRb ratio but also an increase in theCs content in the lsquolsquomixed formrsquorsquo (Table 1 Fig 7) Theseelements and ratio have been used as petrogenetic indi-cators of evolution in micas from pegmatites (eg Cernyet al 2005 Roda Robles et al 2006 2007 Vieira et al

Fig 7 Plot of some variation diagrams of micas from the OIZ IIZa IIZb and Cc of the Namivo granitic pegmatite Mozambique showingthat the Rb2O and Cs2O contents increase and the KRb ratio decreases for micas from the OIZ to the Cc OIZ IIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 977

eschweizerbart_xxx

Tab

le2

R

epre

sen

tati

ve

elec

tro

nm

icro

pro

be

anal

yse

sin

wt

o

ffe

ldsp

ars

sch

orl

and

spo

du

men

efr

om

the

Nam

ivo

gra

nit

icp

egm

atit

eM

oza

mb

iqu

e

Alb

ite

K-f

eld

spar

Sch

orl

Sp

od

um

ene

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

OIZ

Zo

ne

Cc

SiO

26

75

76

78

86

87

06

84

76

84

1S

iO2

65

10

65

55

65

46

64

96

64

72

SiO

23

52

0S

iO2

64

65

TiO

20

02

mdash0

02

mdashmdash

TiO

2mdash

00

1mdash

mdashmdash

TiO

20

35

Al 2

O3

27

20

Al 2

O3

20

25

19

74

19

67

19

88

19

97

Al 2

O3

18

96

18

23

18

31

18

24

18

05

B2O

3

10

28

Fe 2

O3

00

6F

e 2O

3mdash

mdashmdash

mdash0

10

Fe 2

O3

mdash0

02

mdash0

03

mdashA

l 2O

33

17

2M

nO

01

3M

nO

00

6mdash

mdashmdash

mdashM

nO

mdash0

03

00

3mdash

mdashF

eO1

35

2M

gO

01

8M

gO

mdashmdash

mdashmdash

mdashM

gO

00

10

01

00

5mdash

mdashM

nO

03

3N

a 2O

01

9C

aO1

04

08

00

56

03

70

32

CaO

00

10

01

00

60

01

00

2M

gO

22

8L

i 2O

8

05

Na 2

O1

06

11

12

01

12

11

13

41

13

4N

a 2O

06

50

58

04

10

59

03

8C

aO0

23

To

tal

10

04

6K

2O

00

50

17

00

60

14

01

0K

2O

14

72

14

75

15

67

15

01

15

74

Li 2

O

02

2S

rO0

72

05

00

24

01

1mdash

Rb

2O

00

90

20

03

00

59

09

0N

a 2O

22

8S

i1

99

7P

2O

50

01

00

4mdash

mdashmdash

Cs 2

O

00

6

00

60

09

01

80

20

K2O

00

1A

lIV0

00

3T

ota

l1

00

33

10

03

31

00

46

10

03

11

00

24

P2O

5mdash

00

3mdash

mdashmdash

H2O

3

18

P2

00

To

tal

99

60

99

48

10

03

89

96

11

00

01

F0

78

AlV

I0

98

7S

rC

a(w

t)0

81

07

40

50

03

50

Cl

mdashF

e3thorn

00

01

KR

b(w

t)153

68

48

23

16

Sum

1003

8P

09

9S

i1

18

23

11

87

91

19

58

11

93

21

19

21

KC

s(w

t)4

07

20

41

63

73

69

O

F0

33

Li

10

00

P0

00

10

00

6mdash

mdashmdash

To

tal

10

00

5M

n0

00

3T

i0

00

3mdash

00

03

mdashmdash

Si

11

98

61

20

88

12

04

11

20

45

12

03

3M

g0

00

8A

l4

17

64

07

14

03

54

08

34

10

1P

mdash0

00

5mdash

mdashmdash

TS

i5

95

2N

a0

01

2F

e3thorn

mdashmdash

mdashmdash

00

13

Ti

mdash0

00

1mdash

mdashmdash

Al

00

48

P1

02

Mn

00

09

mdashmdash

mdashmdash

Al

41

14

39

62

39

70

39

86

39

55

B3

00

0M

gmdash

mdashmdash

mdashmdash

Fe3thorn

mdash0

00

3mdash

00

04

mdashZ

Al

60

00

Ca

01

95

01

50

01

04

00

69

00

60

Mn

mdash0

00

50

00

5mdash

mdashY

Al

02

74

Sr

00

73

00

51

00

24

00

11

mdashM

g0

00

30

00

30

01

4mdash

mdashT

i0

04

5N

a3

59

93

80

03

78

33

83

23

83

1C

a0

00

20

00

20

01

20

00

20

00

4M

g0

57

5K

00

11

00

38

00

13

00

31

00

22

Na

02

32

02

07

01

46

02

12

01

37

Mn

00

47

K3

45

73

47

03

67

73

55

03

73

3F

e2thorn

19

12

Z1

60

01

59

61

60

01

60

11

60

4R

b0

01

10

02

40

03

50

07

00

10

8L

i0

14

8X

38

94

04

39

33

94

39

1C

s0

00

20

00

50

00

70

01

40

01

6P

Y3

00

0m

ole

s

XC

a0

04

2A

n5

13

82

71

71

5Z

16

10

16

06

16

01

16

03

15

99

Na

07

47

Ab

94

69

53

97

09

75

97

9X

37

13

72

39

03

85

40

0K

00

02

Or

03

09

03

08

06

mo

les

amp

02

09

An

01

01

03

01

01

Ab

63

56

38

56

35

OH

35

83

Or

93

69

43

95

99

43

96

4F

04

17

Cl

mdash

WZ

ndashw

allzo

ne

OIZ

ndasho

ute

rin

term

edia

tezo

ne

IIZ

aan

dII

Zb

ndashin

ner

inte

rmed

iate

zon

esC

cndash

core

asin

Fig

2B

aOis

bel

ow

the

det

ecti

on

lim

itin

bo

thfe

ldsp

ars

Cs 2

Ofrac14

00

3w

tin

the

K-

feld

spar

fro

mth

eW

Z

mdashN

ot

det

ecte

d

Nu

mb

ero

fio

ns

on

the

bas

iso

f3

2o

xy

gen

sfo

ral

bit

ean

dK

-fel

dsp

ar

31

anio

ns

(O

OH

F

)fo

rsc

ho

rlan

d6

ox

yg

ens

for

spo

du

men

e

-A

mo

un

tin

ferr

edfr

om

con

sid

erat

ion

so

fst

oic

hio

met

ry

978 A M R Neiva

eschweizerbart_xxx

2011) Lepidolite from the OIZ is an Al-poorer mica (Fig4) and has the highest Si Licalcand F contents (Table 1)indicating that an evolution cannot be shown from thislepidolite to lepidolites from the other zones which areAl-richer micas (Fig 4) However there is a regulardecrease in the KRb ratio and a progressive increase inthe Rb and Cs contents from lepidolite of the OIZ tolepidolite of IIZa IIZb and Cc (Fig 7) which indicatesthat the KRb ratio and Rb and Cs contents must not beconsidered alone to show fractional crystallization in

lepidolites particularly if some are Al-richer micas andothers Al-poorer micas The high Licalcand F contents oflepidolite from the OIZ did not decrease its KRb ratioSuch an effect is considered to have taken place in lepi-dolite (an Al-richer mica) from the wall zone of the Tancopegmatite Manitoba Canada (Van Lichtervelde et al2008) An evolution from the lepidolite of the IIZa to thatof the Cc is generally shown by the increasing Si LicalcF Rb Cs contents and a decrease in the KRb ratio (Table1 Fig 7)

At the scale of crystals the pegmatite zones and alsothose from the OIZ to the Cc of the Namivo granitic pegma-tite Al-richer micas show fractionation because theyformed from the fractionation of an Li-rich pegmatite melt

The Al-poorer micas zinnwaldite lepidolite and FeMg-containing polylithionite only occur in the OIZ (Fig 4)Polylithionite is the mica richest in Si and Licalc and lepi-dolite from this zone is the richest in Si Licalcand F (Fig 4Table 1) The high Li contents of these micas reflect aconsiderably higher D(Li) at low temperature (Icenhoweramp London 1995) These Li-rich micas may have crystal-lized from an undercooled melt This hypothesis does notimply high Rb and Cs contents and low KRb ratios Thisagrees with the fact that these micas from the OIZ havesimilar Rb and Cs contents and KRb ratios to those of Al-richer micas (muscovite lithian muscovite and lsquolsquomixedformrsquorsquo) from the same pegmatite zone (Fig 7) Howeverthe lepidolite from the wall zone of the Tanco pegmatiteCanada of a similar origin has a low KRb ratio which isattributed to the complexly interrelated structural compo-nents of this lepidolite (Van Lichtervelde et al 2008) TheLi-rich micas from the OIZ may also represent disequili-brium These two hypotheses are considered the best forthese micas of primary magmatic origin

Another hypothesis was also considered They may havecrystallized in boundary layers which concentrate Li andF But this mechanism was suggested for the most fractio-nated tourmaline enriched in Li and F from the core of the

Fig 8 Plot of albite compositions from all zones of the Namivo granitic pegmatite Mozambique showing that the anorthite content of albitedecreases from the WZ to the Cc WZ OIZ IIZa IIZb and Cc as in Fig 2

Fig 9 The Rb vs Cs diagram of K-feldspar from all zones of theNamivo granitic pegmatite Mozambique showing that the Rb andCs contents of K-feldspar increase from the WZ to the Cc WZ OIZIIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 979

eschweizerbart_xxx

Little Three pegmatite dike USA (Morgan amp London1999) and the micas enriched in Li and F from theNamivo pegmatite belonging to the OIZ Furthermore ina boundary layer melt that became enriched in Li and F theKRb ratio of micas decreases strongly (Van Lichterveldeet al 2008) which was not found in these micas from theOIZ (Fig 7d) Nor can they have resulted from the crystal-lization of a late melt that would have reacted with the OIZbecause these micas are among those containing the high-est KRb values (Fig 7d)

92 The importance of feldspars micas andcolumbitendashtantalite compositions to the Namivogranitic pegmatite evolution

The trace elements Rb and Cs and the KRb and KCs ratioshave been used to show the evolution of K-feldspar inpegmatites (eg Cerny 1994 Cerny et al 2005 RodaRobles et al 2005) The Rb and Cs contents increase andthe KRb and KCs ratios of K-feldspar decrease from theWZ to the Cc (Fig 9 Table 2) reflecting the growth of K-feldspar from an increasingly fractionated melt withouthaving grown from or having been chemically modifiedby an aqueous fluid as in the Swamp pegmatite section atthe Little Three Mine USA (London et al 2012) Thecrystallization of K-feldspar from an exsolved aqueousfluid from melt will reverse the magmatic fractionation ofRb Cs KRb and KCs because Rb and especially Cs areso much more compatible in vapor that both Rb and Csremain in the fluid phase (London et al 2012) The feldsparsolvus pairs in the Namivo pegmatite record magmaticcrystallization temperatures that decrease from WZ to CcAlbite shows a decrease in the Ca Sr contents and SrCaratio from the WZ to the Cc (Fig 8 Table 2) Therefore thefeldspars and also Al-richer micas as already explainedshow fractionation in this zoned pegmatite

In general lepidolite from the Namivo pegmatite hassimilar Rb2O and Cs2O contents and KRb (wt) values tothose of lepidolite from the Rozna and Dobra Voda lepi-dolite-subtype pegmatites in the Czech Republic (Cernyet al 1995) but lower Rb2O and Cs2O contents thanlepidolite from the lepidolite-subtype pegmatite at RedCross Lake Manitoba Canada (Cerny et al 2012a) K-feldspar from the Namivo pegmatite also has lower Rb2O

Table 3 Representative electron microprobe analyses in wt of columbitendashtantalite from the Namivo granitic pegmatite Mozambique

Outer Intermediate Zone - OIZ Inner Intermediate Zone - IIZa

Core - Cc

D L L

WO3 022 059 079 113 101 351 050 007Ta2O5 5487 5123 2503 3186 2888 2519 3127 4542Nb2O5 2537 3000 5483 4635 5113 5144 4911 3686SnO2 008 015 024 049 020 026 017 012TiO2 263 161 136 254 202 145 125 016FeO 860 710 665 471 236 068 mdash mdashMnO 793 952 1099 1304 1400 1725 1748 1718Total 9970 10020 9989 10012 9960 9978 9978 9981W 0004 0011 0013 0019 0016 0057 0008 0001Ta 1065 0975 0422 0552 0495 0430 0543 0847Nb 0819 0949 1538 1336 1456 1460 1418 1143Sn 0002 0004 0006 0012 0005 0007 0004 0003Ti 0141 0085 0063 0122 0096 0068 0060 0008Fe 0513 0416 0345 0251 0124 0036 mdash mdashMn 0479 0564 0578 0704 0747 0917 0945 0998P

3023 3004 2965 2996 2939 2975 2978 3000Mn(Mn thorn Fe) 048 058 063 074 086 096 100 100Ta(Ta thorn Nb) 057 051 022 029 025 023 028 043Classification tant-(Fe) tant-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn)

D ndash darker L ndash lighter zones mdash Not detected tant-tantalite col-columbite Cation formula on the basis of 6 atoms of oxygen

Fig 10 Compositions of columbitendashtantalite from the Namivogranitic pegmatite Mozambique in the columbite quadrilateralshowing that Mn(Mn thorn Fe) of columbite-(Mn) increases from theOIZ to the Cc and the richest columbite-(Mn) in Ta(Ta thorn Nb)tantalite-(Fe) and tantalite-(Mn) only occur in the OIZ OIZ IIZaand Cc as in Fig 2

980 A M R Neiva

eschweizerbart_xxx

and Cs2O contents than K-feldspar from the lepidolite-subtype pegmatite at Red Cross Lake The Rb2O andCs2O contents of primary and late K-feldspar of this peg-matite at Red Cross Lake attained unprecedented levels(Cerny et al 2012a) The lowest KRb (wt) values ofmuscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepido-lite from the IIZb and Cc (Fig 7) and K-feldspar (KRb frac1414) from the Cc compare well with those found in theseminerals from the AC6frac143 lepidolite-subtype pegmatitefrom Greer Lake (Cerny et al 2005) and some of themost fractionated pegmatites worldwide which belong tothe petalite-subtype (eg Tanco Manitoba Cerny 2005Cerny et al 1998 Varutrask Sweden Cerny et al 2005)but muscovite lithian muscovite and lepidolite from theIIZb and Cc have lower Rb2O and Cs2O contents than thesemicas from the Tanco pegmatite (Cerny 2005a VanLichtervelde et al 2008) K-feldspar also has lower

contents of these oxides than the most evolved K-feldsparfrom the Tanco pegmatite (Cerny 2005a) The magmaticfractionation was strong from the WZ to IIZb and Cc of theNamivo lepidolite-subtype pegmatite

The compositional trend of columbite-(Mn) from the OIZto Cc of the Namivo granitic lepidolite-subtype pegmatite(Fig 10) is identical to that of columbite-group mineralsfrom the lepidolite-subtype complex granitic pegmatitesfrom the Dobra Voda in the Moldanubicum CzechRepublic (Novak amp Cerny 1998) and the HimalayaDistrict southern California (shown in Cerny et al 2004)Experimental data for the Fe-Mn pair (Linnen amp Cuney2005) suggest an increase in Fe with fractional crystalliza-tion which is not observed in nature Other phases seem tocontrol the bahavior of Fe and Mn in the melt eg thecrystallization of tourmaline causes a rapid increase of theMnFe in the melt (Van Lichtervelde et al 2006) When thecrystallization of tourmaline stopped the columbitendashtantaliteminerals showed a constant MnFe indicating that the Fe andMn contents in the melt remained constant Schorl onlyoccurs in the OIZ of the Namivo granitic pegmatite and itscrystallization cannot be responsible for the increase in theMnFe of the melt because Mn(Mn thorn Fe) of columbite-(Mn) increases progressively from the OIZ to the IIZa and Cc(Fig 10) Garnet zinnwaldite and gahnite containing Fe andMn also only occur in the OIZ and cannot also have causedthe increase of the MnFe in the melt The dominant Mnenrichment before Ta enrichment started in the columbitendash-tantalite composition from some granitic pegmatites isattributed to an increased alkali-fluoride activity at moderatemHF (Cerny et al 2004) and an increase in the activity offluorine (Martins et al 2011) Each Al-richer mica (musco-vite lithian muscovite and lsquolsquomixed formrsquorsquo) from the Namivogranitic pegmatite shows an increase in F content from theOIZ to the IIZa IIZb and Cc (Table 1) In general the Fcontent of lepidolite also increases from the IIZa to the IIZband Cc Therefore the extreme Fe-Mn fractionation beforeTa enrichment in columbite-(Mn) (Fig 10) may be due to anincrease in the activity of fluorine as a consequence offractional crystallization The increase in the Ta content ofcolumbite-(Mn) from the Namivo granitic pegmatite isattributed to fractional crystallization

The geochemical evolution of albite and K-feldsparfrom the WZ to the Cc Al-richer micas muscovite lithianmuscovite and lsquolsquomixed formrsquorsquo from the OIZ to the Cc andlepidolite from the IIZa to the Cc and columbite-(Mn) andalso beryl (Neiva amp Neiva 2005) from the OIZ to the Ccare caused by magma fractionation The pegmatite zonesare the product of primary crystallization from a volatile-rich silicate melt The pegmatite consolidated from the WZto the Cc The IIZb is one of the most evolved zones asalso suggested by the beryl composition (Neiva amp Neiva2005) and is the richest in lsquolsquomixed formrsquorsquo and lepidolite

The richest columbite-(Mn) in Ta(Ta thorn Nb) and com-positions of tantalite-(Fe) and tantalite-(Mn) only occur inthe OIZ (Fig 10a) associated with lepidolite and polythio-nite (Fig 3c) which may be due to the local depletion of Liand F in the melt which decreases the solubility of Ta andcauses Ta precipitation (Linnen 1998 Linnen amp Cuney

Fig 11 a Backscattered-electron image of a gahnite crystal with adarker zone partially surrounding a lighter zone from the OIZ of theNamivo granitic pegmatite b c Plot of gahnite compositions in theSn-Zn-Ti diagram (atomic proportions) showing a chemical distinc-tion between the lighter and darker zones OIZ as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 981

eschweizerbart_xxx

2005) At the Tanco pegmatite Ta oxides are also asso-ciated with lepidolite enriched in Li and F from the wallzone (Van Lichtervelde et al 2008)

93 Origin and evolution of the zoned graniticlepidolite-subtype pegmatite at Namivo

In general granitic pegmatites particularly those belong-ing to the rare-element class are accepted as having beenformed by the fractional crystallization of a granite melt(eg Cerny 1991a b 1992 Neiva et al 2008 2012 Roda-Robles et al 2012) But it also has been proposed thatpegmatites may be formed by partial melting of appropri-ate rock compositions (eg Nabelek et al 1992 Nabelekamp Russ-Nabelek 1992 Shearer et al 1992 Roda Robleset al 1999) The lepidolite-subtype pegmatites belong tothe LCT (lithium-cesium-tantalum) family (Cerny amp Ercit2005) They are derived by fractional crystallization of agranite magma (eg Cerny et al 2005 Neiva amp Ramos2010 Cerny et al 2012b) Experimental work by Londonet al (1989) and London (1990) using Macusani glass as astarting material equivalent to the bulk composition ofhighly fractionated rare-alkali-rich pegmatites underhighly evolved and hydrous but H2O undersaturatedmelt obtained the latest primary assemblage consisting

of an Li-rich mica thorn albite thorn quartz deposited directlyfrom the primary melt phase Other authors egZasedatelev (1974 1977) and Stewart (1978) argue thatlepidolite-bearing pegmatites are derived from direct ana-texis and Gordiyenko et al (1996) consider that they arederived from an undefined medium and the rare-elementmineralization is superimposed on preexisting barrenpegmatites

Lepidolite-subtype pegmatites may migrate a long wayfrom their parent granites because their volatile-rich highlyfluid pegmatite melts are stable at relatively low tempera-tures (eg Cerny et al 2005 Antunes et al 2013)Therefore the Namivo pegmatite is probably derived byfractional crystallization of an S-type granite magmawhich resulted from partial melting of metamorphosed juve-nile sediments containing micas that carry most of the traceelements that define the signature of the LCT pegmatites(eg Dahl et al 1993)

The two main models for the internal evolution of peg-matites that dominated for more than a century are a) thefractional crystallization of a flux-bearing granitic melt fromthe margins to the center of the pegmatite (Cameron et al1949) b) the interactions of an aqueous fluid with graniticmelt (Jahns amp Burnham 1969 Jahns 1982) The recentmodel of constitutional zone refining combines aspects ofboth models and invokes the formation of a flux-enriched

Table 4 Electron microprobe analyses in wt of zoned gahnite from the outer intermediate zone (OIZ) of the Namivo granitic pegmatiteMozambique

Darker Zone Lighter Zone

Mean s Range Mean s Range

SnO2 036 050 0ndash097 658 281 151ndash998TiO2 008 008 0ndash021 065 034 008ndash105Nb2O5 001 002 0ndash006 018 007 007ndash029Ta2O5 001 004 0ndash010 015 013 0ndash033ZnO 3998 123 3810ndash4109 3339 318 3004ndash3848FeO 367 048 331ndash442 433 065 306ndash498MnO 032 004 028ndash040 039 006 032ndash048MgO 003 004 0ndash010 ndash ndash ndashAl2O3 5507 050 5436ndash5572 5337 070 5257ndash5443SiO2 003 003 0ndash007 008 010 0ndash025Total 9956 9912n 8 8Sn 0035 0048 0ndash0095 0648 0278 0149ndash0983Ti 0015 0015 0ndash0038 0120 0064 0015ndash0195Nb ndash 0003 0ndash0006 0021 0009 0009ndash0037Ta ndash 0002 0ndash0006 0009 0009 0ndash0021Zn 7226 0182 6890ndash7382 6086 0568 5482ndash6965Fe2thornt 0752 0103 0675ndash0913 0894 0135 0628ndash1029Mn 0066 0008 0057ndash0083 0082 0013 0066ndash0101Mg 0010 0015 0ndash0037 ndash ndash ndashAl 15887 0052 15805ndash15954 15526 0170 15375ndash15853Si 0007 0008 0ndash0018 0019 0025 0ndash0062P

23998 23405Fe3thorn 0064 0230Fe2thorn 0686 0658SnZn 0005 0007 0ndash0014 0106 0052 0021ndash0179ZnFe2thornt 961 143 768ndash1093 681 190 536ndash1109

n number of analysis Cation formula based on 32 atoms of oxygen Fe2thornt total Fe2thorn estimated

982 A M R Neiva

eschweizerbart_xxx

boundary layer of silicate liquid in advance of a crystal-lization front (London 2008 London amp Morgan 2012)

Lepidolite-subtype pegmatites are generally scarce(Cerny et al 2005) particularly the zoned ones In thesymmetrically zoned lepidolite-subtype pegmatites ofRozna and Dobra Voda Czech Republic micas (Cernyet al 1995) tourmaline (Selway et al 1999) and colum-bite-group minerals (Novak amp Cerny 1998) evolve fromthe outermost zone to the innermost zone following thecrystallization sequence The same was found in tourma-line from the zoned Lastovicky Dolnı Bory and Raddovicelepidolite-subtype pegmatite dikes in the Czeck Republic(Selway et al 1999)

In general beryl (Neiva amp Neiva 2005) feldsparsmicas and columbite-(Mn) (in this paper) from theNamivo lepidolite-subtype pegmatite record the progres-sive chemical evolution of the pegmatite from the wallzone to the core These minerals were produced by crystal-lization from a silicate melt rather than an aqueous fluidphase The slow cooling of melt shown by the magmaticcrystallization temperatures of feldspars cannot explain theincrease in grain-size of minerals from the wall zone to thecore but fluxes will be necessary to promote the change oftexture particularly a flux-rich hydrosilicate liquidaccording to the experimental evidence (London 2009)The constitutional zone refining model will be the best forthis zoned pegmatite and probably for all lepidolite-sub-type pegmatites because this model also produces a higherfinal concentration of incompatible components in a smal-ler volume of rock than fractional crystallization does(Morgan amp London 1999)

The core margin at the Rozna pegmatite contains K-feld-spar and quartz and the core consists mainly of quartz but it issurrounded and penetrated by a quartz-bearing albitethorn lepi-dolite complex which contains several minerals At theDobra Voda pegmatite the center of the dike is occupiedby the lepidolite unit containing albite and other minerals(Cerny et al 1995) At the Namivo pegmatite the coremargin consists of quartz and beryl and the core containsmainly quartz and spodumene but also albite lepidolite andother minerals The last-unit assemblages of primary miner-als in most of the highly fractionated LCT pegmatites are richin albite and commonly contain lepidolite or spodumene andmost of the other rare phases These units represent the lastmost fractionated liquid that can be derived by fractionalcrystallization of a crustal melt (London 2008)

The Namivo granitic pegmatite shows a significant dis-tinction from the other zoned lepidolite-subtype pegmatitesand LCT pegmatites except the Tanco petalite-subtypepegmatite in Canada because the lepidolite richest in SiLi and F FeMg-containing polylithionite and associatedcolumbite-(Mn) with the highest Ta(Ta thorn Nb) ratio tanta-lite-(Fe) and tantalite-(Mn) only occur in the outer inter-mediate zone These minerals usually form late in theconsolidation of pegmatites The lepidolite and polylithio-nite are probably derived from the disequilibrium crystal-lization of an undercooled melt Tantalite may reflect a localdecrease in Li and F that caused Ta precipitation

This paper contributes to a better understanding of theorigin and evolution of the rare zoned lepidolite-subtypepegmatites and shows that although the pegmatite evolvedfrom the wall zone to the core it presents an unusualassociation of lepidolite polylithionite and tantalite in theouter intermediate zone

Acknowledgments Thanks are due to JM Cotelo Neivaand MB Dias for the samples and information providedand to MR Machado Leite and MF Guimaraes for theuse of the electron microprobe facilities at the LaboratorioNacional de Energia e Geologia (LNEG) PortugalFinancial support was provided by the PortugueseGovernment for the project Pest-OECTEUI00732011of the Geosciences Centre through the PortugueseFoundation for Science and Technology I would like tothank D London WB Simmons and the associated editorE Widom for their constructive reviews of this manuscriptand M Prieto for his editorial work

References

Alfonso P Melgarejo JC Yusta I Velasco F (2003)

Geochemistry of feldspars and muscovite in granitic pegmatite

from the Cap de Creus field Catalonia Spain Can Mineral 41

103ndash116

Antunes IMHR Neiva AMR Ramos JMF Silva PB

Silva MMVG Corfu F (2013) Petrogenetic links between

lepidolite-subtype aplite-pegmatite aplite veins and associated

granites at Segura (central Portugal) Chemie der Erde in press

httpdxdoiorg101016jchemer20121203

Batchelor RA amp Kinnaird JA (1984) Gahnite compositions

compared Mineral Mag 48 425ndash430

Beurlen H Da Silva MRR Thomas R Soares DR Olivier P

(2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-

element granitic pegmatite fractionation in the Borborema pro-

vince Northeastern Brazil Miner Deposita 43 207ndash228

Cameron EN Jahns RH McNair AH Page LR (1949)

Internal structure of granitic pegmatites Econ Geol

Monograph 2 115 p

Cerny P (1991a) Fertile granites of Precambrian rare-element

pegmatite fields is geochemistry controlled by tectonic setting

or source lithologies Precambrian Res 51 429ndash468

mdash (1991b) Rare-element granite pegmatites I Anatomy and inter-

nal evolution of pegmatite deposits Geoscience Canada 18

49ndash67

mdash (1992) Geochemical and petrogenetic features of mineralization

in rare-element granitic pegmatites in the light of current

research Applied Geochemistry 7 393ndash416

mdash (1994) Evolution of feldspars in granitic pegmatites in

lsquolsquoFeldspars and their Reactionsrsquorsquo I Parsons ed NATO

Advanced Study Institute Series C421 501ndash539

mdash (2005) The Tanco rare-element pegmatite deposit Manitoba

regional context internal anatomy and global comparisons in

lsquolsquoRare-element Geochemistry and Mineral Depositsrsquorsquo RL

Linnen amp IM Samson eds Geochemical Association of

Canada Short Course Notes St Catherines 17 127ndash158

Silicate and oxide minerals from a zoned granitic pegmatite 983

eschweizerbart_xxx

Cerny P amp Ercit TS (2005) The classification of granitic pegma-

tites revisited Can Mineral 43 2005ndash2026

Cerny P Meintzer RE Andersen AJ (1985) Extreme fractiona-

tion in rare-element granitic pegmatites selected examples of

data and mechanisms Can Mineral 23 381ndash421

Cerny P Goad BE Hawthorne FC Chapmann R (1986)

Fractionation trends of the Nb- and Ta-bearing oxide minerals

in the Greer Lake pegmatite granite and its pegmatite aureole

southeastern Manitoba Am Mineral 71 501ndash517

Cerny P Stanek J Novak M Baadsgaard H Rieder M

Ottolini L Kavalova M Chapman R (1995) Geochemical

and structural evolution of micas in the Rozna amp Dobra Voda

pegmatites Czech Republic Mineral Petrol 55 177ndash201

Cerny P Ercit TS Vanstone PJ (1998) Mineralogy and petrol-

ogy of the Tanco rare-element pegmatite deposit southeastern

Manitoba International Mineralogical Association 17th General

Meeting Toronto Field Guidebook B6

Cerny P Chapman R Ferreira K Smeds SA (2004)

Geochemistry of oxide minerals of Nb Ta Sn and Sb in

the Varutrask granitic pegmatite Sweden The case of an

lsquolsquoanomalousrsquorsquo columbitendashtantalite trend Am Mineral 89

505ndash518

Cerny P Masau M Goad BE Ferreira K (2005) The Greer

Lake leucogranite Manitoba and the origin of lepidolite-sub-

type granitic pegmatites Lithos 80 305ndash321

Cerny P Teertstra DK Chapman R Selway JB Hawthorne

FC Ferreira K Chackowsky LE Wang X-J Meintzer

RE (2012a) Extreme fractionation and deformation of the

leucogranite-pegmatite suite at Red Cross Lake Manitoba

Canada IV Mineralogy Can Mineral 50 1839ndash1875

Cerny P Halden NM Ferreira K Meintzer RE Brisbin WC

Chackowsky LE (2012b) Extreme fractionation and deforma-

tion of the leucogranite-pegmatite suite at Red Cross Lake

Manitoba Canada II Petrology of the leucogranites and peg-

matites Can Mineral 50 1807ndash1822

Dahl PS When DC Feldmann SG (1993) The systematics of

trace-element partitioning between coexisting muscovite and

biotite in metamorphic rocks from the Black Hills South

Dakota USA Geochim Cosmochim Acta 57 2487ndash2505

Dias MB amp Wilson WE (2000) The Alto Ligonha Pegmatites

Mozambique Mineral Record 31 459ndash497

Fleet ME (2003) Rock-Forming Minerals vol 3A Sheet silicates

micas The Geological Society London second edition chap 6

Lithium micas 651ndash690

Foord EE Cerny P Jackson LL Sherman DM Eby RK

(1995) Mineralogical and geochemical evolutions of micas

from miarolitic pegmatites of the anorogenic pikes-Peak

Batholith Colorado Mineral Petrol 55 1ndash26

Foster MD (1960) Interpretation of the composition of lithium

micas US Geol Surv Prof Paper 354-E 115ndash147

Fuhrman ML amp Lindsley DK (1988) Ternary-feldspar modeling

and thermometry Am Mineral 73 201ndash215

Gomes CL Castro P Alves C (1995) Caracterizacao das espi-

nelas zincıferas e do par ganite-nigerite no campo aplito-

pegmatıtico da Serra de Arga-Minho N de Portugal IV

Congresso Nacional de Geologia Resumos Alargados

Universidade do Porto Mem 4 629ndash633

Gordiyenko VV Ilyina AN Timochina LA Badamina EB

Stanek J (1996) Geochemical model of evolution of a pegma-

tite-forming ore-magmatic system of western Moravia Proc

Russ Mineral Soc 125 38ndash48 (in Russian)

Icenhower JP amp London D (1995) An experimental study for

element partitioning between biotite muscovite and coexisting

peraluminous granitic melt at 200 MPa (H2O) Am Mineral 80

1229ndash1251

Jahns RH (1982) Internal evolution of pegmatite bodies in lsquolsquoGranitic

Pegmatites in science and industryrsquorsquo P Cerny ed Mineralogical

Association of Canada Short Course Handbook 8 293ndash327

Jahns RH amp Burnham CW (1969) Experimental studies of

pegmatite genesis I A model for the derivation and crystal-

lization of granitic pegmatites Econ Geol 64 843ndash864

Jolliff BL Papike JJ Shearer CK (1987) Fractionation trends

in mica and tourmaline as indicators of pegmatite internal evo-

lution Bob Ingersoll pegmatite Black Hills South Dakota

USA GeochimCosmochim Acta 51 519ndash534

Kile DE amp Foord EE (1998) Micas from the Pikes Peak bath-

olith and its cogenetic granitic pegmatites Colorado optical

properties composition and correlation with pegmatite evolu-

tion Can Mineral 36 463ndash482

Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic

melts with Li and Li thorn F constraints for mineralization in rare

metal granites and pegmatites Econ Geol 93 1013ndash1025

Linnen RL amp Cuney M (2005) Granite-related rare-element

deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf

mineralization in lsquolsquoRare-element geochemistry and mineral

depositsrsquorsquo RL Linnen amp IM Samson eds Geochemical

Association of Canada Short Course Notes 17 45ndash68

London D (1990) Internal differentiation of rare-element pegmatites

a synthesis of recent research in lsquolsquoOre Bearing Granite Systems

Petrogenesis and Mineralizing Processesrsquorsquo HJ Stein amp JL

Hannah eds Geol Soc America Special Paper 246 35ndash50

mdash (2008) Pegmatites The Canadian Mineralogist Special

Publication 10 347 p

mdash (2009) The origin of primary textures in granitic pegmatites

Can Mineral 47 697ndash724

London D amp Morgan GB VI (2012) The pegmatite puzzle

Elements 8 263ndash268

London D Morgan GB VI Hervig RL (1989) Vapor-under-

saturated experiments in the system macusanite-H2O at 200

MPa and the internal differentiation of granitic pegmatites

Contrib Mineral Petrol 102 1ndash17

London D Morgan GB VI Paul KA Guttery BM (2012)

Internal evolution of miarolitic granitic pegmatites at the Little

Three mine Ramona California USA Can Mineral 50

1025ndash1054

Martins T Lima A Simmons WB Folster AU Noronha F

(2011) Geochemical fractionation of Nb-Ta oxides in Li-bear-

ing pegmatites from the Barroso-Alvao pegmatite field northern

Portugal Can Mineral 49 777ndash791

Monier G Charoy B Cuney M Ohnenstetter D Robert JL

(1987) Evolution spatiale et temporelle de la composition des

micas du granite albitique a topaze-lepidolite de Beauvoir

Geologie De La France 2ndash3 179ndash188

Monier G amp Robert JL (1986) Evolution of the miscibility gap

between muscovite and biotite solid solutions with increasing

lithium content an experimental study in the systems

K2OndashLi2OndashMgOndashAl2O3ndashSiO2ndashH2OndashHF at 600 C 2 kbar

PH2O comparison with natural lithium micas Mineral Mag

50 641ndash651

Morgan GBVI amp London D (1999) Crystallization of the little

three layered pegmatite-aplite dike Ramona District California

Contrib Mineral Petrol 136 310ndash330

984 A M R Neiva

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985

Page 6: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

analytical totals are not good The analyzed lsquolsquomixedformsrsquorsquo are distinguished in backscattered-electron (BSE)images and chemically (Fig 3b d d1 e f f1 h i andFig 4) The chemical distinction between lsquolsquomixed formrsquorsquoand lepidolite from the OIZ (Fig 4) is clear in Fig 3bwhere lepidolite is darker than lsquolsquomixed formrsquorsquo because theformer has less Fe and Mn than the latter (Table 1) and inFig 3f f1 and 3h for micas from the IIZa and IIZbrespectively where lepidolite is lighter than lsquolsquomixedformrsquorsquo because the former has more Fe2thorn and Mn oronly more Mn than the latter (Table 1) The lsquolsquomixedformsrsquorsquo analyzed are distinguished in the BSE imagesfrom the lepidolite that falls in its fields in the Fig 4The fields of lepidolite composition in Foster (1960) arelarger than the field for lepidolite from the trilithionite tothe polylithionite (Rieder et al 1999) According to Fleet(2003) only a few lepidolite compositions plot on thetrilithionite-polylithionite join In general lepidolite hashigher Si Licalc Rb Cs F contents and lower AlVI andOH contents than lsquolsquomixed formrsquorsquo (Table 1 Fig4)lsquolsquoMixed formrsquorsquo is also clearly distinguished fromlithian muscovite in OIZ IIZa IIZb and Cc in BSEimages (Fig 3d d1 e f i) and chemically (Table 1 Fig4) as it generally has higher Si Licalc Rb Cs F contentsand lower AlVI and OH contents than lithian muscovite

Two distinct trends are defined in Fig 4 One trendconsists of Al-poorer micas which are zinnwaldite

lepidolite and FeMg-containing polylithionite from theOIZ A hiatus occurs between zinnwaldite and lepidolitebut the zinnwaldite series is continuous with the field oflepidolite at the high Li content (Fleet 2003) The othertrend consists of Al-richer micas (muscovite lithian mus-covite and lsquolsquomixed formrsquorsquo from the OIZ IIZa IIZb and Ccand also lepidolite from most of those zones except fromthe OIZ) There is a gap between lithian muscovite and thelsquolsquomixed formrsquorsquo which may be explained by a hiatus inmica stability (eg Jolliff et al 1987) but a solid solutionbetween dioctahedral and trioctahedral micas has beenindicated experimentally (Monier amp Robert 1986) whileother authors have shown that the octahedral site occu-pancy ranges continuously from muscovite to lepidolite(eg Roda Robles et al 2005 Van Lichterveld et al2008 Vieira et al 2011) Most lithian muscovites andlsquolsquomixed formrsquorsquo from the OIZ are richer in Fe2thornthornMg thornMn than those from the other zones due to their higherFe2thorn and Mg contents (Fig 4 Table 1)

In the Al-poorer micas from the OIZ ranging from zinn-waldite to lepidolite and FeMg-containing polylithionite(Fig 4) (AlIV thorn AlVI) Fe2thorn Mg Ti Mn and Zn contentsdecrease and Si and Licalccontents increase (Table 1) In theAl-richer micas ranging from muscovite to lithian muscoviteand lsquolsquomixed formrsquorsquo from the OIZ IIZa IIZb and Cc and alsoto lepidolite from most of those zones except from the OIZ(AlIV thorn AlVI) AlVI and OH contents and KRb ratio

Fig 4 Plots of micas from the Namivo granitic pegmatite Mozambique in the LindashR2thornndashR3thornthorn Ti diagram according to the classification ofFoster (1960) slightly modified (Rieder et al 1999) with R3thorn frac14 AlVI R2thorn frac14 (Fe2thornt thorn Mn2thornthorn Mg) showing the variety of micacompositions Two trends are defined one for Al-poorer micas (zinnwaldite lepidolite and FeMg-containing polylithionite) from theOIZ another for Al-richer micas (muscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepidolite) from all zones except lepidolite from the OIZOIZ IIZa IIZb and Cc as in Fig 2

972 A M R Neiva

eschweizerbart_xxx

generally decrease and Si Licalc Rb Cs and F contentsgenerally increase (Table 1)

42 Main substitution mechanisms

The 2Si thorn Li 3Altotal mechanism operates in the diocta-hedral micas (muscovite and lithian muscovite) (Fig 5a b)whereas the 3LiVI AlVIthorn 2ampVI (amp represents a vacancy)operates in the trioctahedral micas (lsquolsquomixed formrsquorsquo lepido-lite zinnwaldite and FeMg-containing polylithionite) (Fig5c d) which agrees with findings for micas from the Tancopegmatite (Van Lichtervelde et al 2008)

43 Textures and chemical compositions of zoned micacrystals

Backscattered-electron images combined with quantita-tive spot electron-microprobe analyses made it possibleto distinguish different micas in the Namivo graniticpegmatite Similar textural aspects and geochemicalobservations were found between some Al-richer micasfrom the OIZ IIZa IIZb and Cc Some selected zonedcrystals are documented (Table 1 Fig 3 and 6) In theOIZ lepidolite penetrates zinnwaldite along cleavagesand partially surrounds it and the contacts are sharp(Fig 3a) A chemical gap occurs between zinnwalditeand lepidolite compositions (Fig 6a b) Lepidolite withhigher Si Licalc F contents similar KRb value andlower (AlIV thorn AlVI) Ti Fe2thorn Mg (Fe2thornthorn Mn thorn Mg)Zn and OH contents (Table 1) replaces zinnwaldite Athin lepidolite rim partially surrounds lsquolsquomixed formrsquorsquoand the contact is sharp (Fig 3b) The lepidolite rimhas higher Si Mg Licalc Rb F contents and lowerAlVI Ti Fe2thorn Mn Na and OH contents and KRb ratiothan the lsquolsquomixed formrsquorsquo core (Table 1) The lepidoliterim is an Al-poorer mica whereas the lsquolsquomixed formrsquorsquocore is an Al-richer mica (Fig 4) The lepidolite rimcorresponds to an overgrowth The FeMg-containingpolylithionite partially surrounds and penetrates lepido-lite along cleavages and shows well defined contacts(Fig 3c) Both contain rutile cassiterite and columbi-tendashtantalite inclusions A continuous chemical evolutiontakes place from lepidolite to FeMg-containing poly-lithionite (Figs 4 6c) The latter has higher Si LicalcRb contents and lower AlVI Ti Fe2thorn Mn Mg Zn Nacontents and KRb ratio (Table 1) and replaces lepido-lite A lithian muscovite rim with rare FeMg-containingpolylithionite surrounds the lsquolsquomixed formrsquorsquo core and thispolylithionite penetrated lithian muscovite (Fig 3d)The contact between the lithian muscovite rim andlsquolsquomixed formrsquorsquo core is irregular suggesting disequili-brium or at a cleavage (Fig 3d d1) Two linear trendsone for the lithian muscovite rim and another for thelsquolsquomixed formrsquorsquo core are defined in the (Fe2thornthornMnthornMg)vs (AlIV thornAlVI) diagram (Fig 6d) The FeMg-contain-ing polylithionite rim does not belong to any of thesetrends and plots outside this diagram because it is an Al-poorer mica whereas the others are Al-richer micas

(Fig 4) The lithian muscovite rim has higher AlVI(AlIV thorn AlVI) OH contents and KRb ratio and lowerMg (Fe2thornthorn Mn thorn Mg) Licalc Rb F contents than thelsquolsquomixed formrsquorsquo core (Table 1 Fig 6d) The crystal isreversely zoned The FeMg-containing polylithioniterim has higher Si Licalc F contents and lower AlVI(AlIV thorn AlVI) Fe2thorn Mn (Fe2thornthorn Mn thorn Mg) Na andOH contents than the lsquolsquomixed formrsquorsquo core and lithianmuscovite rim (Table 1) and replaces lithian muscovite

In the IIZa some zoned crystals have a lithian muscovitecore and a lsquolsquomixed formrsquorsquo rim and the contacts are gradual(Fig 3e) A small discontinuity occurs in the trends fromthe lithian muscovite core to lsquolsquomixed formrsquorsquo rim in the(Fe2thornthorn Mn thorn Mg) vs (AlIV thorn AlVI) and Rb2O vs KRb(Fig 6e f) The lsquolsquomixed formrsquorsquo rim has higher Si Fe2thornMn (Fe2thornthornMn thornMg) Licalc K Rb Cs F contents andlower AlVI (AlIVthornAlVI) Na OH contents and KRb ratiothan the lithian muscovite core (Table 1 Fig 6e f) indi-cating progressive zoning Similar textural relationshipsand chemical evolutions were found in other zoned crystalsfrom the OIZ IIZb and Cc In another crystal from theIIZa lithian muscovite partially surrounds lsquolsquomixed formrsquorsquointergrown with lepidolite Lithian muscovite also partiallysurrounds muscovite (Fig 3f) The contacts betweenlsquolsquomixed formrsquorsquo and lepidolite and also between muscoviteand lithian muscovite are gradual (Fig 3f f1) whereasthey are well defined for muscovite withlsquolsquomixed formrsquorsquoand lepidolite (Fig 3f f1) The crystal has a lsquolsquomixed formrsquorsquoand lepidolite core and a partial rim of muscovite andlithian muscovite The lsquolsquomixed formrsquorsquo core evolved tolepidolite core as the Si Fe2thorn Mn (Fe2thornthorn Mn thorn Mg)Licalc K Rb Cs and F contents increase and the (AlIV thornAlVI) and KRb ratio decrease (Table 1 Fig 6g h) The SiFe2thorn Mn (Fe2thornthorn Mn thorn Mg) Licalc Rb and F contentsincrease and the (AlIV thorn AlVI) and KRb ratio decreasefrom the muscovite rim to the lithian muscovite rim (Table1 Fig 6g h) suggesting that the former evolved to thelatter The muscovite rim has higher AlVI (AlIV thorn AlVI)Na OH contents and KRb ratio and lower Si Fe2thorn Mn(Fe2thornthornMn thornMg) Zn Licalc Rb and F contents than thelsquolsquomixed formrsquorsquo core and lepidolite core (Table 1 Fig 6gh) Muscovite was probably reversely formed and evolvedafterwards to lithian muscovite

In the IIZb some crystals have a lithian muscovite coreand a thinner lepidolite rim (Fig 3g) and others show asmall muscovite core and a larger rim of lsquolsquomixed formrsquorsquointergrown with lepidolite (Fig 3h) The contacts betweenthe cores and rims are well defined There are increases inthe Si Mn (Fe2thornthorn Mn thorn Mg) Licalc Rb and F contentsand decreases in the AlVI (AlIVthornAlVI) and KRb ratio fromthe lsquolsquomixed formrsquorsquo rim to the intergrown lepidolite rim(Table 1 Figs 3h 6l) suggesting that the former evolvedto the latter as also found in IIZa and Cc In both crystalsthe rim compositions have higher Si (Fe2thornthorn Mn thorn Mg)Licalc Rb Cs F contents and lower AlVI (AlIVthorn AlVI) Naand OH contents and KRb ratio than the core (Table 1 Figs3g 6i j k 3h 6l) A compositional gap occurs between coreand rim in the diagrams for both crystals (Fig 6i j k l)suggesting that both rims correspond to overgrowths and no

Silicate and oxide minerals from a zoned granitic pegmatite 973

eschweizerbart_xxx

diffuse reequilibration took place in any crystal as thecontacts between core and rim are sharp

In the Cc lithian muscovite is surrounded and pene-trated by lsquolsquomixed formrsquorsquo showing well defined contacts(Fig 3i) The lsquolsquomixed formrsquorsquo has higher Si Fe2thorn Mn(Fe2thornthorn Mn thorn Mg) Licalc Rb Cs F contents and lowerAlVI (AlIV thorn AlVI) Na OH contents and KRb ratio thanthe lithian muscovite (Table 1 Fig 6m n) and a composi-tional gap occurs between both micas suggesting thatlsquolsquomixed formrsquorsquo replaced lithian muscovite In rare crystalsa small lepidolite core is surrounded by a large muscoviterim containing K-feldspar inclusions The contact betweenthe core and rim is sharp (Fig 3j) A thin partial rim oflithian muscovite surrounds muscovite and the contact isgradual The muscovite rim has higher AlVI (AlIVthornAlVI)Na K OH contents and a greater KRb value and lower SiFe2thorn Mn Licalc Rb Cs and F contents than the lepidolitecore (Table 1 Fig 6o p) and a compositional gap occursbetween them (Fig 6o p) indicating that either muscoviteforms an overgrowth or it is reversely formed From themuscovite rim to the lithian muscovite rim the Si Licalc

Rb F contents increase whereas the AlVI (AlIV thorn AlVI)and OH contents and KRb ratio decrease (Table 1 Fig 6op) suggesting that muscovite evolved to lithian muscoviteas also found in IIZa and IIZb

44 Evolution of mica compositions within each zoneand from the outer intermediate zone to the core of theNamivo granitic pegmatite

The KRb ratio is taken as the best fractionation index inmicas (eg Cerny et al 1985 Foord et al 1995 Wise1995 Pesquera et al 1999 Roda Robles et al 2006 2007)It is hard to establish trends in the evolution of mica com-position from muscovite and lithian muscovite to lsquolsquomixedformrsquorsquo and lepidolite within each zone because the KRbratio shows some partial overlapping particularly betweenthe lithian muscovite and lsquolsquomixed formrsquorsquo and also betweenthe latter and lepidolite However an evolution from mus-covites to lepidolite (Al-richer mica Fig 4) is clearer (Fig7) In general in IIZa IIZb and Cc the Si Licalc Rb Cs and

Fig 5 The main substitutions in micas from the Namivo granitic pegmatite Mozambique a b SiIVthorn LiVI versus AlIVthornAlVI showing the 2SithornLi 3Altotal substitution mechanism operating in dioctahedral micas (Mu muscovite and Lith mu lithian muscovite) c d AlVI thornamp VI

versus LiVI (where amp represents a vacancy) and showing the 3LiVI AlVI thorn 2 amp VI substitution mechanism operating in trioctahedral micas(Mix f ndashlsquolsquomixed formrsquorsquo Lep lepidolite Zin zinnwaldite and Pol-FeMg-containing polylithionite) OIZ IIZa IIZb and Cc as in Fig 2

974 A M R Neiva

eschweizerbart_xxx

F contents tend to increase and the (AlIV thorn AlVI) AlVI

contents and KRb ratio tend to decrease from muscoviteto lepidolite (Table 1 Fig 7) This sequence is consistentbut rarely in the Cc lepidolite is rimmed by muscovite (Fig3j) But in the OIZ the evolution stops in lsquolsquomixed formrsquorsquoparticularly shown by the large range of the KRb ratiowhich mainly overlaps that of lepidolite from this zone(Fig 7) because this lepidolite is an Al-poorer mica whereasthe others are Al-richer micas (Fig 4)

In the OIZ the lepidolite has more Si Licalc and F andless (AlIV thorn AlVI) Ti Fe2thorn Mn Mg and Zn than zinn-waldite (Table 1) but it has larger ranges of Rb and KRbratio than zinnwaldite (Fig 7) The FeMg-containingpolylithionite is the richest mica in Si Licalc and thepoorest in (AlIV thorn AlVI) (Table 1) But at this zone scalethe polylithionite has Rb Cs contents and KRb ratiowithin the ranges for lepidolite and close to those of zinn-waldite (Fig 7)

Fig 6 Variation diagrams of micas from selected zoned crystals from the zones of the Namivo granitic pegmatite Mozambique to showtheir relationships lith musc lithian muscovite OIZ IIZa IIZb and Cc an in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 975

eschweizerbart_xxx

From the OIZ to IIZa IIZb and Cc muscovite and lithianmuscovite generally show increases in the Si Licalc F and Rbcontents and decreases in the Fe2thorn and Mg contents and KRb ratio but the Mg content is very low in these micas fromthe IIZa IIZb and Cc (Table 1 Fig 7a) The lsquolsquomixed formrsquorsquoshows increases in the Si Licalc F Rb Cs contents anddecreases in the (AlIV thorn AlVI) and Mg contents and KRbratio but the Mg content is very low in this mica from theIIZb and Cc (Table 1 Fig 7b c) The lepidolite shows anincrease in the Si Licalc F Rb and Cs contents and a decreasein the KRb ratio from the IIZa to the IIZb and Cc (Table 1Fig 7d e) Furthermore the lepidolite from the OIZ has thelowest (AlIV thorn AlVI) AlVI and OH contents the highest SiFe2thorn Licalcand F contents and KRb ratio and the lowest Rband Cs contents compared to lepidolite from the other zones(Table 1 Fig 7d e)

5 Feldspars

Selected chemical analyses of albite and K-feldspar fromfive zones of the Namivo granitic pegmatite are given inTable 2 Strontium is the most abundant trace element inalbite (eg Cerny 1994) Anorthite and Sr contents and SrCa ratio of albite decrease from the WZ to the Cc (Fig 8Table 2) Rubidium is the most abundant trace element inK-feldspar followed by Cs in IIZa IIZb and Cc In gen-eral K Rb and Cs contents of K-feldspar increase and KRb and KCs values decrease from the WZ to the Cc (Table2 Fig 9)

The program SOLVCALC 20 (Wen amp Nekvasil 1994)using the Margules model Fuhrman amp Lindsley (1988) wasapplied for the purpose of thermometry The pairing ofplagioclase cores with the K-feldspars average of eachsample was used to estimate the crystallization temperaturesof primary magmatic feldspars They are 405 C (WZ)406ndash340 C (OIZ) 390ndash335 C (IIZa) 347ndash306 C (IIZb)and 333ndash289 C (Cc) at 3 kbar The metamorphic environ-ment of rare-element-Li granitic pegmatites is one of lowpressure 2ndash4 kbar (Cerny amp Ercit 2005) In general thedifference between the maximum and minimum calculatedtemperatures at 2 3 and 4 kbar for the same feldspar pairfrom the Namivo pegmatite is lower than 40 C The tem-perature decreases from the wall zone (WZ) to the core(Cc) A similar temperature behavior of feldspars wasfound in the pegmatite-aplite dike USA (Morgan ampLondon 1999)

6 Other silicates

Tourmaline of schorl composition was only found inthe OIZ (Table 2) because there was not enough Feand Mg for schorl to precipitate in the other zonesSpodumene only occurs in the Cc and its compositionis nearly pure (Table 2)

7 Columbite-tantalite

Representative chemical analyses of columbitendashtantalitefrom the Namivo granitic pegmatite are given in Table 3and plotted in the columbite quadrilateral (Fig 10a)Most crystals are unzoned but zoned crystals with dar-ker and lighter zones in BSE images are from the Cc Thelighter zone of columbite-(Mn) has higher Ta contentTa(Ta thorn Nb) and Mn(Mn thorn Fe) values and lower Nbcontent than the darker zone (Fig 10a b) The crystals ofthe columbitendashtantalite minerals are low in W Sn and Tiimpurities (Table 3)

The main trend starts from the columbite-(Mn) of theOIZ towards the more Mn-enriched and slightly Ta-enriched columbite-(Mn) from the IIZa and Cc The high-est Ta(Ta thorn Nb) values belong to the lighter zone ofcolumbite-(Mn) with Mn(Mn thorn Fe) frac14 10 from the CcThe richest columbite-(Mn) in Ta(TathornNb) and composi-tions of tantalite-(Fe) and tantalite-(Mn) were only foundin the OIZ (Fig 10a) and are associated with lepidolite andpolylithionite (Fig 3c)

8 Gahnite

Gahnite was rarely found in the OIZ and shows a darkerzone that partially surrounds a lighter zone in a BSE image(Fig 11a) The darker zone has a higher Zn content andlower Sn Ti Nb Ta Mn contents and SnZn value than thelighter zone (Table 4 Fig 11b c) These gahnite composi-tions fall within the igneous field of Batchelor amp Kinnaird(1984) The darker zone is closer in composition to thepure gahnite (Zn8Al16O32) than the lighter zone whichcontains up to 0983 apfu Sn 0195 apfu Ti 1029 apfutotal Fe2thorn 0101 apfu Mn (Table 4) and consequently hasa composition distinct from nigerite In general both thedarker and lighter zones have higher Sn Ti and Fe contentsthan gahnite from the granitic pegmatites of Nigeria(Batchelor amp Kinnaird 1984) Arga northern Portugal(Gomes et al 1995) and Cabanas northern Portugal(Neiva amp Champness 1997) Borborema province north-eastern Brazil (Soares et al 2007) The Zn=Fe2thornt values ofthe darker and lighter zones of gahnite from Namivo arelower than those reported in Neiva amp Champness (1997)and Soares et al (2007)

9 Discussion and conclusions

91 Evolution of micas in the zoned pegmatite

In general individual mica crystals show varying patternsand compositional zoning involving several elementsmainly Si AlVI (AlIV thorn AlVI) Fe2thorn Mn (Fe2thornthorn Mn thornMg) Licalc Rb Cs F and OH and the KRb ratioProgressively zoned crystals from the IIZa show grada-tional contacts between a lithian muscovite core and a

976 A M R Neiva

eschweizerbart_xxx

lsquolsquomixed formrsquorsquo rim (Figs 3e 6e f) and the zoning patternscorrespond to fractionation trends and probably reflect adrop in temperature during the crystallization of the grani-tic pegmatite melt Progressively zoned crystals also occurin OIZ IIZb and Cc Some crystals are reversely zonedwith a) a lsquolsquomixed formrsquorsquo core and a lithian muscovite rimfrom the OIZ (Figs 3d d1 6d) b) a core consisting oflsquolsquomixed formrsquorsquo and lepidolite and a rim of muscovite andlithian muscovite from the IIZa (Figs 3f f1 6g h) c) alepidolite core and a muscovite and lithian muscovite rimfrom the Cc (Figs 3j 6o p) which may be explained bythe hypothesis of oscillations in the compositions of themelt from which they grew alternating between an Li-enriched boundary layer and a bulk melt that is less frac-tionated The muscovite evolved to lithian muscovite inIIZa and Cc (Figs 3f 6g h 3j 6o p) Replacements (Figs3a 6a b 3c 6c 3i 6m n Table 1) occur in OIZ and Ccand overgrowths (Figs 3b g 6i j k 3h 6l Table 1) occurin OIZ and IIZb as found in BSE images

Muscovite evolved to lithian muscovite as observed inOIZ IIZa IIZb and Cc (Figs 3f 6g h 3j 6o p Table 1)Lithian muscovite evolved to lsquolsquomixed formrsquorsquo in OIZ IIZaIIZb and Cc (Figs 3e 6e f Table 1) and lsquolsquomixed formrsquorsquoevolved to lepidolite in IIZa IIZb and Cc (Figs 3f f1 6gh 3h 6l Table 1) All these evolutions are due to fractionalcrystallization

In the OIZ lepidolite has more Si Licalcand F butsimilar KRb to that of zinnwaldite and replaces it (Figs

3a 6a b 7d Table 1) An FeMg-containing polylithionitehas higher Si Licalcand Rb contents and a smaller KRbratio than the lepidolite that it replaces (Figs 3c 6c Table1) and a continuous chemical evolution from lepidolite topolylithionite is shown

The trends for major and trace elements of micas withineach zone are difficult to define due to some partial over-lapping but a progressive evolution from muscovite to lithianmuscovite lsquolsquomixed formrsquorsquo and lepidolite in IIZa IIZb and Ccis mainly shown by an increase in the Si Licalc F Rb and Cscontents and a decrease in the KRb ratio and this is simi-larly shown in the OIZ from muscovite to lsquolsquomixed formrsquorsquo(Table 1 Fig 7) In the OIZ Si and Licalccontents increaseprogressively from zinnwaldite to lepidolite and FeMg-containing polylithionite but a gap occurs between zinnwal-dite and lepidolite (Table 1 Fig 4) whereas a continuousevolution from lepidolite to polylithionite is observed TheKRb ratios of zinnwaldite and polylithionite are within therange of that of lepidolite (Fig 7d e)

Each Al-richer mica (muscovite lithian muscovite andlsquolsquomixed formrsquorsquo) exhibits an evolution from the OIZ to theIIZa and then to the IIZb and Cc particularly shown by anincrease in the Si Licalc F and Rb contents and adecrease in the KRb ratio but also an increase in theCs content in the lsquolsquomixed formrsquorsquo (Table 1 Fig 7) Theseelements and ratio have been used as petrogenetic indi-cators of evolution in micas from pegmatites (eg Cernyet al 2005 Roda Robles et al 2006 2007 Vieira et al

Fig 7 Plot of some variation diagrams of micas from the OIZ IIZa IIZb and Cc of the Namivo granitic pegmatite Mozambique showingthat the Rb2O and Cs2O contents increase and the KRb ratio decreases for micas from the OIZ to the Cc OIZ IIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 977

eschweizerbart_xxx

Tab

le2

R

epre

sen

tati

ve

elec

tro

nm

icro

pro

be

anal

yse

sin

wt

o

ffe

ldsp

ars

sch

orl

and

spo

du

men

efr

om

the

Nam

ivo

gra

nit

icp

egm

atit

eM

oza

mb

iqu

e

Alb

ite

K-f

eld

spar

Sch

orl

Sp

od

um

ene

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

OIZ

Zo

ne

Cc

SiO

26

75

76

78

86

87

06

84

76

84

1S

iO2

65

10

65

55

65

46

64

96

64

72

SiO

23

52

0S

iO2

64

65

TiO

20

02

mdash0

02

mdashmdash

TiO

2mdash

00

1mdash

mdashmdash

TiO

20

35

Al 2

O3

27

20

Al 2

O3

20

25

19

74

19

67

19

88

19

97

Al 2

O3

18

96

18

23

18

31

18

24

18

05

B2O

3

10

28

Fe 2

O3

00

6F

e 2O

3mdash

mdashmdash

mdash0

10

Fe 2

O3

mdash0

02

mdash0

03

mdashA

l 2O

33

17

2M

nO

01

3M

nO

00

6mdash

mdashmdash

mdashM

nO

mdash0

03

00

3mdash

mdashF

eO1

35

2M

gO

01

8M

gO

mdashmdash

mdashmdash

mdashM

gO

00

10

01

00

5mdash

mdashM

nO

03

3N

a 2O

01

9C

aO1

04

08

00

56

03

70

32

CaO

00

10

01

00

60

01

00

2M

gO

22

8L

i 2O

8

05

Na 2

O1

06

11

12

01

12

11

13

41

13

4N

a 2O

06

50

58

04

10

59

03

8C

aO0

23

To

tal

10

04

6K

2O

00

50

17

00

60

14

01

0K

2O

14

72

14

75

15

67

15

01

15

74

Li 2

O

02

2S

rO0

72

05

00

24

01

1mdash

Rb

2O

00

90

20

03

00

59

09

0N

a 2O

22

8S

i1

99

7P

2O

50

01

00

4mdash

mdashmdash

Cs 2

O

00

6

00

60

09

01

80

20

K2O

00

1A

lIV0

00

3T

ota

l1

00

33

10

03

31

00

46

10

03

11

00

24

P2O

5mdash

00

3mdash

mdashmdash

H2O

3

18

P2

00

To

tal

99

60

99

48

10

03

89

96

11

00

01

F0

78

AlV

I0

98

7S

rC

a(w

t)0

81

07

40

50

03

50

Cl

mdashF

e3thorn

00

01

KR

b(w

t)153

68

48

23

16

Sum

1003

8P

09

9S

i1

18

23

11

87

91

19

58

11

93

21

19

21

KC

s(w

t)4

07

20

41

63

73

69

O

F0

33

Li

10

00

P0

00

10

00

6mdash

mdashmdash

To

tal

10

00

5M

n0

00

3T

i0

00

3mdash

00

03

mdashmdash

Si

11

98

61

20

88

12

04

11

20

45

12

03

3M

g0

00

8A

l4

17

64

07

14

03

54

08

34

10

1P

mdash0

00

5mdash

mdashmdash

TS

i5

95

2N

a0

01

2F

e3thorn

mdashmdash

mdashmdash

00

13

Ti

mdash0

00

1mdash

mdashmdash

Al

00

48

P1

02

Mn

00

09

mdashmdash

mdashmdash

Al

41

14

39

62

39

70

39

86

39

55

B3

00

0M

gmdash

mdashmdash

mdashmdash

Fe3thorn

mdash0

00

3mdash

00

04

mdashZ

Al

60

00

Ca

01

95

01

50

01

04

00

69

00

60

Mn

mdash0

00

50

00

5mdash

mdashY

Al

02

74

Sr

00

73

00

51

00

24

00

11

mdashM

g0

00

30

00

30

01

4mdash

mdashT

i0

04

5N

a3

59

93

80

03

78

33

83

23

83

1C

a0

00

20

00

20

01

20

00

20

00

4M

g0

57

5K

00

11

00

38

00

13

00

31

00

22

Na

02

32

02

07

01

46

02

12

01

37

Mn

00

47

K3

45

73

47

03

67

73

55

03

73

3F

e2thorn

19

12

Z1

60

01

59

61

60

01

60

11

60

4R

b0

01

10

02

40

03

50

07

00

10

8L

i0

14

8X

38

94

04

39

33

94

39

1C

s0

00

20

00

50

00

70

01

40

01

6P

Y3

00

0m

ole

s

XC

a0

04

2A

n5

13

82

71

71

5Z

16

10

16

06

16

01

16

03

15

99

Na

07

47

Ab

94

69

53

97

09

75

97

9X

37

13

72

39

03

85

40

0K

00

02

Or

03

09

03

08

06

mo

les

amp

02

09

An

01

01

03

01

01

Ab

63

56

38

56

35

OH

35

83

Or

93

69

43

95

99

43

96

4F

04

17

Cl

mdash

WZ

ndashw

allzo

ne

OIZ

ndasho

ute

rin

term

edia

tezo

ne

IIZ

aan

dII

Zb

ndashin

ner

inte

rmed

iate

zon

esC

cndash

core

asin

Fig

2B

aOis

bel

ow

the

det

ecti

on

lim

itin

bo

thfe

ldsp

ars

Cs 2

Ofrac14

00

3w

tin

the

K-

feld

spar

fro

mth

eW

Z

mdashN

ot

det

ecte

d

Nu

mb

ero

fio

ns

on

the

bas

iso

f3

2o

xy

gen

sfo

ral

bit

ean

dK

-fel

dsp

ar

31

anio

ns

(O

OH

F

)fo

rsc

ho

rlan

d6

ox

yg

ens

for

spo

du

men

e

-A

mo

un

tin

ferr

edfr

om

con

sid

erat

ion

so

fst

oic

hio

met

ry

978 A M R Neiva

eschweizerbart_xxx

2011) Lepidolite from the OIZ is an Al-poorer mica (Fig4) and has the highest Si Licalcand F contents (Table 1)indicating that an evolution cannot be shown from thislepidolite to lepidolites from the other zones which areAl-richer micas (Fig 4) However there is a regulardecrease in the KRb ratio and a progressive increase inthe Rb and Cs contents from lepidolite of the OIZ tolepidolite of IIZa IIZb and Cc (Fig 7) which indicatesthat the KRb ratio and Rb and Cs contents must not beconsidered alone to show fractional crystallization in

lepidolites particularly if some are Al-richer micas andothers Al-poorer micas The high Licalcand F contents oflepidolite from the OIZ did not decrease its KRb ratioSuch an effect is considered to have taken place in lepi-dolite (an Al-richer mica) from the wall zone of the Tancopegmatite Manitoba Canada (Van Lichtervelde et al2008) An evolution from the lepidolite of the IIZa to thatof the Cc is generally shown by the increasing Si LicalcF Rb Cs contents and a decrease in the KRb ratio (Table1 Fig 7)

At the scale of crystals the pegmatite zones and alsothose from the OIZ to the Cc of the Namivo granitic pegma-tite Al-richer micas show fractionation because theyformed from the fractionation of an Li-rich pegmatite melt

The Al-poorer micas zinnwaldite lepidolite and FeMg-containing polylithionite only occur in the OIZ (Fig 4)Polylithionite is the mica richest in Si and Licalc and lepi-dolite from this zone is the richest in Si Licalcand F (Fig 4Table 1) The high Li contents of these micas reflect aconsiderably higher D(Li) at low temperature (Icenhoweramp London 1995) These Li-rich micas may have crystal-lized from an undercooled melt This hypothesis does notimply high Rb and Cs contents and low KRb ratios Thisagrees with the fact that these micas from the OIZ havesimilar Rb and Cs contents and KRb ratios to those of Al-richer micas (muscovite lithian muscovite and lsquolsquomixedformrsquorsquo) from the same pegmatite zone (Fig 7) Howeverthe lepidolite from the wall zone of the Tanco pegmatiteCanada of a similar origin has a low KRb ratio which isattributed to the complexly interrelated structural compo-nents of this lepidolite (Van Lichtervelde et al 2008) TheLi-rich micas from the OIZ may also represent disequili-brium These two hypotheses are considered the best forthese micas of primary magmatic origin

Another hypothesis was also considered They may havecrystallized in boundary layers which concentrate Li andF But this mechanism was suggested for the most fractio-nated tourmaline enriched in Li and F from the core of the

Fig 8 Plot of albite compositions from all zones of the Namivo granitic pegmatite Mozambique showing that the anorthite content of albitedecreases from the WZ to the Cc WZ OIZ IIZa IIZb and Cc as in Fig 2

Fig 9 The Rb vs Cs diagram of K-feldspar from all zones of theNamivo granitic pegmatite Mozambique showing that the Rb andCs contents of K-feldspar increase from the WZ to the Cc WZ OIZIIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 979

eschweizerbart_xxx

Little Three pegmatite dike USA (Morgan amp London1999) and the micas enriched in Li and F from theNamivo pegmatite belonging to the OIZ Furthermore ina boundary layer melt that became enriched in Li and F theKRb ratio of micas decreases strongly (Van Lichterveldeet al 2008) which was not found in these micas from theOIZ (Fig 7d) Nor can they have resulted from the crystal-lization of a late melt that would have reacted with the OIZbecause these micas are among those containing the high-est KRb values (Fig 7d)

92 The importance of feldspars micas andcolumbitendashtantalite compositions to the Namivogranitic pegmatite evolution

The trace elements Rb and Cs and the KRb and KCs ratioshave been used to show the evolution of K-feldspar inpegmatites (eg Cerny 1994 Cerny et al 2005 RodaRobles et al 2005) The Rb and Cs contents increase andthe KRb and KCs ratios of K-feldspar decrease from theWZ to the Cc (Fig 9 Table 2) reflecting the growth of K-feldspar from an increasingly fractionated melt withouthaving grown from or having been chemically modifiedby an aqueous fluid as in the Swamp pegmatite section atthe Little Three Mine USA (London et al 2012) Thecrystallization of K-feldspar from an exsolved aqueousfluid from melt will reverse the magmatic fractionation ofRb Cs KRb and KCs because Rb and especially Cs areso much more compatible in vapor that both Rb and Csremain in the fluid phase (London et al 2012) The feldsparsolvus pairs in the Namivo pegmatite record magmaticcrystallization temperatures that decrease from WZ to CcAlbite shows a decrease in the Ca Sr contents and SrCaratio from the WZ to the Cc (Fig 8 Table 2) Therefore thefeldspars and also Al-richer micas as already explainedshow fractionation in this zoned pegmatite

In general lepidolite from the Namivo pegmatite hassimilar Rb2O and Cs2O contents and KRb (wt) values tothose of lepidolite from the Rozna and Dobra Voda lepi-dolite-subtype pegmatites in the Czech Republic (Cernyet al 1995) but lower Rb2O and Cs2O contents thanlepidolite from the lepidolite-subtype pegmatite at RedCross Lake Manitoba Canada (Cerny et al 2012a) K-feldspar from the Namivo pegmatite also has lower Rb2O

Table 3 Representative electron microprobe analyses in wt of columbitendashtantalite from the Namivo granitic pegmatite Mozambique

Outer Intermediate Zone - OIZ Inner Intermediate Zone - IIZa

Core - Cc

D L L

WO3 022 059 079 113 101 351 050 007Ta2O5 5487 5123 2503 3186 2888 2519 3127 4542Nb2O5 2537 3000 5483 4635 5113 5144 4911 3686SnO2 008 015 024 049 020 026 017 012TiO2 263 161 136 254 202 145 125 016FeO 860 710 665 471 236 068 mdash mdashMnO 793 952 1099 1304 1400 1725 1748 1718Total 9970 10020 9989 10012 9960 9978 9978 9981W 0004 0011 0013 0019 0016 0057 0008 0001Ta 1065 0975 0422 0552 0495 0430 0543 0847Nb 0819 0949 1538 1336 1456 1460 1418 1143Sn 0002 0004 0006 0012 0005 0007 0004 0003Ti 0141 0085 0063 0122 0096 0068 0060 0008Fe 0513 0416 0345 0251 0124 0036 mdash mdashMn 0479 0564 0578 0704 0747 0917 0945 0998P

3023 3004 2965 2996 2939 2975 2978 3000Mn(Mn thorn Fe) 048 058 063 074 086 096 100 100Ta(Ta thorn Nb) 057 051 022 029 025 023 028 043Classification tant-(Fe) tant-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn)

D ndash darker L ndash lighter zones mdash Not detected tant-tantalite col-columbite Cation formula on the basis of 6 atoms of oxygen

Fig 10 Compositions of columbitendashtantalite from the Namivogranitic pegmatite Mozambique in the columbite quadrilateralshowing that Mn(Mn thorn Fe) of columbite-(Mn) increases from theOIZ to the Cc and the richest columbite-(Mn) in Ta(Ta thorn Nb)tantalite-(Fe) and tantalite-(Mn) only occur in the OIZ OIZ IIZaand Cc as in Fig 2

980 A M R Neiva

eschweizerbart_xxx

and Cs2O contents than K-feldspar from the lepidolite-subtype pegmatite at Red Cross Lake The Rb2O andCs2O contents of primary and late K-feldspar of this peg-matite at Red Cross Lake attained unprecedented levels(Cerny et al 2012a) The lowest KRb (wt) values ofmuscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepido-lite from the IIZb and Cc (Fig 7) and K-feldspar (KRb frac1414) from the Cc compare well with those found in theseminerals from the AC6frac143 lepidolite-subtype pegmatitefrom Greer Lake (Cerny et al 2005) and some of themost fractionated pegmatites worldwide which belong tothe petalite-subtype (eg Tanco Manitoba Cerny 2005Cerny et al 1998 Varutrask Sweden Cerny et al 2005)but muscovite lithian muscovite and lepidolite from theIIZb and Cc have lower Rb2O and Cs2O contents than thesemicas from the Tanco pegmatite (Cerny 2005a VanLichtervelde et al 2008) K-feldspar also has lower

contents of these oxides than the most evolved K-feldsparfrom the Tanco pegmatite (Cerny 2005a) The magmaticfractionation was strong from the WZ to IIZb and Cc of theNamivo lepidolite-subtype pegmatite

The compositional trend of columbite-(Mn) from the OIZto Cc of the Namivo granitic lepidolite-subtype pegmatite(Fig 10) is identical to that of columbite-group mineralsfrom the lepidolite-subtype complex granitic pegmatitesfrom the Dobra Voda in the Moldanubicum CzechRepublic (Novak amp Cerny 1998) and the HimalayaDistrict southern California (shown in Cerny et al 2004)Experimental data for the Fe-Mn pair (Linnen amp Cuney2005) suggest an increase in Fe with fractional crystalliza-tion which is not observed in nature Other phases seem tocontrol the bahavior of Fe and Mn in the melt eg thecrystallization of tourmaline causes a rapid increase of theMnFe in the melt (Van Lichtervelde et al 2006) When thecrystallization of tourmaline stopped the columbitendashtantaliteminerals showed a constant MnFe indicating that the Fe andMn contents in the melt remained constant Schorl onlyoccurs in the OIZ of the Namivo granitic pegmatite and itscrystallization cannot be responsible for the increase in theMnFe of the melt because Mn(Mn thorn Fe) of columbite-(Mn) increases progressively from the OIZ to the IIZa and Cc(Fig 10) Garnet zinnwaldite and gahnite containing Fe andMn also only occur in the OIZ and cannot also have causedthe increase of the MnFe in the melt The dominant Mnenrichment before Ta enrichment started in the columbitendash-tantalite composition from some granitic pegmatites isattributed to an increased alkali-fluoride activity at moderatemHF (Cerny et al 2004) and an increase in the activity offluorine (Martins et al 2011) Each Al-richer mica (musco-vite lithian muscovite and lsquolsquomixed formrsquorsquo) from the Namivogranitic pegmatite shows an increase in F content from theOIZ to the IIZa IIZb and Cc (Table 1) In general the Fcontent of lepidolite also increases from the IIZa to the IIZband Cc Therefore the extreme Fe-Mn fractionation beforeTa enrichment in columbite-(Mn) (Fig 10) may be due to anincrease in the activity of fluorine as a consequence offractional crystallization The increase in the Ta content ofcolumbite-(Mn) from the Namivo granitic pegmatite isattributed to fractional crystallization

The geochemical evolution of albite and K-feldsparfrom the WZ to the Cc Al-richer micas muscovite lithianmuscovite and lsquolsquomixed formrsquorsquo from the OIZ to the Cc andlepidolite from the IIZa to the Cc and columbite-(Mn) andalso beryl (Neiva amp Neiva 2005) from the OIZ to the Ccare caused by magma fractionation The pegmatite zonesare the product of primary crystallization from a volatile-rich silicate melt The pegmatite consolidated from the WZto the Cc The IIZb is one of the most evolved zones asalso suggested by the beryl composition (Neiva amp Neiva2005) and is the richest in lsquolsquomixed formrsquorsquo and lepidolite

The richest columbite-(Mn) in Ta(Ta thorn Nb) and com-positions of tantalite-(Fe) and tantalite-(Mn) only occur inthe OIZ (Fig 10a) associated with lepidolite and polythio-nite (Fig 3c) which may be due to the local depletion of Liand F in the melt which decreases the solubility of Ta andcauses Ta precipitation (Linnen 1998 Linnen amp Cuney

Fig 11 a Backscattered-electron image of a gahnite crystal with adarker zone partially surrounding a lighter zone from the OIZ of theNamivo granitic pegmatite b c Plot of gahnite compositions in theSn-Zn-Ti diagram (atomic proportions) showing a chemical distinc-tion between the lighter and darker zones OIZ as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 981

eschweizerbart_xxx

2005) At the Tanco pegmatite Ta oxides are also asso-ciated with lepidolite enriched in Li and F from the wallzone (Van Lichtervelde et al 2008)

93 Origin and evolution of the zoned graniticlepidolite-subtype pegmatite at Namivo

In general granitic pegmatites particularly those belong-ing to the rare-element class are accepted as having beenformed by the fractional crystallization of a granite melt(eg Cerny 1991a b 1992 Neiva et al 2008 2012 Roda-Robles et al 2012) But it also has been proposed thatpegmatites may be formed by partial melting of appropri-ate rock compositions (eg Nabelek et al 1992 Nabelekamp Russ-Nabelek 1992 Shearer et al 1992 Roda Robleset al 1999) The lepidolite-subtype pegmatites belong tothe LCT (lithium-cesium-tantalum) family (Cerny amp Ercit2005) They are derived by fractional crystallization of agranite magma (eg Cerny et al 2005 Neiva amp Ramos2010 Cerny et al 2012b) Experimental work by Londonet al (1989) and London (1990) using Macusani glass as astarting material equivalent to the bulk composition ofhighly fractionated rare-alkali-rich pegmatites underhighly evolved and hydrous but H2O undersaturatedmelt obtained the latest primary assemblage consisting

of an Li-rich mica thorn albite thorn quartz deposited directlyfrom the primary melt phase Other authors egZasedatelev (1974 1977) and Stewart (1978) argue thatlepidolite-bearing pegmatites are derived from direct ana-texis and Gordiyenko et al (1996) consider that they arederived from an undefined medium and the rare-elementmineralization is superimposed on preexisting barrenpegmatites

Lepidolite-subtype pegmatites may migrate a long wayfrom their parent granites because their volatile-rich highlyfluid pegmatite melts are stable at relatively low tempera-tures (eg Cerny et al 2005 Antunes et al 2013)Therefore the Namivo pegmatite is probably derived byfractional crystallization of an S-type granite magmawhich resulted from partial melting of metamorphosed juve-nile sediments containing micas that carry most of the traceelements that define the signature of the LCT pegmatites(eg Dahl et al 1993)

The two main models for the internal evolution of peg-matites that dominated for more than a century are a) thefractional crystallization of a flux-bearing granitic melt fromthe margins to the center of the pegmatite (Cameron et al1949) b) the interactions of an aqueous fluid with graniticmelt (Jahns amp Burnham 1969 Jahns 1982) The recentmodel of constitutional zone refining combines aspects ofboth models and invokes the formation of a flux-enriched

Table 4 Electron microprobe analyses in wt of zoned gahnite from the outer intermediate zone (OIZ) of the Namivo granitic pegmatiteMozambique

Darker Zone Lighter Zone

Mean s Range Mean s Range

SnO2 036 050 0ndash097 658 281 151ndash998TiO2 008 008 0ndash021 065 034 008ndash105Nb2O5 001 002 0ndash006 018 007 007ndash029Ta2O5 001 004 0ndash010 015 013 0ndash033ZnO 3998 123 3810ndash4109 3339 318 3004ndash3848FeO 367 048 331ndash442 433 065 306ndash498MnO 032 004 028ndash040 039 006 032ndash048MgO 003 004 0ndash010 ndash ndash ndashAl2O3 5507 050 5436ndash5572 5337 070 5257ndash5443SiO2 003 003 0ndash007 008 010 0ndash025Total 9956 9912n 8 8Sn 0035 0048 0ndash0095 0648 0278 0149ndash0983Ti 0015 0015 0ndash0038 0120 0064 0015ndash0195Nb ndash 0003 0ndash0006 0021 0009 0009ndash0037Ta ndash 0002 0ndash0006 0009 0009 0ndash0021Zn 7226 0182 6890ndash7382 6086 0568 5482ndash6965Fe2thornt 0752 0103 0675ndash0913 0894 0135 0628ndash1029Mn 0066 0008 0057ndash0083 0082 0013 0066ndash0101Mg 0010 0015 0ndash0037 ndash ndash ndashAl 15887 0052 15805ndash15954 15526 0170 15375ndash15853Si 0007 0008 0ndash0018 0019 0025 0ndash0062P

23998 23405Fe3thorn 0064 0230Fe2thorn 0686 0658SnZn 0005 0007 0ndash0014 0106 0052 0021ndash0179ZnFe2thornt 961 143 768ndash1093 681 190 536ndash1109

n number of analysis Cation formula based on 32 atoms of oxygen Fe2thornt total Fe2thorn estimated

982 A M R Neiva

eschweizerbart_xxx

boundary layer of silicate liquid in advance of a crystal-lization front (London 2008 London amp Morgan 2012)

Lepidolite-subtype pegmatites are generally scarce(Cerny et al 2005) particularly the zoned ones In thesymmetrically zoned lepidolite-subtype pegmatites ofRozna and Dobra Voda Czech Republic micas (Cernyet al 1995) tourmaline (Selway et al 1999) and colum-bite-group minerals (Novak amp Cerny 1998) evolve fromthe outermost zone to the innermost zone following thecrystallization sequence The same was found in tourma-line from the zoned Lastovicky Dolnı Bory and Raddovicelepidolite-subtype pegmatite dikes in the Czeck Republic(Selway et al 1999)

In general beryl (Neiva amp Neiva 2005) feldsparsmicas and columbite-(Mn) (in this paper) from theNamivo lepidolite-subtype pegmatite record the progres-sive chemical evolution of the pegmatite from the wallzone to the core These minerals were produced by crystal-lization from a silicate melt rather than an aqueous fluidphase The slow cooling of melt shown by the magmaticcrystallization temperatures of feldspars cannot explain theincrease in grain-size of minerals from the wall zone to thecore but fluxes will be necessary to promote the change oftexture particularly a flux-rich hydrosilicate liquidaccording to the experimental evidence (London 2009)The constitutional zone refining model will be the best forthis zoned pegmatite and probably for all lepidolite-sub-type pegmatites because this model also produces a higherfinal concentration of incompatible components in a smal-ler volume of rock than fractional crystallization does(Morgan amp London 1999)

The core margin at the Rozna pegmatite contains K-feld-spar and quartz and the core consists mainly of quartz but it issurrounded and penetrated by a quartz-bearing albitethorn lepi-dolite complex which contains several minerals At theDobra Voda pegmatite the center of the dike is occupiedby the lepidolite unit containing albite and other minerals(Cerny et al 1995) At the Namivo pegmatite the coremargin consists of quartz and beryl and the core containsmainly quartz and spodumene but also albite lepidolite andother minerals The last-unit assemblages of primary miner-als in most of the highly fractionated LCT pegmatites are richin albite and commonly contain lepidolite or spodumene andmost of the other rare phases These units represent the lastmost fractionated liquid that can be derived by fractionalcrystallization of a crustal melt (London 2008)

The Namivo granitic pegmatite shows a significant dis-tinction from the other zoned lepidolite-subtype pegmatitesand LCT pegmatites except the Tanco petalite-subtypepegmatite in Canada because the lepidolite richest in SiLi and F FeMg-containing polylithionite and associatedcolumbite-(Mn) with the highest Ta(Ta thorn Nb) ratio tanta-lite-(Fe) and tantalite-(Mn) only occur in the outer inter-mediate zone These minerals usually form late in theconsolidation of pegmatites The lepidolite and polylithio-nite are probably derived from the disequilibrium crystal-lization of an undercooled melt Tantalite may reflect a localdecrease in Li and F that caused Ta precipitation

This paper contributes to a better understanding of theorigin and evolution of the rare zoned lepidolite-subtypepegmatites and shows that although the pegmatite evolvedfrom the wall zone to the core it presents an unusualassociation of lepidolite polylithionite and tantalite in theouter intermediate zone

Acknowledgments Thanks are due to JM Cotelo Neivaand MB Dias for the samples and information providedand to MR Machado Leite and MF Guimaraes for theuse of the electron microprobe facilities at the LaboratorioNacional de Energia e Geologia (LNEG) PortugalFinancial support was provided by the PortugueseGovernment for the project Pest-OECTEUI00732011of the Geosciences Centre through the PortugueseFoundation for Science and Technology I would like tothank D London WB Simmons and the associated editorE Widom for their constructive reviews of this manuscriptand M Prieto for his editorial work

References

Alfonso P Melgarejo JC Yusta I Velasco F (2003)

Geochemistry of feldspars and muscovite in granitic pegmatite

from the Cap de Creus field Catalonia Spain Can Mineral 41

103ndash116

Antunes IMHR Neiva AMR Ramos JMF Silva PB

Silva MMVG Corfu F (2013) Petrogenetic links between

lepidolite-subtype aplite-pegmatite aplite veins and associated

granites at Segura (central Portugal) Chemie der Erde in press

httpdxdoiorg101016jchemer20121203

Batchelor RA amp Kinnaird JA (1984) Gahnite compositions

compared Mineral Mag 48 425ndash430

Beurlen H Da Silva MRR Thomas R Soares DR Olivier P

(2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-

element granitic pegmatite fractionation in the Borborema pro-

vince Northeastern Brazil Miner Deposita 43 207ndash228

Cameron EN Jahns RH McNair AH Page LR (1949)

Internal structure of granitic pegmatites Econ Geol

Monograph 2 115 p

Cerny P (1991a) Fertile granites of Precambrian rare-element

pegmatite fields is geochemistry controlled by tectonic setting

or source lithologies Precambrian Res 51 429ndash468

mdash (1991b) Rare-element granite pegmatites I Anatomy and inter-

nal evolution of pegmatite deposits Geoscience Canada 18

49ndash67

mdash (1992) Geochemical and petrogenetic features of mineralization

in rare-element granitic pegmatites in the light of current

research Applied Geochemistry 7 393ndash416

mdash (1994) Evolution of feldspars in granitic pegmatites in

lsquolsquoFeldspars and their Reactionsrsquorsquo I Parsons ed NATO

Advanced Study Institute Series C421 501ndash539

mdash (2005) The Tanco rare-element pegmatite deposit Manitoba

regional context internal anatomy and global comparisons in

lsquolsquoRare-element Geochemistry and Mineral Depositsrsquorsquo RL

Linnen amp IM Samson eds Geochemical Association of

Canada Short Course Notes St Catherines 17 127ndash158

Silicate and oxide minerals from a zoned granitic pegmatite 983

eschweizerbart_xxx

Cerny P amp Ercit TS (2005) The classification of granitic pegma-

tites revisited Can Mineral 43 2005ndash2026

Cerny P Meintzer RE Andersen AJ (1985) Extreme fractiona-

tion in rare-element granitic pegmatites selected examples of

data and mechanisms Can Mineral 23 381ndash421

Cerny P Goad BE Hawthorne FC Chapmann R (1986)

Fractionation trends of the Nb- and Ta-bearing oxide minerals

in the Greer Lake pegmatite granite and its pegmatite aureole

southeastern Manitoba Am Mineral 71 501ndash517

Cerny P Stanek J Novak M Baadsgaard H Rieder M

Ottolini L Kavalova M Chapman R (1995) Geochemical

and structural evolution of micas in the Rozna amp Dobra Voda

pegmatites Czech Republic Mineral Petrol 55 177ndash201

Cerny P Ercit TS Vanstone PJ (1998) Mineralogy and petrol-

ogy of the Tanco rare-element pegmatite deposit southeastern

Manitoba International Mineralogical Association 17th General

Meeting Toronto Field Guidebook B6

Cerny P Chapman R Ferreira K Smeds SA (2004)

Geochemistry of oxide minerals of Nb Ta Sn and Sb in

the Varutrask granitic pegmatite Sweden The case of an

lsquolsquoanomalousrsquorsquo columbitendashtantalite trend Am Mineral 89

505ndash518

Cerny P Masau M Goad BE Ferreira K (2005) The Greer

Lake leucogranite Manitoba and the origin of lepidolite-sub-

type granitic pegmatites Lithos 80 305ndash321

Cerny P Teertstra DK Chapman R Selway JB Hawthorne

FC Ferreira K Chackowsky LE Wang X-J Meintzer

RE (2012a) Extreme fractionation and deformation of the

leucogranite-pegmatite suite at Red Cross Lake Manitoba

Canada IV Mineralogy Can Mineral 50 1839ndash1875

Cerny P Halden NM Ferreira K Meintzer RE Brisbin WC

Chackowsky LE (2012b) Extreme fractionation and deforma-

tion of the leucogranite-pegmatite suite at Red Cross Lake

Manitoba Canada II Petrology of the leucogranites and peg-

matites Can Mineral 50 1807ndash1822

Dahl PS When DC Feldmann SG (1993) The systematics of

trace-element partitioning between coexisting muscovite and

biotite in metamorphic rocks from the Black Hills South

Dakota USA Geochim Cosmochim Acta 57 2487ndash2505

Dias MB amp Wilson WE (2000) The Alto Ligonha Pegmatites

Mozambique Mineral Record 31 459ndash497

Fleet ME (2003) Rock-Forming Minerals vol 3A Sheet silicates

micas The Geological Society London second edition chap 6

Lithium micas 651ndash690

Foord EE Cerny P Jackson LL Sherman DM Eby RK

(1995) Mineralogical and geochemical evolutions of micas

from miarolitic pegmatites of the anorogenic pikes-Peak

Batholith Colorado Mineral Petrol 55 1ndash26

Foster MD (1960) Interpretation of the composition of lithium

micas US Geol Surv Prof Paper 354-E 115ndash147

Fuhrman ML amp Lindsley DK (1988) Ternary-feldspar modeling

and thermometry Am Mineral 73 201ndash215

Gomes CL Castro P Alves C (1995) Caracterizacao das espi-

nelas zincıferas e do par ganite-nigerite no campo aplito-

pegmatıtico da Serra de Arga-Minho N de Portugal IV

Congresso Nacional de Geologia Resumos Alargados

Universidade do Porto Mem 4 629ndash633

Gordiyenko VV Ilyina AN Timochina LA Badamina EB

Stanek J (1996) Geochemical model of evolution of a pegma-

tite-forming ore-magmatic system of western Moravia Proc

Russ Mineral Soc 125 38ndash48 (in Russian)

Icenhower JP amp London D (1995) An experimental study for

element partitioning between biotite muscovite and coexisting

peraluminous granitic melt at 200 MPa (H2O) Am Mineral 80

1229ndash1251

Jahns RH (1982) Internal evolution of pegmatite bodies in lsquolsquoGranitic

Pegmatites in science and industryrsquorsquo P Cerny ed Mineralogical

Association of Canada Short Course Handbook 8 293ndash327

Jahns RH amp Burnham CW (1969) Experimental studies of

pegmatite genesis I A model for the derivation and crystal-

lization of granitic pegmatites Econ Geol 64 843ndash864

Jolliff BL Papike JJ Shearer CK (1987) Fractionation trends

in mica and tourmaline as indicators of pegmatite internal evo-

lution Bob Ingersoll pegmatite Black Hills South Dakota

USA GeochimCosmochim Acta 51 519ndash534

Kile DE amp Foord EE (1998) Micas from the Pikes Peak bath-

olith and its cogenetic granitic pegmatites Colorado optical

properties composition and correlation with pegmatite evolu-

tion Can Mineral 36 463ndash482

Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic

melts with Li and Li thorn F constraints for mineralization in rare

metal granites and pegmatites Econ Geol 93 1013ndash1025

Linnen RL amp Cuney M (2005) Granite-related rare-element

deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf

mineralization in lsquolsquoRare-element geochemistry and mineral

depositsrsquorsquo RL Linnen amp IM Samson eds Geochemical

Association of Canada Short Course Notes 17 45ndash68

London D (1990) Internal differentiation of rare-element pegmatites

a synthesis of recent research in lsquolsquoOre Bearing Granite Systems

Petrogenesis and Mineralizing Processesrsquorsquo HJ Stein amp JL

Hannah eds Geol Soc America Special Paper 246 35ndash50

mdash (2008) Pegmatites The Canadian Mineralogist Special

Publication 10 347 p

mdash (2009) The origin of primary textures in granitic pegmatites

Can Mineral 47 697ndash724

London D amp Morgan GB VI (2012) The pegmatite puzzle

Elements 8 263ndash268

London D Morgan GB VI Hervig RL (1989) Vapor-under-

saturated experiments in the system macusanite-H2O at 200

MPa and the internal differentiation of granitic pegmatites

Contrib Mineral Petrol 102 1ndash17

London D Morgan GB VI Paul KA Guttery BM (2012)

Internal evolution of miarolitic granitic pegmatites at the Little

Three mine Ramona California USA Can Mineral 50

1025ndash1054

Martins T Lima A Simmons WB Folster AU Noronha F

(2011) Geochemical fractionation of Nb-Ta oxides in Li-bear-

ing pegmatites from the Barroso-Alvao pegmatite field northern

Portugal Can Mineral 49 777ndash791

Monier G Charoy B Cuney M Ohnenstetter D Robert JL

(1987) Evolution spatiale et temporelle de la composition des

micas du granite albitique a topaze-lepidolite de Beauvoir

Geologie De La France 2ndash3 179ndash188

Monier G amp Robert JL (1986) Evolution of the miscibility gap

between muscovite and biotite solid solutions with increasing

lithium content an experimental study in the systems

K2OndashLi2OndashMgOndashAl2O3ndashSiO2ndashH2OndashHF at 600 C 2 kbar

PH2O comparison with natural lithium micas Mineral Mag

50 641ndash651

Morgan GBVI amp London D (1999) Crystallization of the little

three layered pegmatite-aplite dike Ramona District California

Contrib Mineral Petrol 136 310ndash330

984 A M R Neiva

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985

Page 7: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

generally decrease and Si Licalc Rb Cs and F contentsgenerally increase (Table 1)

42 Main substitution mechanisms

The 2Si thorn Li 3Altotal mechanism operates in the diocta-hedral micas (muscovite and lithian muscovite) (Fig 5a b)whereas the 3LiVI AlVIthorn 2ampVI (amp represents a vacancy)operates in the trioctahedral micas (lsquolsquomixed formrsquorsquo lepido-lite zinnwaldite and FeMg-containing polylithionite) (Fig5c d) which agrees with findings for micas from the Tancopegmatite (Van Lichtervelde et al 2008)

43 Textures and chemical compositions of zoned micacrystals

Backscattered-electron images combined with quantita-tive spot electron-microprobe analyses made it possibleto distinguish different micas in the Namivo graniticpegmatite Similar textural aspects and geochemicalobservations were found between some Al-richer micasfrom the OIZ IIZa IIZb and Cc Some selected zonedcrystals are documented (Table 1 Fig 3 and 6) In theOIZ lepidolite penetrates zinnwaldite along cleavagesand partially surrounds it and the contacts are sharp(Fig 3a) A chemical gap occurs between zinnwalditeand lepidolite compositions (Fig 6a b) Lepidolite withhigher Si Licalc F contents similar KRb value andlower (AlIV thorn AlVI) Ti Fe2thorn Mg (Fe2thornthorn Mn thorn Mg)Zn and OH contents (Table 1) replaces zinnwaldite Athin lepidolite rim partially surrounds lsquolsquomixed formrsquorsquoand the contact is sharp (Fig 3b) The lepidolite rimhas higher Si Mg Licalc Rb F contents and lowerAlVI Ti Fe2thorn Mn Na and OH contents and KRb ratiothan the lsquolsquomixed formrsquorsquo core (Table 1) The lepidoliterim is an Al-poorer mica whereas the lsquolsquomixed formrsquorsquocore is an Al-richer mica (Fig 4) The lepidolite rimcorresponds to an overgrowth The FeMg-containingpolylithionite partially surrounds and penetrates lepido-lite along cleavages and shows well defined contacts(Fig 3c) Both contain rutile cassiterite and columbi-tendashtantalite inclusions A continuous chemical evolutiontakes place from lepidolite to FeMg-containing poly-lithionite (Figs 4 6c) The latter has higher Si LicalcRb contents and lower AlVI Ti Fe2thorn Mn Mg Zn Nacontents and KRb ratio (Table 1) and replaces lepido-lite A lithian muscovite rim with rare FeMg-containingpolylithionite surrounds the lsquolsquomixed formrsquorsquo core and thispolylithionite penetrated lithian muscovite (Fig 3d)The contact between the lithian muscovite rim andlsquolsquomixed formrsquorsquo core is irregular suggesting disequili-brium or at a cleavage (Fig 3d d1) Two linear trendsone for the lithian muscovite rim and another for thelsquolsquomixed formrsquorsquo core are defined in the (Fe2thornthornMnthornMg)vs (AlIV thornAlVI) diagram (Fig 6d) The FeMg-contain-ing polylithionite rim does not belong to any of thesetrends and plots outside this diagram because it is an Al-poorer mica whereas the others are Al-richer micas

(Fig 4) The lithian muscovite rim has higher AlVI(AlIV thorn AlVI) OH contents and KRb ratio and lowerMg (Fe2thornthorn Mn thorn Mg) Licalc Rb F contents than thelsquolsquomixed formrsquorsquo core (Table 1 Fig 6d) The crystal isreversely zoned The FeMg-containing polylithioniterim has higher Si Licalc F contents and lower AlVI(AlIV thorn AlVI) Fe2thorn Mn (Fe2thornthorn Mn thorn Mg) Na andOH contents than the lsquolsquomixed formrsquorsquo core and lithianmuscovite rim (Table 1) and replaces lithian muscovite

In the IIZa some zoned crystals have a lithian muscovitecore and a lsquolsquomixed formrsquorsquo rim and the contacts are gradual(Fig 3e) A small discontinuity occurs in the trends fromthe lithian muscovite core to lsquolsquomixed formrsquorsquo rim in the(Fe2thornthorn Mn thorn Mg) vs (AlIV thorn AlVI) and Rb2O vs KRb(Fig 6e f) The lsquolsquomixed formrsquorsquo rim has higher Si Fe2thornMn (Fe2thornthornMn thornMg) Licalc K Rb Cs F contents andlower AlVI (AlIVthornAlVI) Na OH contents and KRb ratiothan the lithian muscovite core (Table 1 Fig 6e f) indi-cating progressive zoning Similar textural relationshipsand chemical evolutions were found in other zoned crystalsfrom the OIZ IIZb and Cc In another crystal from theIIZa lithian muscovite partially surrounds lsquolsquomixed formrsquorsquointergrown with lepidolite Lithian muscovite also partiallysurrounds muscovite (Fig 3f) The contacts betweenlsquolsquomixed formrsquorsquo and lepidolite and also between muscoviteand lithian muscovite are gradual (Fig 3f f1) whereasthey are well defined for muscovite withlsquolsquomixed formrsquorsquoand lepidolite (Fig 3f f1) The crystal has a lsquolsquomixed formrsquorsquoand lepidolite core and a partial rim of muscovite andlithian muscovite The lsquolsquomixed formrsquorsquo core evolved tolepidolite core as the Si Fe2thorn Mn (Fe2thornthorn Mn thorn Mg)Licalc K Rb Cs and F contents increase and the (AlIV thornAlVI) and KRb ratio decrease (Table 1 Fig 6g h) The SiFe2thorn Mn (Fe2thornthorn Mn thorn Mg) Licalc Rb and F contentsincrease and the (AlIV thorn AlVI) and KRb ratio decreasefrom the muscovite rim to the lithian muscovite rim (Table1 Fig 6g h) suggesting that the former evolved to thelatter The muscovite rim has higher AlVI (AlIV thorn AlVI)Na OH contents and KRb ratio and lower Si Fe2thorn Mn(Fe2thornthornMn thornMg) Zn Licalc Rb and F contents than thelsquolsquomixed formrsquorsquo core and lepidolite core (Table 1 Fig 6gh) Muscovite was probably reversely formed and evolvedafterwards to lithian muscovite

In the IIZb some crystals have a lithian muscovite coreand a thinner lepidolite rim (Fig 3g) and others show asmall muscovite core and a larger rim of lsquolsquomixed formrsquorsquointergrown with lepidolite (Fig 3h) The contacts betweenthe cores and rims are well defined There are increases inthe Si Mn (Fe2thornthorn Mn thorn Mg) Licalc Rb and F contentsand decreases in the AlVI (AlIVthornAlVI) and KRb ratio fromthe lsquolsquomixed formrsquorsquo rim to the intergrown lepidolite rim(Table 1 Figs 3h 6l) suggesting that the former evolvedto the latter as also found in IIZa and Cc In both crystalsthe rim compositions have higher Si (Fe2thornthorn Mn thorn Mg)Licalc Rb Cs F contents and lower AlVI (AlIVthorn AlVI) Naand OH contents and KRb ratio than the core (Table 1 Figs3g 6i j k 3h 6l) A compositional gap occurs between coreand rim in the diagrams for both crystals (Fig 6i j k l)suggesting that both rims correspond to overgrowths and no

Silicate and oxide minerals from a zoned granitic pegmatite 973

eschweizerbart_xxx

diffuse reequilibration took place in any crystal as thecontacts between core and rim are sharp

In the Cc lithian muscovite is surrounded and pene-trated by lsquolsquomixed formrsquorsquo showing well defined contacts(Fig 3i) The lsquolsquomixed formrsquorsquo has higher Si Fe2thorn Mn(Fe2thornthorn Mn thorn Mg) Licalc Rb Cs F contents and lowerAlVI (AlIV thorn AlVI) Na OH contents and KRb ratio thanthe lithian muscovite (Table 1 Fig 6m n) and a composi-tional gap occurs between both micas suggesting thatlsquolsquomixed formrsquorsquo replaced lithian muscovite In rare crystalsa small lepidolite core is surrounded by a large muscoviterim containing K-feldspar inclusions The contact betweenthe core and rim is sharp (Fig 3j) A thin partial rim oflithian muscovite surrounds muscovite and the contact isgradual The muscovite rim has higher AlVI (AlIVthornAlVI)Na K OH contents and a greater KRb value and lower SiFe2thorn Mn Licalc Rb Cs and F contents than the lepidolitecore (Table 1 Fig 6o p) and a compositional gap occursbetween them (Fig 6o p) indicating that either muscoviteforms an overgrowth or it is reversely formed From themuscovite rim to the lithian muscovite rim the Si Licalc

Rb F contents increase whereas the AlVI (AlIV thorn AlVI)and OH contents and KRb ratio decrease (Table 1 Fig 6op) suggesting that muscovite evolved to lithian muscoviteas also found in IIZa and IIZb

44 Evolution of mica compositions within each zoneand from the outer intermediate zone to the core of theNamivo granitic pegmatite

The KRb ratio is taken as the best fractionation index inmicas (eg Cerny et al 1985 Foord et al 1995 Wise1995 Pesquera et al 1999 Roda Robles et al 2006 2007)It is hard to establish trends in the evolution of mica com-position from muscovite and lithian muscovite to lsquolsquomixedformrsquorsquo and lepidolite within each zone because the KRbratio shows some partial overlapping particularly betweenthe lithian muscovite and lsquolsquomixed formrsquorsquo and also betweenthe latter and lepidolite However an evolution from mus-covites to lepidolite (Al-richer mica Fig 4) is clearer (Fig7) In general in IIZa IIZb and Cc the Si Licalc Rb Cs and

Fig 5 The main substitutions in micas from the Namivo granitic pegmatite Mozambique a b SiIVthorn LiVI versus AlIVthornAlVI showing the 2SithornLi 3Altotal substitution mechanism operating in dioctahedral micas (Mu muscovite and Lith mu lithian muscovite) c d AlVI thornamp VI

versus LiVI (where amp represents a vacancy) and showing the 3LiVI AlVI thorn 2 amp VI substitution mechanism operating in trioctahedral micas(Mix f ndashlsquolsquomixed formrsquorsquo Lep lepidolite Zin zinnwaldite and Pol-FeMg-containing polylithionite) OIZ IIZa IIZb and Cc as in Fig 2

974 A M R Neiva

eschweizerbart_xxx

F contents tend to increase and the (AlIV thorn AlVI) AlVI

contents and KRb ratio tend to decrease from muscoviteto lepidolite (Table 1 Fig 7) This sequence is consistentbut rarely in the Cc lepidolite is rimmed by muscovite (Fig3j) But in the OIZ the evolution stops in lsquolsquomixed formrsquorsquoparticularly shown by the large range of the KRb ratiowhich mainly overlaps that of lepidolite from this zone(Fig 7) because this lepidolite is an Al-poorer mica whereasthe others are Al-richer micas (Fig 4)

In the OIZ the lepidolite has more Si Licalc and F andless (AlIV thorn AlVI) Ti Fe2thorn Mn Mg and Zn than zinn-waldite (Table 1) but it has larger ranges of Rb and KRbratio than zinnwaldite (Fig 7) The FeMg-containingpolylithionite is the richest mica in Si Licalc and thepoorest in (AlIV thorn AlVI) (Table 1) But at this zone scalethe polylithionite has Rb Cs contents and KRb ratiowithin the ranges for lepidolite and close to those of zinn-waldite (Fig 7)

Fig 6 Variation diagrams of micas from selected zoned crystals from the zones of the Namivo granitic pegmatite Mozambique to showtheir relationships lith musc lithian muscovite OIZ IIZa IIZb and Cc an in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 975

eschweizerbart_xxx

From the OIZ to IIZa IIZb and Cc muscovite and lithianmuscovite generally show increases in the Si Licalc F and Rbcontents and decreases in the Fe2thorn and Mg contents and KRb ratio but the Mg content is very low in these micas fromthe IIZa IIZb and Cc (Table 1 Fig 7a) The lsquolsquomixed formrsquorsquoshows increases in the Si Licalc F Rb Cs contents anddecreases in the (AlIV thorn AlVI) and Mg contents and KRbratio but the Mg content is very low in this mica from theIIZb and Cc (Table 1 Fig 7b c) The lepidolite shows anincrease in the Si Licalc F Rb and Cs contents and a decreasein the KRb ratio from the IIZa to the IIZb and Cc (Table 1Fig 7d e) Furthermore the lepidolite from the OIZ has thelowest (AlIV thorn AlVI) AlVI and OH contents the highest SiFe2thorn Licalcand F contents and KRb ratio and the lowest Rband Cs contents compared to lepidolite from the other zones(Table 1 Fig 7d e)

5 Feldspars

Selected chemical analyses of albite and K-feldspar fromfive zones of the Namivo granitic pegmatite are given inTable 2 Strontium is the most abundant trace element inalbite (eg Cerny 1994) Anorthite and Sr contents and SrCa ratio of albite decrease from the WZ to the Cc (Fig 8Table 2) Rubidium is the most abundant trace element inK-feldspar followed by Cs in IIZa IIZb and Cc In gen-eral K Rb and Cs contents of K-feldspar increase and KRb and KCs values decrease from the WZ to the Cc (Table2 Fig 9)

The program SOLVCALC 20 (Wen amp Nekvasil 1994)using the Margules model Fuhrman amp Lindsley (1988) wasapplied for the purpose of thermometry The pairing ofplagioclase cores with the K-feldspars average of eachsample was used to estimate the crystallization temperaturesof primary magmatic feldspars They are 405 C (WZ)406ndash340 C (OIZ) 390ndash335 C (IIZa) 347ndash306 C (IIZb)and 333ndash289 C (Cc) at 3 kbar The metamorphic environ-ment of rare-element-Li granitic pegmatites is one of lowpressure 2ndash4 kbar (Cerny amp Ercit 2005) In general thedifference between the maximum and minimum calculatedtemperatures at 2 3 and 4 kbar for the same feldspar pairfrom the Namivo pegmatite is lower than 40 C The tem-perature decreases from the wall zone (WZ) to the core(Cc) A similar temperature behavior of feldspars wasfound in the pegmatite-aplite dike USA (Morgan ampLondon 1999)

6 Other silicates

Tourmaline of schorl composition was only found inthe OIZ (Table 2) because there was not enough Feand Mg for schorl to precipitate in the other zonesSpodumene only occurs in the Cc and its compositionis nearly pure (Table 2)

7 Columbite-tantalite

Representative chemical analyses of columbitendashtantalitefrom the Namivo granitic pegmatite are given in Table 3and plotted in the columbite quadrilateral (Fig 10a)Most crystals are unzoned but zoned crystals with dar-ker and lighter zones in BSE images are from the Cc Thelighter zone of columbite-(Mn) has higher Ta contentTa(Ta thorn Nb) and Mn(Mn thorn Fe) values and lower Nbcontent than the darker zone (Fig 10a b) The crystals ofthe columbitendashtantalite minerals are low in W Sn and Tiimpurities (Table 3)

The main trend starts from the columbite-(Mn) of theOIZ towards the more Mn-enriched and slightly Ta-enriched columbite-(Mn) from the IIZa and Cc The high-est Ta(Ta thorn Nb) values belong to the lighter zone ofcolumbite-(Mn) with Mn(Mn thorn Fe) frac14 10 from the CcThe richest columbite-(Mn) in Ta(TathornNb) and composi-tions of tantalite-(Fe) and tantalite-(Mn) were only foundin the OIZ (Fig 10a) and are associated with lepidolite andpolylithionite (Fig 3c)

8 Gahnite

Gahnite was rarely found in the OIZ and shows a darkerzone that partially surrounds a lighter zone in a BSE image(Fig 11a) The darker zone has a higher Zn content andlower Sn Ti Nb Ta Mn contents and SnZn value than thelighter zone (Table 4 Fig 11b c) These gahnite composi-tions fall within the igneous field of Batchelor amp Kinnaird(1984) The darker zone is closer in composition to thepure gahnite (Zn8Al16O32) than the lighter zone whichcontains up to 0983 apfu Sn 0195 apfu Ti 1029 apfutotal Fe2thorn 0101 apfu Mn (Table 4) and consequently hasa composition distinct from nigerite In general both thedarker and lighter zones have higher Sn Ti and Fe contentsthan gahnite from the granitic pegmatites of Nigeria(Batchelor amp Kinnaird 1984) Arga northern Portugal(Gomes et al 1995) and Cabanas northern Portugal(Neiva amp Champness 1997) Borborema province north-eastern Brazil (Soares et al 2007) The Zn=Fe2thornt values ofthe darker and lighter zones of gahnite from Namivo arelower than those reported in Neiva amp Champness (1997)and Soares et al (2007)

9 Discussion and conclusions

91 Evolution of micas in the zoned pegmatite

In general individual mica crystals show varying patternsand compositional zoning involving several elementsmainly Si AlVI (AlIV thorn AlVI) Fe2thorn Mn (Fe2thornthorn Mn thornMg) Licalc Rb Cs F and OH and the KRb ratioProgressively zoned crystals from the IIZa show grada-tional contacts between a lithian muscovite core and a

976 A M R Neiva

eschweizerbart_xxx

lsquolsquomixed formrsquorsquo rim (Figs 3e 6e f) and the zoning patternscorrespond to fractionation trends and probably reflect adrop in temperature during the crystallization of the grani-tic pegmatite melt Progressively zoned crystals also occurin OIZ IIZb and Cc Some crystals are reversely zonedwith a) a lsquolsquomixed formrsquorsquo core and a lithian muscovite rimfrom the OIZ (Figs 3d d1 6d) b) a core consisting oflsquolsquomixed formrsquorsquo and lepidolite and a rim of muscovite andlithian muscovite from the IIZa (Figs 3f f1 6g h) c) alepidolite core and a muscovite and lithian muscovite rimfrom the Cc (Figs 3j 6o p) which may be explained bythe hypothesis of oscillations in the compositions of themelt from which they grew alternating between an Li-enriched boundary layer and a bulk melt that is less frac-tionated The muscovite evolved to lithian muscovite inIIZa and Cc (Figs 3f 6g h 3j 6o p) Replacements (Figs3a 6a b 3c 6c 3i 6m n Table 1) occur in OIZ and Ccand overgrowths (Figs 3b g 6i j k 3h 6l Table 1) occurin OIZ and IIZb as found in BSE images

Muscovite evolved to lithian muscovite as observed inOIZ IIZa IIZb and Cc (Figs 3f 6g h 3j 6o p Table 1)Lithian muscovite evolved to lsquolsquomixed formrsquorsquo in OIZ IIZaIIZb and Cc (Figs 3e 6e f Table 1) and lsquolsquomixed formrsquorsquoevolved to lepidolite in IIZa IIZb and Cc (Figs 3f f1 6gh 3h 6l Table 1) All these evolutions are due to fractionalcrystallization

In the OIZ lepidolite has more Si Licalcand F butsimilar KRb to that of zinnwaldite and replaces it (Figs

3a 6a b 7d Table 1) An FeMg-containing polylithionitehas higher Si Licalcand Rb contents and a smaller KRbratio than the lepidolite that it replaces (Figs 3c 6c Table1) and a continuous chemical evolution from lepidolite topolylithionite is shown

The trends for major and trace elements of micas withineach zone are difficult to define due to some partial over-lapping but a progressive evolution from muscovite to lithianmuscovite lsquolsquomixed formrsquorsquo and lepidolite in IIZa IIZb and Ccis mainly shown by an increase in the Si Licalc F Rb and Cscontents and a decrease in the KRb ratio and this is simi-larly shown in the OIZ from muscovite to lsquolsquomixed formrsquorsquo(Table 1 Fig 7) In the OIZ Si and Licalccontents increaseprogressively from zinnwaldite to lepidolite and FeMg-containing polylithionite but a gap occurs between zinnwal-dite and lepidolite (Table 1 Fig 4) whereas a continuousevolution from lepidolite to polylithionite is observed TheKRb ratios of zinnwaldite and polylithionite are within therange of that of lepidolite (Fig 7d e)

Each Al-richer mica (muscovite lithian muscovite andlsquolsquomixed formrsquorsquo) exhibits an evolution from the OIZ to theIIZa and then to the IIZb and Cc particularly shown by anincrease in the Si Licalc F and Rb contents and adecrease in the KRb ratio but also an increase in theCs content in the lsquolsquomixed formrsquorsquo (Table 1 Fig 7) Theseelements and ratio have been used as petrogenetic indi-cators of evolution in micas from pegmatites (eg Cernyet al 2005 Roda Robles et al 2006 2007 Vieira et al

Fig 7 Plot of some variation diagrams of micas from the OIZ IIZa IIZb and Cc of the Namivo granitic pegmatite Mozambique showingthat the Rb2O and Cs2O contents increase and the KRb ratio decreases for micas from the OIZ to the Cc OIZ IIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 977

eschweizerbart_xxx

Tab

le2

R

epre

sen

tati

ve

elec

tro

nm

icro

pro

be

anal

yse

sin

wt

o

ffe

ldsp

ars

sch

orl

and

spo

du

men

efr

om

the

Nam

ivo

gra

nit

icp

egm

atit

eM

oza

mb

iqu

e

Alb

ite

K-f

eld

spar

Sch

orl

Sp

od

um

ene

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

OIZ

Zo

ne

Cc

SiO

26

75

76

78

86

87

06

84

76

84

1S

iO2

65

10

65

55

65

46

64

96

64

72

SiO

23

52

0S

iO2

64

65

TiO

20

02

mdash0

02

mdashmdash

TiO

2mdash

00

1mdash

mdashmdash

TiO

20

35

Al 2

O3

27

20

Al 2

O3

20

25

19

74

19

67

19

88

19

97

Al 2

O3

18

96

18

23

18

31

18

24

18

05

B2O

3

10

28

Fe 2

O3

00

6F

e 2O

3mdash

mdashmdash

mdash0

10

Fe 2

O3

mdash0

02

mdash0

03

mdashA

l 2O

33

17

2M

nO

01

3M

nO

00

6mdash

mdashmdash

mdashM

nO

mdash0

03

00

3mdash

mdashF

eO1

35

2M

gO

01

8M

gO

mdashmdash

mdashmdash

mdashM

gO

00

10

01

00

5mdash

mdashM

nO

03

3N

a 2O

01

9C

aO1

04

08

00

56

03

70

32

CaO

00

10

01

00

60

01

00

2M

gO

22

8L

i 2O

8

05

Na 2

O1

06

11

12

01

12

11

13

41

13

4N

a 2O

06

50

58

04

10

59

03

8C

aO0

23

To

tal

10

04

6K

2O

00

50

17

00

60

14

01

0K

2O

14

72

14

75

15

67

15

01

15

74

Li 2

O

02

2S

rO0

72

05

00

24

01

1mdash

Rb

2O

00

90

20

03

00

59

09

0N

a 2O

22

8S

i1

99

7P

2O

50

01

00

4mdash

mdashmdash

Cs 2

O

00

6

00

60

09

01

80

20

K2O

00

1A

lIV0

00

3T

ota

l1

00

33

10

03

31

00

46

10

03

11

00

24

P2O

5mdash

00

3mdash

mdashmdash

H2O

3

18

P2

00

To

tal

99

60

99

48

10

03

89

96

11

00

01

F0

78

AlV

I0

98

7S

rC

a(w

t)0

81

07

40

50

03

50

Cl

mdashF

e3thorn

00

01

KR

b(w

t)153

68

48

23

16

Sum

1003

8P

09

9S

i1

18

23

11

87

91

19

58

11

93

21

19

21

KC

s(w

t)4

07

20

41

63

73

69

O

F0

33

Li

10

00

P0

00

10

00

6mdash

mdashmdash

To

tal

10

00

5M

n0

00

3T

i0

00

3mdash

00

03

mdashmdash

Si

11

98

61

20

88

12

04

11

20

45

12

03

3M

g0

00

8A

l4

17

64

07

14

03

54

08

34

10

1P

mdash0

00

5mdash

mdashmdash

TS

i5

95

2N

a0

01

2F

e3thorn

mdashmdash

mdashmdash

00

13

Ti

mdash0

00

1mdash

mdashmdash

Al

00

48

P1

02

Mn

00

09

mdashmdash

mdashmdash

Al

41

14

39

62

39

70

39

86

39

55

B3

00

0M

gmdash

mdashmdash

mdashmdash

Fe3thorn

mdash0

00

3mdash

00

04

mdashZ

Al

60

00

Ca

01

95

01

50

01

04

00

69

00

60

Mn

mdash0

00

50

00

5mdash

mdashY

Al

02

74

Sr

00

73

00

51

00

24

00

11

mdashM

g0

00

30

00

30

01

4mdash

mdashT

i0

04

5N

a3

59

93

80

03

78

33

83

23

83

1C

a0

00

20

00

20

01

20

00

20

00

4M

g0

57

5K

00

11

00

38

00

13

00

31

00

22

Na

02

32

02

07

01

46

02

12

01

37

Mn

00

47

K3

45

73

47

03

67

73

55

03

73

3F

e2thorn

19

12

Z1

60

01

59

61

60

01

60

11

60

4R

b0

01

10

02

40

03

50

07

00

10

8L

i0

14

8X

38

94

04

39

33

94

39

1C

s0

00

20

00

50

00

70

01

40

01

6P

Y3

00

0m

ole

s

XC

a0

04

2A

n5

13

82

71

71

5Z

16

10

16

06

16

01

16

03

15

99

Na

07

47

Ab

94

69

53

97

09

75

97

9X

37

13

72

39

03

85

40

0K

00

02

Or

03

09

03

08

06

mo

les

amp

02

09

An

01

01

03

01

01

Ab

63

56

38

56

35

OH

35

83

Or

93

69

43

95

99

43

96

4F

04

17

Cl

mdash

WZ

ndashw

allzo

ne

OIZ

ndasho

ute

rin

term

edia

tezo

ne

IIZ

aan

dII

Zb

ndashin

ner

inte

rmed

iate

zon

esC

cndash

core

asin

Fig

2B

aOis

bel

ow

the

det

ecti

on

lim

itin

bo

thfe

ldsp

ars

Cs 2

Ofrac14

00

3w

tin

the

K-

feld

spar

fro

mth

eW

Z

mdashN

ot

det

ecte

d

Nu

mb

ero

fio

ns

on

the

bas

iso

f3

2o

xy

gen

sfo

ral

bit

ean

dK

-fel

dsp

ar

31

anio

ns

(O

OH

F

)fo

rsc

ho

rlan

d6

ox

yg

ens

for

spo

du

men

e

-A

mo

un

tin

ferr

edfr

om

con

sid

erat

ion

so

fst

oic

hio

met

ry

978 A M R Neiva

eschweizerbart_xxx

2011) Lepidolite from the OIZ is an Al-poorer mica (Fig4) and has the highest Si Licalcand F contents (Table 1)indicating that an evolution cannot be shown from thislepidolite to lepidolites from the other zones which areAl-richer micas (Fig 4) However there is a regulardecrease in the KRb ratio and a progressive increase inthe Rb and Cs contents from lepidolite of the OIZ tolepidolite of IIZa IIZb and Cc (Fig 7) which indicatesthat the KRb ratio and Rb and Cs contents must not beconsidered alone to show fractional crystallization in

lepidolites particularly if some are Al-richer micas andothers Al-poorer micas The high Licalcand F contents oflepidolite from the OIZ did not decrease its KRb ratioSuch an effect is considered to have taken place in lepi-dolite (an Al-richer mica) from the wall zone of the Tancopegmatite Manitoba Canada (Van Lichtervelde et al2008) An evolution from the lepidolite of the IIZa to thatof the Cc is generally shown by the increasing Si LicalcF Rb Cs contents and a decrease in the KRb ratio (Table1 Fig 7)

At the scale of crystals the pegmatite zones and alsothose from the OIZ to the Cc of the Namivo granitic pegma-tite Al-richer micas show fractionation because theyformed from the fractionation of an Li-rich pegmatite melt

The Al-poorer micas zinnwaldite lepidolite and FeMg-containing polylithionite only occur in the OIZ (Fig 4)Polylithionite is the mica richest in Si and Licalc and lepi-dolite from this zone is the richest in Si Licalcand F (Fig 4Table 1) The high Li contents of these micas reflect aconsiderably higher D(Li) at low temperature (Icenhoweramp London 1995) These Li-rich micas may have crystal-lized from an undercooled melt This hypothesis does notimply high Rb and Cs contents and low KRb ratios Thisagrees with the fact that these micas from the OIZ havesimilar Rb and Cs contents and KRb ratios to those of Al-richer micas (muscovite lithian muscovite and lsquolsquomixedformrsquorsquo) from the same pegmatite zone (Fig 7) Howeverthe lepidolite from the wall zone of the Tanco pegmatiteCanada of a similar origin has a low KRb ratio which isattributed to the complexly interrelated structural compo-nents of this lepidolite (Van Lichtervelde et al 2008) TheLi-rich micas from the OIZ may also represent disequili-brium These two hypotheses are considered the best forthese micas of primary magmatic origin

Another hypothesis was also considered They may havecrystallized in boundary layers which concentrate Li andF But this mechanism was suggested for the most fractio-nated tourmaline enriched in Li and F from the core of the

Fig 8 Plot of albite compositions from all zones of the Namivo granitic pegmatite Mozambique showing that the anorthite content of albitedecreases from the WZ to the Cc WZ OIZ IIZa IIZb and Cc as in Fig 2

Fig 9 The Rb vs Cs diagram of K-feldspar from all zones of theNamivo granitic pegmatite Mozambique showing that the Rb andCs contents of K-feldspar increase from the WZ to the Cc WZ OIZIIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 979

eschweizerbart_xxx

Little Three pegmatite dike USA (Morgan amp London1999) and the micas enriched in Li and F from theNamivo pegmatite belonging to the OIZ Furthermore ina boundary layer melt that became enriched in Li and F theKRb ratio of micas decreases strongly (Van Lichterveldeet al 2008) which was not found in these micas from theOIZ (Fig 7d) Nor can they have resulted from the crystal-lization of a late melt that would have reacted with the OIZbecause these micas are among those containing the high-est KRb values (Fig 7d)

92 The importance of feldspars micas andcolumbitendashtantalite compositions to the Namivogranitic pegmatite evolution

The trace elements Rb and Cs and the KRb and KCs ratioshave been used to show the evolution of K-feldspar inpegmatites (eg Cerny 1994 Cerny et al 2005 RodaRobles et al 2005) The Rb and Cs contents increase andthe KRb and KCs ratios of K-feldspar decrease from theWZ to the Cc (Fig 9 Table 2) reflecting the growth of K-feldspar from an increasingly fractionated melt withouthaving grown from or having been chemically modifiedby an aqueous fluid as in the Swamp pegmatite section atthe Little Three Mine USA (London et al 2012) Thecrystallization of K-feldspar from an exsolved aqueousfluid from melt will reverse the magmatic fractionation ofRb Cs KRb and KCs because Rb and especially Cs areso much more compatible in vapor that both Rb and Csremain in the fluid phase (London et al 2012) The feldsparsolvus pairs in the Namivo pegmatite record magmaticcrystallization temperatures that decrease from WZ to CcAlbite shows a decrease in the Ca Sr contents and SrCaratio from the WZ to the Cc (Fig 8 Table 2) Therefore thefeldspars and also Al-richer micas as already explainedshow fractionation in this zoned pegmatite

In general lepidolite from the Namivo pegmatite hassimilar Rb2O and Cs2O contents and KRb (wt) values tothose of lepidolite from the Rozna and Dobra Voda lepi-dolite-subtype pegmatites in the Czech Republic (Cernyet al 1995) but lower Rb2O and Cs2O contents thanlepidolite from the lepidolite-subtype pegmatite at RedCross Lake Manitoba Canada (Cerny et al 2012a) K-feldspar from the Namivo pegmatite also has lower Rb2O

Table 3 Representative electron microprobe analyses in wt of columbitendashtantalite from the Namivo granitic pegmatite Mozambique

Outer Intermediate Zone - OIZ Inner Intermediate Zone - IIZa

Core - Cc

D L L

WO3 022 059 079 113 101 351 050 007Ta2O5 5487 5123 2503 3186 2888 2519 3127 4542Nb2O5 2537 3000 5483 4635 5113 5144 4911 3686SnO2 008 015 024 049 020 026 017 012TiO2 263 161 136 254 202 145 125 016FeO 860 710 665 471 236 068 mdash mdashMnO 793 952 1099 1304 1400 1725 1748 1718Total 9970 10020 9989 10012 9960 9978 9978 9981W 0004 0011 0013 0019 0016 0057 0008 0001Ta 1065 0975 0422 0552 0495 0430 0543 0847Nb 0819 0949 1538 1336 1456 1460 1418 1143Sn 0002 0004 0006 0012 0005 0007 0004 0003Ti 0141 0085 0063 0122 0096 0068 0060 0008Fe 0513 0416 0345 0251 0124 0036 mdash mdashMn 0479 0564 0578 0704 0747 0917 0945 0998P

3023 3004 2965 2996 2939 2975 2978 3000Mn(Mn thorn Fe) 048 058 063 074 086 096 100 100Ta(Ta thorn Nb) 057 051 022 029 025 023 028 043Classification tant-(Fe) tant-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn)

D ndash darker L ndash lighter zones mdash Not detected tant-tantalite col-columbite Cation formula on the basis of 6 atoms of oxygen

Fig 10 Compositions of columbitendashtantalite from the Namivogranitic pegmatite Mozambique in the columbite quadrilateralshowing that Mn(Mn thorn Fe) of columbite-(Mn) increases from theOIZ to the Cc and the richest columbite-(Mn) in Ta(Ta thorn Nb)tantalite-(Fe) and tantalite-(Mn) only occur in the OIZ OIZ IIZaand Cc as in Fig 2

980 A M R Neiva

eschweizerbart_xxx

and Cs2O contents than K-feldspar from the lepidolite-subtype pegmatite at Red Cross Lake The Rb2O andCs2O contents of primary and late K-feldspar of this peg-matite at Red Cross Lake attained unprecedented levels(Cerny et al 2012a) The lowest KRb (wt) values ofmuscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepido-lite from the IIZb and Cc (Fig 7) and K-feldspar (KRb frac1414) from the Cc compare well with those found in theseminerals from the AC6frac143 lepidolite-subtype pegmatitefrom Greer Lake (Cerny et al 2005) and some of themost fractionated pegmatites worldwide which belong tothe petalite-subtype (eg Tanco Manitoba Cerny 2005Cerny et al 1998 Varutrask Sweden Cerny et al 2005)but muscovite lithian muscovite and lepidolite from theIIZb and Cc have lower Rb2O and Cs2O contents than thesemicas from the Tanco pegmatite (Cerny 2005a VanLichtervelde et al 2008) K-feldspar also has lower

contents of these oxides than the most evolved K-feldsparfrom the Tanco pegmatite (Cerny 2005a) The magmaticfractionation was strong from the WZ to IIZb and Cc of theNamivo lepidolite-subtype pegmatite

The compositional trend of columbite-(Mn) from the OIZto Cc of the Namivo granitic lepidolite-subtype pegmatite(Fig 10) is identical to that of columbite-group mineralsfrom the lepidolite-subtype complex granitic pegmatitesfrom the Dobra Voda in the Moldanubicum CzechRepublic (Novak amp Cerny 1998) and the HimalayaDistrict southern California (shown in Cerny et al 2004)Experimental data for the Fe-Mn pair (Linnen amp Cuney2005) suggest an increase in Fe with fractional crystalliza-tion which is not observed in nature Other phases seem tocontrol the bahavior of Fe and Mn in the melt eg thecrystallization of tourmaline causes a rapid increase of theMnFe in the melt (Van Lichtervelde et al 2006) When thecrystallization of tourmaline stopped the columbitendashtantaliteminerals showed a constant MnFe indicating that the Fe andMn contents in the melt remained constant Schorl onlyoccurs in the OIZ of the Namivo granitic pegmatite and itscrystallization cannot be responsible for the increase in theMnFe of the melt because Mn(Mn thorn Fe) of columbite-(Mn) increases progressively from the OIZ to the IIZa and Cc(Fig 10) Garnet zinnwaldite and gahnite containing Fe andMn also only occur in the OIZ and cannot also have causedthe increase of the MnFe in the melt The dominant Mnenrichment before Ta enrichment started in the columbitendash-tantalite composition from some granitic pegmatites isattributed to an increased alkali-fluoride activity at moderatemHF (Cerny et al 2004) and an increase in the activity offluorine (Martins et al 2011) Each Al-richer mica (musco-vite lithian muscovite and lsquolsquomixed formrsquorsquo) from the Namivogranitic pegmatite shows an increase in F content from theOIZ to the IIZa IIZb and Cc (Table 1) In general the Fcontent of lepidolite also increases from the IIZa to the IIZband Cc Therefore the extreme Fe-Mn fractionation beforeTa enrichment in columbite-(Mn) (Fig 10) may be due to anincrease in the activity of fluorine as a consequence offractional crystallization The increase in the Ta content ofcolumbite-(Mn) from the Namivo granitic pegmatite isattributed to fractional crystallization

The geochemical evolution of albite and K-feldsparfrom the WZ to the Cc Al-richer micas muscovite lithianmuscovite and lsquolsquomixed formrsquorsquo from the OIZ to the Cc andlepidolite from the IIZa to the Cc and columbite-(Mn) andalso beryl (Neiva amp Neiva 2005) from the OIZ to the Ccare caused by magma fractionation The pegmatite zonesare the product of primary crystallization from a volatile-rich silicate melt The pegmatite consolidated from the WZto the Cc The IIZb is one of the most evolved zones asalso suggested by the beryl composition (Neiva amp Neiva2005) and is the richest in lsquolsquomixed formrsquorsquo and lepidolite

The richest columbite-(Mn) in Ta(Ta thorn Nb) and com-positions of tantalite-(Fe) and tantalite-(Mn) only occur inthe OIZ (Fig 10a) associated with lepidolite and polythio-nite (Fig 3c) which may be due to the local depletion of Liand F in the melt which decreases the solubility of Ta andcauses Ta precipitation (Linnen 1998 Linnen amp Cuney

Fig 11 a Backscattered-electron image of a gahnite crystal with adarker zone partially surrounding a lighter zone from the OIZ of theNamivo granitic pegmatite b c Plot of gahnite compositions in theSn-Zn-Ti diagram (atomic proportions) showing a chemical distinc-tion between the lighter and darker zones OIZ as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 981

eschweizerbart_xxx

2005) At the Tanco pegmatite Ta oxides are also asso-ciated with lepidolite enriched in Li and F from the wallzone (Van Lichtervelde et al 2008)

93 Origin and evolution of the zoned graniticlepidolite-subtype pegmatite at Namivo

In general granitic pegmatites particularly those belong-ing to the rare-element class are accepted as having beenformed by the fractional crystallization of a granite melt(eg Cerny 1991a b 1992 Neiva et al 2008 2012 Roda-Robles et al 2012) But it also has been proposed thatpegmatites may be formed by partial melting of appropri-ate rock compositions (eg Nabelek et al 1992 Nabelekamp Russ-Nabelek 1992 Shearer et al 1992 Roda Robleset al 1999) The lepidolite-subtype pegmatites belong tothe LCT (lithium-cesium-tantalum) family (Cerny amp Ercit2005) They are derived by fractional crystallization of agranite magma (eg Cerny et al 2005 Neiva amp Ramos2010 Cerny et al 2012b) Experimental work by Londonet al (1989) and London (1990) using Macusani glass as astarting material equivalent to the bulk composition ofhighly fractionated rare-alkali-rich pegmatites underhighly evolved and hydrous but H2O undersaturatedmelt obtained the latest primary assemblage consisting

of an Li-rich mica thorn albite thorn quartz deposited directlyfrom the primary melt phase Other authors egZasedatelev (1974 1977) and Stewart (1978) argue thatlepidolite-bearing pegmatites are derived from direct ana-texis and Gordiyenko et al (1996) consider that they arederived from an undefined medium and the rare-elementmineralization is superimposed on preexisting barrenpegmatites

Lepidolite-subtype pegmatites may migrate a long wayfrom their parent granites because their volatile-rich highlyfluid pegmatite melts are stable at relatively low tempera-tures (eg Cerny et al 2005 Antunes et al 2013)Therefore the Namivo pegmatite is probably derived byfractional crystallization of an S-type granite magmawhich resulted from partial melting of metamorphosed juve-nile sediments containing micas that carry most of the traceelements that define the signature of the LCT pegmatites(eg Dahl et al 1993)

The two main models for the internal evolution of peg-matites that dominated for more than a century are a) thefractional crystallization of a flux-bearing granitic melt fromthe margins to the center of the pegmatite (Cameron et al1949) b) the interactions of an aqueous fluid with graniticmelt (Jahns amp Burnham 1969 Jahns 1982) The recentmodel of constitutional zone refining combines aspects ofboth models and invokes the formation of a flux-enriched

Table 4 Electron microprobe analyses in wt of zoned gahnite from the outer intermediate zone (OIZ) of the Namivo granitic pegmatiteMozambique

Darker Zone Lighter Zone

Mean s Range Mean s Range

SnO2 036 050 0ndash097 658 281 151ndash998TiO2 008 008 0ndash021 065 034 008ndash105Nb2O5 001 002 0ndash006 018 007 007ndash029Ta2O5 001 004 0ndash010 015 013 0ndash033ZnO 3998 123 3810ndash4109 3339 318 3004ndash3848FeO 367 048 331ndash442 433 065 306ndash498MnO 032 004 028ndash040 039 006 032ndash048MgO 003 004 0ndash010 ndash ndash ndashAl2O3 5507 050 5436ndash5572 5337 070 5257ndash5443SiO2 003 003 0ndash007 008 010 0ndash025Total 9956 9912n 8 8Sn 0035 0048 0ndash0095 0648 0278 0149ndash0983Ti 0015 0015 0ndash0038 0120 0064 0015ndash0195Nb ndash 0003 0ndash0006 0021 0009 0009ndash0037Ta ndash 0002 0ndash0006 0009 0009 0ndash0021Zn 7226 0182 6890ndash7382 6086 0568 5482ndash6965Fe2thornt 0752 0103 0675ndash0913 0894 0135 0628ndash1029Mn 0066 0008 0057ndash0083 0082 0013 0066ndash0101Mg 0010 0015 0ndash0037 ndash ndash ndashAl 15887 0052 15805ndash15954 15526 0170 15375ndash15853Si 0007 0008 0ndash0018 0019 0025 0ndash0062P

23998 23405Fe3thorn 0064 0230Fe2thorn 0686 0658SnZn 0005 0007 0ndash0014 0106 0052 0021ndash0179ZnFe2thornt 961 143 768ndash1093 681 190 536ndash1109

n number of analysis Cation formula based on 32 atoms of oxygen Fe2thornt total Fe2thorn estimated

982 A M R Neiva

eschweizerbart_xxx

boundary layer of silicate liquid in advance of a crystal-lization front (London 2008 London amp Morgan 2012)

Lepidolite-subtype pegmatites are generally scarce(Cerny et al 2005) particularly the zoned ones In thesymmetrically zoned lepidolite-subtype pegmatites ofRozna and Dobra Voda Czech Republic micas (Cernyet al 1995) tourmaline (Selway et al 1999) and colum-bite-group minerals (Novak amp Cerny 1998) evolve fromthe outermost zone to the innermost zone following thecrystallization sequence The same was found in tourma-line from the zoned Lastovicky Dolnı Bory and Raddovicelepidolite-subtype pegmatite dikes in the Czeck Republic(Selway et al 1999)

In general beryl (Neiva amp Neiva 2005) feldsparsmicas and columbite-(Mn) (in this paper) from theNamivo lepidolite-subtype pegmatite record the progres-sive chemical evolution of the pegmatite from the wallzone to the core These minerals were produced by crystal-lization from a silicate melt rather than an aqueous fluidphase The slow cooling of melt shown by the magmaticcrystallization temperatures of feldspars cannot explain theincrease in grain-size of minerals from the wall zone to thecore but fluxes will be necessary to promote the change oftexture particularly a flux-rich hydrosilicate liquidaccording to the experimental evidence (London 2009)The constitutional zone refining model will be the best forthis zoned pegmatite and probably for all lepidolite-sub-type pegmatites because this model also produces a higherfinal concentration of incompatible components in a smal-ler volume of rock than fractional crystallization does(Morgan amp London 1999)

The core margin at the Rozna pegmatite contains K-feld-spar and quartz and the core consists mainly of quartz but it issurrounded and penetrated by a quartz-bearing albitethorn lepi-dolite complex which contains several minerals At theDobra Voda pegmatite the center of the dike is occupiedby the lepidolite unit containing albite and other minerals(Cerny et al 1995) At the Namivo pegmatite the coremargin consists of quartz and beryl and the core containsmainly quartz and spodumene but also albite lepidolite andother minerals The last-unit assemblages of primary miner-als in most of the highly fractionated LCT pegmatites are richin albite and commonly contain lepidolite or spodumene andmost of the other rare phases These units represent the lastmost fractionated liquid that can be derived by fractionalcrystallization of a crustal melt (London 2008)

The Namivo granitic pegmatite shows a significant dis-tinction from the other zoned lepidolite-subtype pegmatitesand LCT pegmatites except the Tanco petalite-subtypepegmatite in Canada because the lepidolite richest in SiLi and F FeMg-containing polylithionite and associatedcolumbite-(Mn) with the highest Ta(Ta thorn Nb) ratio tanta-lite-(Fe) and tantalite-(Mn) only occur in the outer inter-mediate zone These minerals usually form late in theconsolidation of pegmatites The lepidolite and polylithio-nite are probably derived from the disequilibrium crystal-lization of an undercooled melt Tantalite may reflect a localdecrease in Li and F that caused Ta precipitation

This paper contributes to a better understanding of theorigin and evolution of the rare zoned lepidolite-subtypepegmatites and shows that although the pegmatite evolvedfrom the wall zone to the core it presents an unusualassociation of lepidolite polylithionite and tantalite in theouter intermediate zone

Acknowledgments Thanks are due to JM Cotelo Neivaand MB Dias for the samples and information providedand to MR Machado Leite and MF Guimaraes for theuse of the electron microprobe facilities at the LaboratorioNacional de Energia e Geologia (LNEG) PortugalFinancial support was provided by the PortugueseGovernment for the project Pest-OECTEUI00732011of the Geosciences Centre through the PortugueseFoundation for Science and Technology I would like tothank D London WB Simmons and the associated editorE Widom for their constructive reviews of this manuscriptand M Prieto for his editorial work

References

Alfonso P Melgarejo JC Yusta I Velasco F (2003)

Geochemistry of feldspars and muscovite in granitic pegmatite

from the Cap de Creus field Catalonia Spain Can Mineral 41

103ndash116

Antunes IMHR Neiva AMR Ramos JMF Silva PB

Silva MMVG Corfu F (2013) Petrogenetic links between

lepidolite-subtype aplite-pegmatite aplite veins and associated

granites at Segura (central Portugal) Chemie der Erde in press

httpdxdoiorg101016jchemer20121203

Batchelor RA amp Kinnaird JA (1984) Gahnite compositions

compared Mineral Mag 48 425ndash430

Beurlen H Da Silva MRR Thomas R Soares DR Olivier P

(2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-

element granitic pegmatite fractionation in the Borborema pro-

vince Northeastern Brazil Miner Deposita 43 207ndash228

Cameron EN Jahns RH McNair AH Page LR (1949)

Internal structure of granitic pegmatites Econ Geol

Monograph 2 115 p

Cerny P (1991a) Fertile granites of Precambrian rare-element

pegmatite fields is geochemistry controlled by tectonic setting

or source lithologies Precambrian Res 51 429ndash468

mdash (1991b) Rare-element granite pegmatites I Anatomy and inter-

nal evolution of pegmatite deposits Geoscience Canada 18

49ndash67

mdash (1992) Geochemical and petrogenetic features of mineralization

in rare-element granitic pegmatites in the light of current

research Applied Geochemistry 7 393ndash416

mdash (1994) Evolution of feldspars in granitic pegmatites in

lsquolsquoFeldspars and their Reactionsrsquorsquo I Parsons ed NATO

Advanced Study Institute Series C421 501ndash539

mdash (2005) The Tanco rare-element pegmatite deposit Manitoba

regional context internal anatomy and global comparisons in

lsquolsquoRare-element Geochemistry and Mineral Depositsrsquorsquo RL

Linnen amp IM Samson eds Geochemical Association of

Canada Short Course Notes St Catherines 17 127ndash158

Silicate and oxide minerals from a zoned granitic pegmatite 983

eschweizerbart_xxx

Cerny P amp Ercit TS (2005) The classification of granitic pegma-

tites revisited Can Mineral 43 2005ndash2026

Cerny P Meintzer RE Andersen AJ (1985) Extreme fractiona-

tion in rare-element granitic pegmatites selected examples of

data and mechanisms Can Mineral 23 381ndash421

Cerny P Goad BE Hawthorne FC Chapmann R (1986)

Fractionation trends of the Nb- and Ta-bearing oxide minerals

in the Greer Lake pegmatite granite and its pegmatite aureole

southeastern Manitoba Am Mineral 71 501ndash517

Cerny P Stanek J Novak M Baadsgaard H Rieder M

Ottolini L Kavalova M Chapman R (1995) Geochemical

and structural evolution of micas in the Rozna amp Dobra Voda

pegmatites Czech Republic Mineral Petrol 55 177ndash201

Cerny P Ercit TS Vanstone PJ (1998) Mineralogy and petrol-

ogy of the Tanco rare-element pegmatite deposit southeastern

Manitoba International Mineralogical Association 17th General

Meeting Toronto Field Guidebook B6

Cerny P Chapman R Ferreira K Smeds SA (2004)

Geochemistry of oxide minerals of Nb Ta Sn and Sb in

the Varutrask granitic pegmatite Sweden The case of an

lsquolsquoanomalousrsquorsquo columbitendashtantalite trend Am Mineral 89

505ndash518

Cerny P Masau M Goad BE Ferreira K (2005) The Greer

Lake leucogranite Manitoba and the origin of lepidolite-sub-

type granitic pegmatites Lithos 80 305ndash321

Cerny P Teertstra DK Chapman R Selway JB Hawthorne

FC Ferreira K Chackowsky LE Wang X-J Meintzer

RE (2012a) Extreme fractionation and deformation of the

leucogranite-pegmatite suite at Red Cross Lake Manitoba

Canada IV Mineralogy Can Mineral 50 1839ndash1875

Cerny P Halden NM Ferreira K Meintzer RE Brisbin WC

Chackowsky LE (2012b) Extreme fractionation and deforma-

tion of the leucogranite-pegmatite suite at Red Cross Lake

Manitoba Canada II Petrology of the leucogranites and peg-

matites Can Mineral 50 1807ndash1822

Dahl PS When DC Feldmann SG (1993) The systematics of

trace-element partitioning between coexisting muscovite and

biotite in metamorphic rocks from the Black Hills South

Dakota USA Geochim Cosmochim Acta 57 2487ndash2505

Dias MB amp Wilson WE (2000) The Alto Ligonha Pegmatites

Mozambique Mineral Record 31 459ndash497

Fleet ME (2003) Rock-Forming Minerals vol 3A Sheet silicates

micas The Geological Society London second edition chap 6

Lithium micas 651ndash690

Foord EE Cerny P Jackson LL Sherman DM Eby RK

(1995) Mineralogical and geochemical evolutions of micas

from miarolitic pegmatites of the anorogenic pikes-Peak

Batholith Colorado Mineral Petrol 55 1ndash26

Foster MD (1960) Interpretation of the composition of lithium

micas US Geol Surv Prof Paper 354-E 115ndash147

Fuhrman ML amp Lindsley DK (1988) Ternary-feldspar modeling

and thermometry Am Mineral 73 201ndash215

Gomes CL Castro P Alves C (1995) Caracterizacao das espi-

nelas zincıferas e do par ganite-nigerite no campo aplito-

pegmatıtico da Serra de Arga-Minho N de Portugal IV

Congresso Nacional de Geologia Resumos Alargados

Universidade do Porto Mem 4 629ndash633

Gordiyenko VV Ilyina AN Timochina LA Badamina EB

Stanek J (1996) Geochemical model of evolution of a pegma-

tite-forming ore-magmatic system of western Moravia Proc

Russ Mineral Soc 125 38ndash48 (in Russian)

Icenhower JP amp London D (1995) An experimental study for

element partitioning between biotite muscovite and coexisting

peraluminous granitic melt at 200 MPa (H2O) Am Mineral 80

1229ndash1251

Jahns RH (1982) Internal evolution of pegmatite bodies in lsquolsquoGranitic

Pegmatites in science and industryrsquorsquo P Cerny ed Mineralogical

Association of Canada Short Course Handbook 8 293ndash327

Jahns RH amp Burnham CW (1969) Experimental studies of

pegmatite genesis I A model for the derivation and crystal-

lization of granitic pegmatites Econ Geol 64 843ndash864

Jolliff BL Papike JJ Shearer CK (1987) Fractionation trends

in mica and tourmaline as indicators of pegmatite internal evo-

lution Bob Ingersoll pegmatite Black Hills South Dakota

USA GeochimCosmochim Acta 51 519ndash534

Kile DE amp Foord EE (1998) Micas from the Pikes Peak bath-

olith and its cogenetic granitic pegmatites Colorado optical

properties composition and correlation with pegmatite evolu-

tion Can Mineral 36 463ndash482

Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic

melts with Li and Li thorn F constraints for mineralization in rare

metal granites and pegmatites Econ Geol 93 1013ndash1025

Linnen RL amp Cuney M (2005) Granite-related rare-element

deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf

mineralization in lsquolsquoRare-element geochemistry and mineral

depositsrsquorsquo RL Linnen amp IM Samson eds Geochemical

Association of Canada Short Course Notes 17 45ndash68

London D (1990) Internal differentiation of rare-element pegmatites

a synthesis of recent research in lsquolsquoOre Bearing Granite Systems

Petrogenesis and Mineralizing Processesrsquorsquo HJ Stein amp JL

Hannah eds Geol Soc America Special Paper 246 35ndash50

mdash (2008) Pegmatites The Canadian Mineralogist Special

Publication 10 347 p

mdash (2009) The origin of primary textures in granitic pegmatites

Can Mineral 47 697ndash724

London D amp Morgan GB VI (2012) The pegmatite puzzle

Elements 8 263ndash268

London D Morgan GB VI Hervig RL (1989) Vapor-under-

saturated experiments in the system macusanite-H2O at 200

MPa and the internal differentiation of granitic pegmatites

Contrib Mineral Petrol 102 1ndash17

London D Morgan GB VI Paul KA Guttery BM (2012)

Internal evolution of miarolitic granitic pegmatites at the Little

Three mine Ramona California USA Can Mineral 50

1025ndash1054

Martins T Lima A Simmons WB Folster AU Noronha F

(2011) Geochemical fractionation of Nb-Ta oxides in Li-bear-

ing pegmatites from the Barroso-Alvao pegmatite field northern

Portugal Can Mineral 49 777ndash791

Monier G Charoy B Cuney M Ohnenstetter D Robert JL

(1987) Evolution spatiale et temporelle de la composition des

micas du granite albitique a topaze-lepidolite de Beauvoir

Geologie De La France 2ndash3 179ndash188

Monier G amp Robert JL (1986) Evolution of the miscibility gap

between muscovite and biotite solid solutions with increasing

lithium content an experimental study in the systems

K2OndashLi2OndashMgOndashAl2O3ndashSiO2ndashH2OndashHF at 600 C 2 kbar

PH2O comparison with natural lithium micas Mineral Mag

50 641ndash651

Morgan GBVI amp London D (1999) Crystallization of the little

three layered pegmatite-aplite dike Ramona District California

Contrib Mineral Petrol 136 310ndash330

984 A M R Neiva

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985

Page 8: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

diffuse reequilibration took place in any crystal as thecontacts between core and rim are sharp

In the Cc lithian muscovite is surrounded and pene-trated by lsquolsquomixed formrsquorsquo showing well defined contacts(Fig 3i) The lsquolsquomixed formrsquorsquo has higher Si Fe2thorn Mn(Fe2thornthorn Mn thorn Mg) Licalc Rb Cs F contents and lowerAlVI (AlIV thorn AlVI) Na OH contents and KRb ratio thanthe lithian muscovite (Table 1 Fig 6m n) and a composi-tional gap occurs between both micas suggesting thatlsquolsquomixed formrsquorsquo replaced lithian muscovite In rare crystalsa small lepidolite core is surrounded by a large muscoviterim containing K-feldspar inclusions The contact betweenthe core and rim is sharp (Fig 3j) A thin partial rim oflithian muscovite surrounds muscovite and the contact isgradual The muscovite rim has higher AlVI (AlIVthornAlVI)Na K OH contents and a greater KRb value and lower SiFe2thorn Mn Licalc Rb Cs and F contents than the lepidolitecore (Table 1 Fig 6o p) and a compositional gap occursbetween them (Fig 6o p) indicating that either muscoviteforms an overgrowth or it is reversely formed From themuscovite rim to the lithian muscovite rim the Si Licalc

Rb F contents increase whereas the AlVI (AlIV thorn AlVI)and OH contents and KRb ratio decrease (Table 1 Fig 6op) suggesting that muscovite evolved to lithian muscoviteas also found in IIZa and IIZb

44 Evolution of mica compositions within each zoneand from the outer intermediate zone to the core of theNamivo granitic pegmatite

The KRb ratio is taken as the best fractionation index inmicas (eg Cerny et al 1985 Foord et al 1995 Wise1995 Pesquera et al 1999 Roda Robles et al 2006 2007)It is hard to establish trends in the evolution of mica com-position from muscovite and lithian muscovite to lsquolsquomixedformrsquorsquo and lepidolite within each zone because the KRbratio shows some partial overlapping particularly betweenthe lithian muscovite and lsquolsquomixed formrsquorsquo and also betweenthe latter and lepidolite However an evolution from mus-covites to lepidolite (Al-richer mica Fig 4) is clearer (Fig7) In general in IIZa IIZb and Cc the Si Licalc Rb Cs and

Fig 5 The main substitutions in micas from the Namivo granitic pegmatite Mozambique a b SiIVthorn LiVI versus AlIVthornAlVI showing the 2SithornLi 3Altotal substitution mechanism operating in dioctahedral micas (Mu muscovite and Lith mu lithian muscovite) c d AlVI thornamp VI

versus LiVI (where amp represents a vacancy) and showing the 3LiVI AlVI thorn 2 amp VI substitution mechanism operating in trioctahedral micas(Mix f ndashlsquolsquomixed formrsquorsquo Lep lepidolite Zin zinnwaldite and Pol-FeMg-containing polylithionite) OIZ IIZa IIZb and Cc as in Fig 2

974 A M R Neiva

eschweizerbart_xxx

F contents tend to increase and the (AlIV thorn AlVI) AlVI

contents and KRb ratio tend to decrease from muscoviteto lepidolite (Table 1 Fig 7) This sequence is consistentbut rarely in the Cc lepidolite is rimmed by muscovite (Fig3j) But in the OIZ the evolution stops in lsquolsquomixed formrsquorsquoparticularly shown by the large range of the KRb ratiowhich mainly overlaps that of lepidolite from this zone(Fig 7) because this lepidolite is an Al-poorer mica whereasthe others are Al-richer micas (Fig 4)

In the OIZ the lepidolite has more Si Licalc and F andless (AlIV thorn AlVI) Ti Fe2thorn Mn Mg and Zn than zinn-waldite (Table 1) but it has larger ranges of Rb and KRbratio than zinnwaldite (Fig 7) The FeMg-containingpolylithionite is the richest mica in Si Licalc and thepoorest in (AlIV thorn AlVI) (Table 1) But at this zone scalethe polylithionite has Rb Cs contents and KRb ratiowithin the ranges for lepidolite and close to those of zinn-waldite (Fig 7)

Fig 6 Variation diagrams of micas from selected zoned crystals from the zones of the Namivo granitic pegmatite Mozambique to showtheir relationships lith musc lithian muscovite OIZ IIZa IIZb and Cc an in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 975

eschweizerbart_xxx

From the OIZ to IIZa IIZb and Cc muscovite and lithianmuscovite generally show increases in the Si Licalc F and Rbcontents and decreases in the Fe2thorn and Mg contents and KRb ratio but the Mg content is very low in these micas fromthe IIZa IIZb and Cc (Table 1 Fig 7a) The lsquolsquomixed formrsquorsquoshows increases in the Si Licalc F Rb Cs contents anddecreases in the (AlIV thorn AlVI) and Mg contents and KRbratio but the Mg content is very low in this mica from theIIZb and Cc (Table 1 Fig 7b c) The lepidolite shows anincrease in the Si Licalc F Rb and Cs contents and a decreasein the KRb ratio from the IIZa to the IIZb and Cc (Table 1Fig 7d e) Furthermore the lepidolite from the OIZ has thelowest (AlIV thorn AlVI) AlVI and OH contents the highest SiFe2thorn Licalcand F contents and KRb ratio and the lowest Rband Cs contents compared to lepidolite from the other zones(Table 1 Fig 7d e)

5 Feldspars

Selected chemical analyses of albite and K-feldspar fromfive zones of the Namivo granitic pegmatite are given inTable 2 Strontium is the most abundant trace element inalbite (eg Cerny 1994) Anorthite and Sr contents and SrCa ratio of albite decrease from the WZ to the Cc (Fig 8Table 2) Rubidium is the most abundant trace element inK-feldspar followed by Cs in IIZa IIZb and Cc In gen-eral K Rb and Cs contents of K-feldspar increase and KRb and KCs values decrease from the WZ to the Cc (Table2 Fig 9)

The program SOLVCALC 20 (Wen amp Nekvasil 1994)using the Margules model Fuhrman amp Lindsley (1988) wasapplied for the purpose of thermometry The pairing ofplagioclase cores with the K-feldspars average of eachsample was used to estimate the crystallization temperaturesof primary magmatic feldspars They are 405 C (WZ)406ndash340 C (OIZ) 390ndash335 C (IIZa) 347ndash306 C (IIZb)and 333ndash289 C (Cc) at 3 kbar The metamorphic environ-ment of rare-element-Li granitic pegmatites is one of lowpressure 2ndash4 kbar (Cerny amp Ercit 2005) In general thedifference between the maximum and minimum calculatedtemperatures at 2 3 and 4 kbar for the same feldspar pairfrom the Namivo pegmatite is lower than 40 C The tem-perature decreases from the wall zone (WZ) to the core(Cc) A similar temperature behavior of feldspars wasfound in the pegmatite-aplite dike USA (Morgan ampLondon 1999)

6 Other silicates

Tourmaline of schorl composition was only found inthe OIZ (Table 2) because there was not enough Feand Mg for schorl to precipitate in the other zonesSpodumene only occurs in the Cc and its compositionis nearly pure (Table 2)

7 Columbite-tantalite

Representative chemical analyses of columbitendashtantalitefrom the Namivo granitic pegmatite are given in Table 3and plotted in the columbite quadrilateral (Fig 10a)Most crystals are unzoned but zoned crystals with dar-ker and lighter zones in BSE images are from the Cc Thelighter zone of columbite-(Mn) has higher Ta contentTa(Ta thorn Nb) and Mn(Mn thorn Fe) values and lower Nbcontent than the darker zone (Fig 10a b) The crystals ofthe columbitendashtantalite minerals are low in W Sn and Tiimpurities (Table 3)

The main trend starts from the columbite-(Mn) of theOIZ towards the more Mn-enriched and slightly Ta-enriched columbite-(Mn) from the IIZa and Cc The high-est Ta(Ta thorn Nb) values belong to the lighter zone ofcolumbite-(Mn) with Mn(Mn thorn Fe) frac14 10 from the CcThe richest columbite-(Mn) in Ta(TathornNb) and composi-tions of tantalite-(Fe) and tantalite-(Mn) were only foundin the OIZ (Fig 10a) and are associated with lepidolite andpolylithionite (Fig 3c)

8 Gahnite

Gahnite was rarely found in the OIZ and shows a darkerzone that partially surrounds a lighter zone in a BSE image(Fig 11a) The darker zone has a higher Zn content andlower Sn Ti Nb Ta Mn contents and SnZn value than thelighter zone (Table 4 Fig 11b c) These gahnite composi-tions fall within the igneous field of Batchelor amp Kinnaird(1984) The darker zone is closer in composition to thepure gahnite (Zn8Al16O32) than the lighter zone whichcontains up to 0983 apfu Sn 0195 apfu Ti 1029 apfutotal Fe2thorn 0101 apfu Mn (Table 4) and consequently hasa composition distinct from nigerite In general both thedarker and lighter zones have higher Sn Ti and Fe contentsthan gahnite from the granitic pegmatites of Nigeria(Batchelor amp Kinnaird 1984) Arga northern Portugal(Gomes et al 1995) and Cabanas northern Portugal(Neiva amp Champness 1997) Borborema province north-eastern Brazil (Soares et al 2007) The Zn=Fe2thornt values ofthe darker and lighter zones of gahnite from Namivo arelower than those reported in Neiva amp Champness (1997)and Soares et al (2007)

9 Discussion and conclusions

91 Evolution of micas in the zoned pegmatite

In general individual mica crystals show varying patternsand compositional zoning involving several elementsmainly Si AlVI (AlIV thorn AlVI) Fe2thorn Mn (Fe2thornthorn Mn thornMg) Licalc Rb Cs F and OH and the KRb ratioProgressively zoned crystals from the IIZa show grada-tional contacts between a lithian muscovite core and a

976 A M R Neiva

eschweizerbart_xxx

lsquolsquomixed formrsquorsquo rim (Figs 3e 6e f) and the zoning patternscorrespond to fractionation trends and probably reflect adrop in temperature during the crystallization of the grani-tic pegmatite melt Progressively zoned crystals also occurin OIZ IIZb and Cc Some crystals are reversely zonedwith a) a lsquolsquomixed formrsquorsquo core and a lithian muscovite rimfrom the OIZ (Figs 3d d1 6d) b) a core consisting oflsquolsquomixed formrsquorsquo and lepidolite and a rim of muscovite andlithian muscovite from the IIZa (Figs 3f f1 6g h) c) alepidolite core and a muscovite and lithian muscovite rimfrom the Cc (Figs 3j 6o p) which may be explained bythe hypothesis of oscillations in the compositions of themelt from which they grew alternating between an Li-enriched boundary layer and a bulk melt that is less frac-tionated The muscovite evolved to lithian muscovite inIIZa and Cc (Figs 3f 6g h 3j 6o p) Replacements (Figs3a 6a b 3c 6c 3i 6m n Table 1) occur in OIZ and Ccand overgrowths (Figs 3b g 6i j k 3h 6l Table 1) occurin OIZ and IIZb as found in BSE images

Muscovite evolved to lithian muscovite as observed inOIZ IIZa IIZb and Cc (Figs 3f 6g h 3j 6o p Table 1)Lithian muscovite evolved to lsquolsquomixed formrsquorsquo in OIZ IIZaIIZb and Cc (Figs 3e 6e f Table 1) and lsquolsquomixed formrsquorsquoevolved to lepidolite in IIZa IIZb and Cc (Figs 3f f1 6gh 3h 6l Table 1) All these evolutions are due to fractionalcrystallization

In the OIZ lepidolite has more Si Licalcand F butsimilar KRb to that of zinnwaldite and replaces it (Figs

3a 6a b 7d Table 1) An FeMg-containing polylithionitehas higher Si Licalcand Rb contents and a smaller KRbratio than the lepidolite that it replaces (Figs 3c 6c Table1) and a continuous chemical evolution from lepidolite topolylithionite is shown

The trends for major and trace elements of micas withineach zone are difficult to define due to some partial over-lapping but a progressive evolution from muscovite to lithianmuscovite lsquolsquomixed formrsquorsquo and lepidolite in IIZa IIZb and Ccis mainly shown by an increase in the Si Licalc F Rb and Cscontents and a decrease in the KRb ratio and this is simi-larly shown in the OIZ from muscovite to lsquolsquomixed formrsquorsquo(Table 1 Fig 7) In the OIZ Si and Licalccontents increaseprogressively from zinnwaldite to lepidolite and FeMg-containing polylithionite but a gap occurs between zinnwal-dite and lepidolite (Table 1 Fig 4) whereas a continuousevolution from lepidolite to polylithionite is observed TheKRb ratios of zinnwaldite and polylithionite are within therange of that of lepidolite (Fig 7d e)

Each Al-richer mica (muscovite lithian muscovite andlsquolsquomixed formrsquorsquo) exhibits an evolution from the OIZ to theIIZa and then to the IIZb and Cc particularly shown by anincrease in the Si Licalc F and Rb contents and adecrease in the KRb ratio but also an increase in theCs content in the lsquolsquomixed formrsquorsquo (Table 1 Fig 7) Theseelements and ratio have been used as petrogenetic indi-cators of evolution in micas from pegmatites (eg Cernyet al 2005 Roda Robles et al 2006 2007 Vieira et al

Fig 7 Plot of some variation diagrams of micas from the OIZ IIZa IIZb and Cc of the Namivo granitic pegmatite Mozambique showingthat the Rb2O and Cs2O contents increase and the KRb ratio decreases for micas from the OIZ to the Cc OIZ IIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 977

eschweizerbart_xxx

Tab

le2

R

epre

sen

tati

ve

elec

tro

nm

icro

pro

be

anal

yse

sin

wt

o

ffe

ldsp

ars

sch

orl

and

spo

du

men

efr

om

the

Nam

ivo

gra

nit

icp

egm

atit

eM

oza

mb

iqu

e

Alb

ite

K-f

eld

spar

Sch

orl

Sp

od

um

ene

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

OIZ

Zo

ne

Cc

SiO

26

75

76

78

86

87

06

84

76

84

1S

iO2

65

10

65

55

65

46

64

96

64

72

SiO

23

52

0S

iO2

64

65

TiO

20

02

mdash0

02

mdashmdash

TiO

2mdash

00

1mdash

mdashmdash

TiO

20

35

Al 2

O3

27

20

Al 2

O3

20

25

19

74

19

67

19

88

19

97

Al 2

O3

18

96

18

23

18

31

18

24

18

05

B2O

3

10

28

Fe 2

O3

00

6F

e 2O

3mdash

mdashmdash

mdash0

10

Fe 2

O3

mdash0

02

mdash0

03

mdashA

l 2O

33

17

2M

nO

01

3M

nO

00

6mdash

mdashmdash

mdashM

nO

mdash0

03

00

3mdash

mdashF

eO1

35

2M

gO

01

8M

gO

mdashmdash

mdashmdash

mdashM

gO

00

10

01

00

5mdash

mdashM

nO

03

3N

a 2O

01

9C

aO1

04

08

00

56

03

70

32

CaO

00

10

01

00

60

01

00

2M

gO

22

8L

i 2O

8

05

Na 2

O1

06

11

12

01

12

11

13

41

13

4N

a 2O

06

50

58

04

10

59

03

8C

aO0

23

To

tal

10

04

6K

2O

00

50

17

00

60

14

01

0K

2O

14

72

14

75

15

67

15

01

15

74

Li 2

O

02

2S

rO0

72

05

00

24

01

1mdash

Rb

2O

00

90

20

03

00

59

09

0N

a 2O

22

8S

i1

99

7P

2O

50

01

00

4mdash

mdashmdash

Cs 2

O

00

6

00

60

09

01

80

20

K2O

00

1A

lIV0

00

3T

ota

l1

00

33

10

03

31

00

46

10

03

11

00

24

P2O

5mdash

00

3mdash

mdashmdash

H2O

3

18

P2

00

To

tal

99

60

99

48

10

03

89

96

11

00

01

F0

78

AlV

I0

98

7S

rC

a(w

t)0

81

07

40

50

03

50

Cl

mdashF

e3thorn

00

01

KR

b(w

t)153

68

48

23

16

Sum

1003

8P

09

9S

i1

18

23

11

87

91

19

58

11

93

21

19

21

KC

s(w

t)4

07

20

41

63

73

69

O

F0

33

Li

10

00

P0

00

10

00

6mdash

mdashmdash

To

tal

10

00

5M

n0

00

3T

i0

00

3mdash

00

03

mdashmdash

Si

11

98

61

20

88

12

04

11

20

45

12

03

3M

g0

00

8A

l4

17

64

07

14

03

54

08

34

10

1P

mdash0

00

5mdash

mdashmdash

TS

i5

95

2N

a0

01

2F

e3thorn

mdashmdash

mdashmdash

00

13

Ti

mdash0

00

1mdash

mdashmdash

Al

00

48

P1

02

Mn

00

09

mdashmdash

mdashmdash

Al

41

14

39

62

39

70

39

86

39

55

B3

00

0M

gmdash

mdashmdash

mdashmdash

Fe3thorn

mdash0

00

3mdash

00

04

mdashZ

Al

60

00

Ca

01

95

01

50

01

04

00

69

00

60

Mn

mdash0

00

50

00

5mdash

mdashY

Al

02

74

Sr

00

73

00

51

00

24

00

11

mdashM

g0

00

30

00

30

01

4mdash

mdashT

i0

04

5N

a3

59

93

80

03

78

33

83

23

83

1C

a0

00

20

00

20

01

20

00

20

00

4M

g0

57

5K

00

11

00

38

00

13

00

31

00

22

Na

02

32

02

07

01

46

02

12

01

37

Mn

00

47

K3

45

73

47

03

67

73

55

03

73

3F

e2thorn

19

12

Z1

60

01

59

61

60

01

60

11

60

4R

b0

01

10

02

40

03

50

07

00

10

8L

i0

14

8X

38

94

04

39

33

94

39

1C

s0

00

20

00

50

00

70

01

40

01

6P

Y3

00

0m

ole

s

XC

a0

04

2A

n5

13

82

71

71

5Z

16

10

16

06

16

01

16

03

15

99

Na

07

47

Ab

94

69

53

97

09

75

97

9X

37

13

72

39

03

85

40

0K

00

02

Or

03

09

03

08

06

mo

les

amp

02

09

An

01

01

03

01

01

Ab

63

56

38

56

35

OH

35

83

Or

93

69

43

95

99

43

96

4F

04

17

Cl

mdash

WZ

ndashw

allzo

ne

OIZ

ndasho

ute

rin

term

edia

tezo

ne

IIZ

aan

dII

Zb

ndashin

ner

inte

rmed

iate

zon

esC

cndash

core

asin

Fig

2B

aOis

bel

ow

the

det

ecti

on

lim

itin

bo

thfe

ldsp

ars

Cs 2

Ofrac14

00

3w

tin

the

K-

feld

spar

fro

mth

eW

Z

mdashN

ot

det

ecte

d

Nu

mb

ero

fio

ns

on

the

bas

iso

f3

2o

xy

gen

sfo

ral

bit

ean

dK

-fel

dsp

ar

31

anio

ns

(O

OH

F

)fo

rsc

ho

rlan

d6

ox

yg

ens

for

spo

du

men

e

-A

mo

un

tin

ferr

edfr

om

con

sid

erat

ion

so

fst

oic

hio

met

ry

978 A M R Neiva

eschweizerbart_xxx

2011) Lepidolite from the OIZ is an Al-poorer mica (Fig4) and has the highest Si Licalcand F contents (Table 1)indicating that an evolution cannot be shown from thislepidolite to lepidolites from the other zones which areAl-richer micas (Fig 4) However there is a regulardecrease in the KRb ratio and a progressive increase inthe Rb and Cs contents from lepidolite of the OIZ tolepidolite of IIZa IIZb and Cc (Fig 7) which indicatesthat the KRb ratio and Rb and Cs contents must not beconsidered alone to show fractional crystallization in

lepidolites particularly if some are Al-richer micas andothers Al-poorer micas The high Licalcand F contents oflepidolite from the OIZ did not decrease its KRb ratioSuch an effect is considered to have taken place in lepi-dolite (an Al-richer mica) from the wall zone of the Tancopegmatite Manitoba Canada (Van Lichtervelde et al2008) An evolution from the lepidolite of the IIZa to thatof the Cc is generally shown by the increasing Si LicalcF Rb Cs contents and a decrease in the KRb ratio (Table1 Fig 7)

At the scale of crystals the pegmatite zones and alsothose from the OIZ to the Cc of the Namivo granitic pegma-tite Al-richer micas show fractionation because theyformed from the fractionation of an Li-rich pegmatite melt

The Al-poorer micas zinnwaldite lepidolite and FeMg-containing polylithionite only occur in the OIZ (Fig 4)Polylithionite is the mica richest in Si and Licalc and lepi-dolite from this zone is the richest in Si Licalcand F (Fig 4Table 1) The high Li contents of these micas reflect aconsiderably higher D(Li) at low temperature (Icenhoweramp London 1995) These Li-rich micas may have crystal-lized from an undercooled melt This hypothesis does notimply high Rb and Cs contents and low KRb ratios Thisagrees with the fact that these micas from the OIZ havesimilar Rb and Cs contents and KRb ratios to those of Al-richer micas (muscovite lithian muscovite and lsquolsquomixedformrsquorsquo) from the same pegmatite zone (Fig 7) Howeverthe lepidolite from the wall zone of the Tanco pegmatiteCanada of a similar origin has a low KRb ratio which isattributed to the complexly interrelated structural compo-nents of this lepidolite (Van Lichtervelde et al 2008) TheLi-rich micas from the OIZ may also represent disequili-brium These two hypotheses are considered the best forthese micas of primary magmatic origin

Another hypothesis was also considered They may havecrystallized in boundary layers which concentrate Li andF But this mechanism was suggested for the most fractio-nated tourmaline enriched in Li and F from the core of the

Fig 8 Plot of albite compositions from all zones of the Namivo granitic pegmatite Mozambique showing that the anorthite content of albitedecreases from the WZ to the Cc WZ OIZ IIZa IIZb and Cc as in Fig 2

Fig 9 The Rb vs Cs diagram of K-feldspar from all zones of theNamivo granitic pegmatite Mozambique showing that the Rb andCs contents of K-feldspar increase from the WZ to the Cc WZ OIZIIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 979

eschweizerbart_xxx

Little Three pegmatite dike USA (Morgan amp London1999) and the micas enriched in Li and F from theNamivo pegmatite belonging to the OIZ Furthermore ina boundary layer melt that became enriched in Li and F theKRb ratio of micas decreases strongly (Van Lichterveldeet al 2008) which was not found in these micas from theOIZ (Fig 7d) Nor can they have resulted from the crystal-lization of a late melt that would have reacted with the OIZbecause these micas are among those containing the high-est KRb values (Fig 7d)

92 The importance of feldspars micas andcolumbitendashtantalite compositions to the Namivogranitic pegmatite evolution

The trace elements Rb and Cs and the KRb and KCs ratioshave been used to show the evolution of K-feldspar inpegmatites (eg Cerny 1994 Cerny et al 2005 RodaRobles et al 2005) The Rb and Cs contents increase andthe KRb and KCs ratios of K-feldspar decrease from theWZ to the Cc (Fig 9 Table 2) reflecting the growth of K-feldspar from an increasingly fractionated melt withouthaving grown from or having been chemically modifiedby an aqueous fluid as in the Swamp pegmatite section atthe Little Three Mine USA (London et al 2012) Thecrystallization of K-feldspar from an exsolved aqueousfluid from melt will reverse the magmatic fractionation ofRb Cs KRb and KCs because Rb and especially Cs areso much more compatible in vapor that both Rb and Csremain in the fluid phase (London et al 2012) The feldsparsolvus pairs in the Namivo pegmatite record magmaticcrystallization temperatures that decrease from WZ to CcAlbite shows a decrease in the Ca Sr contents and SrCaratio from the WZ to the Cc (Fig 8 Table 2) Therefore thefeldspars and also Al-richer micas as already explainedshow fractionation in this zoned pegmatite

In general lepidolite from the Namivo pegmatite hassimilar Rb2O and Cs2O contents and KRb (wt) values tothose of lepidolite from the Rozna and Dobra Voda lepi-dolite-subtype pegmatites in the Czech Republic (Cernyet al 1995) but lower Rb2O and Cs2O contents thanlepidolite from the lepidolite-subtype pegmatite at RedCross Lake Manitoba Canada (Cerny et al 2012a) K-feldspar from the Namivo pegmatite also has lower Rb2O

Table 3 Representative electron microprobe analyses in wt of columbitendashtantalite from the Namivo granitic pegmatite Mozambique

Outer Intermediate Zone - OIZ Inner Intermediate Zone - IIZa

Core - Cc

D L L

WO3 022 059 079 113 101 351 050 007Ta2O5 5487 5123 2503 3186 2888 2519 3127 4542Nb2O5 2537 3000 5483 4635 5113 5144 4911 3686SnO2 008 015 024 049 020 026 017 012TiO2 263 161 136 254 202 145 125 016FeO 860 710 665 471 236 068 mdash mdashMnO 793 952 1099 1304 1400 1725 1748 1718Total 9970 10020 9989 10012 9960 9978 9978 9981W 0004 0011 0013 0019 0016 0057 0008 0001Ta 1065 0975 0422 0552 0495 0430 0543 0847Nb 0819 0949 1538 1336 1456 1460 1418 1143Sn 0002 0004 0006 0012 0005 0007 0004 0003Ti 0141 0085 0063 0122 0096 0068 0060 0008Fe 0513 0416 0345 0251 0124 0036 mdash mdashMn 0479 0564 0578 0704 0747 0917 0945 0998P

3023 3004 2965 2996 2939 2975 2978 3000Mn(Mn thorn Fe) 048 058 063 074 086 096 100 100Ta(Ta thorn Nb) 057 051 022 029 025 023 028 043Classification tant-(Fe) tant-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn)

D ndash darker L ndash lighter zones mdash Not detected tant-tantalite col-columbite Cation formula on the basis of 6 atoms of oxygen

Fig 10 Compositions of columbitendashtantalite from the Namivogranitic pegmatite Mozambique in the columbite quadrilateralshowing that Mn(Mn thorn Fe) of columbite-(Mn) increases from theOIZ to the Cc and the richest columbite-(Mn) in Ta(Ta thorn Nb)tantalite-(Fe) and tantalite-(Mn) only occur in the OIZ OIZ IIZaand Cc as in Fig 2

980 A M R Neiva

eschweizerbart_xxx

and Cs2O contents than K-feldspar from the lepidolite-subtype pegmatite at Red Cross Lake The Rb2O andCs2O contents of primary and late K-feldspar of this peg-matite at Red Cross Lake attained unprecedented levels(Cerny et al 2012a) The lowest KRb (wt) values ofmuscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepido-lite from the IIZb and Cc (Fig 7) and K-feldspar (KRb frac1414) from the Cc compare well with those found in theseminerals from the AC6frac143 lepidolite-subtype pegmatitefrom Greer Lake (Cerny et al 2005) and some of themost fractionated pegmatites worldwide which belong tothe petalite-subtype (eg Tanco Manitoba Cerny 2005Cerny et al 1998 Varutrask Sweden Cerny et al 2005)but muscovite lithian muscovite and lepidolite from theIIZb and Cc have lower Rb2O and Cs2O contents than thesemicas from the Tanco pegmatite (Cerny 2005a VanLichtervelde et al 2008) K-feldspar also has lower

contents of these oxides than the most evolved K-feldsparfrom the Tanco pegmatite (Cerny 2005a) The magmaticfractionation was strong from the WZ to IIZb and Cc of theNamivo lepidolite-subtype pegmatite

The compositional trend of columbite-(Mn) from the OIZto Cc of the Namivo granitic lepidolite-subtype pegmatite(Fig 10) is identical to that of columbite-group mineralsfrom the lepidolite-subtype complex granitic pegmatitesfrom the Dobra Voda in the Moldanubicum CzechRepublic (Novak amp Cerny 1998) and the HimalayaDistrict southern California (shown in Cerny et al 2004)Experimental data for the Fe-Mn pair (Linnen amp Cuney2005) suggest an increase in Fe with fractional crystalliza-tion which is not observed in nature Other phases seem tocontrol the bahavior of Fe and Mn in the melt eg thecrystallization of tourmaline causes a rapid increase of theMnFe in the melt (Van Lichtervelde et al 2006) When thecrystallization of tourmaline stopped the columbitendashtantaliteminerals showed a constant MnFe indicating that the Fe andMn contents in the melt remained constant Schorl onlyoccurs in the OIZ of the Namivo granitic pegmatite and itscrystallization cannot be responsible for the increase in theMnFe of the melt because Mn(Mn thorn Fe) of columbite-(Mn) increases progressively from the OIZ to the IIZa and Cc(Fig 10) Garnet zinnwaldite and gahnite containing Fe andMn also only occur in the OIZ and cannot also have causedthe increase of the MnFe in the melt The dominant Mnenrichment before Ta enrichment started in the columbitendash-tantalite composition from some granitic pegmatites isattributed to an increased alkali-fluoride activity at moderatemHF (Cerny et al 2004) and an increase in the activity offluorine (Martins et al 2011) Each Al-richer mica (musco-vite lithian muscovite and lsquolsquomixed formrsquorsquo) from the Namivogranitic pegmatite shows an increase in F content from theOIZ to the IIZa IIZb and Cc (Table 1) In general the Fcontent of lepidolite also increases from the IIZa to the IIZband Cc Therefore the extreme Fe-Mn fractionation beforeTa enrichment in columbite-(Mn) (Fig 10) may be due to anincrease in the activity of fluorine as a consequence offractional crystallization The increase in the Ta content ofcolumbite-(Mn) from the Namivo granitic pegmatite isattributed to fractional crystallization

The geochemical evolution of albite and K-feldsparfrom the WZ to the Cc Al-richer micas muscovite lithianmuscovite and lsquolsquomixed formrsquorsquo from the OIZ to the Cc andlepidolite from the IIZa to the Cc and columbite-(Mn) andalso beryl (Neiva amp Neiva 2005) from the OIZ to the Ccare caused by magma fractionation The pegmatite zonesare the product of primary crystallization from a volatile-rich silicate melt The pegmatite consolidated from the WZto the Cc The IIZb is one of the most evolved zones asalso suggested by the beryl composition (Neiva amp Neiva2005) and is the richest in lsquolsquomixed formrsquorsquo and lepidolite

The richest columbite-(Mn) in Ta(Ta thorn Nb) and com-positions of tantalite-(Fe) and tantalite-(Mn) only occur inthe OIZ (Fig 10a) associated with lepidolite and polythio-nite (Fig 3c) which may be due to the local depletion of Liand F in the melt which decreases the solubility of Ta andcauses Ta precipitation (Linnen 1998 Linnen amp Cuney

Fig 11 a Backscattered-electron image of a gahnite crystal with adarker zone partially surrounding a lighter zone from the OIZ of theNamivo granitic pegmatite b c Plot of gahnite compositions in theSn-Zn-Ti diagram (atomic proportions) showing a chemical distinc-tion between the lighter and darker zones OIZ as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 981

eschweizerbart_xxx

2005) At the Tanco pegmatite Ta oxides are also asso-ciated with lepidolite enriched in Li and F from the wallzone (Van Lichtervelde et al 2008)

93 Origin and evolution of the zoned graniticlepidolite-subtype pegmatite at Namivo

In general granitic pegmatites particularly those belong-ing to the rare-element class are accepted as having beenformed by the fractional crystallization of a granite melt(eg Cerny 1991a b 1992 Neiva et al 2008 2012 Roda-Robles et al 2012) But it also has been proposed thatpegmatites may be formed by partial melting of appropri-ate rock compositions (eg Nabelek et al 1992 Nabelekamp Russ-Nabelek 1992 Shearer et al 1992 Roda Robleset al 1999) The lepidolite-subtype pegmatites belong tothe LCT (lithium-cesium-tantalum) family (Cerny amp Ercit2005) They are derived by fractional crystallization of agranite magma (eg Cerny et al 2005 Neiva amp Ramos2010 Cerny et al 2012b) Experimental work by Londonet al (1989) and London (1990) using Macusani glass as astarting material equivalent to the bulk composition ofhighly fractionated rare-alkali-rich pegmatites underhighly evolved and hydrous but H2O undersaturatedmelt obtained the latest primary assemblage consisting

of an Li-rich mica thorn albite thorn quartz deposited directlyfrom the primary melt phase Other authors egZasedatelev (1974 1977) and Stewart (1978) argue thatlepidolite-bearing pegmatites are derived from direct ana-texis and Gordiyenko et al (1996) consider that they arederived from an undefined medium and the rare-elementmineralization is superimposed on preexisting barrenpegmatites

Lepidolite-subtype pegmatites may migrate a long wayfrom their parent granites because their volatile-rich highlyfluid pegmatite melts are stable at relatively low tempera-tures (eg Cerny et al 2005 Antunes et al 2013)Therefore the Namivo pegmatite is probably derived byfractional crystallization of an S-type granite magmawhich resulted from partial melting of metamorphosed juve-nile sediments containing micas that carry most of the traceelements that define the signature of the LCT pegmatites(eg Dahl et al 1993)

The two main models for the internal evolution of peg-matites that dominated for more than a century are a) thefractional crystallization of a flux-bearing granitic melt fromthe margins to the center of the pegmatite (Cameron et al1949) b) the interactions of an aqueous fluid with graniticmelt (Jahns amp Burnham 1969 Jahns 1982) The recentmodel of constitutional zone refining combines aspects ofboth models and invokes the formation of a flux-enriched

Table 4 Electron microprobe analyses in wt of zoned gahnite from the outer intermediate zone (OIZ) of the Namivo granitic pegmatiteMozambique

Darker Zone Lighter Zone

Mean s Range Mean s Range

SnO2 036 050 0ndash097 658 281 151ndash998TiO2 008 008 0ndash021 065 034 008ndash105Nb2O5 001 002 0ndash006 018 007 007ndash029Ta2O5 001 004 0ndash010 015 013 0ndash033ZnO 3998 123 3810ndash4109 3339 318 3004ndash3848FeO 367 048 331ndash442 433 065 306ndash498MnO 032 004 028ndash040 039 006 032ndash048MgO 003 004 0ndash010 ndash ndash ndashAl2O3 5507 050 5436ndash5572 5337 070 5257ndash5443SiO2 003 003 0ndash007 008 010 0ndash025Total 9956 9912n 8 8Sn 0035 0048 0ndash0095 0648 0278 0149ndash0983Ti 0015 0015 0ndash0038 0120 0064 0015ndash0195Nb ndash 0003 0ndash0006 0021 0009 0009ndash0037Ta ndash 0002 0ndash0006 0009 0009 0ndash0021Zn 7226 0182 6890ndash7382 6086 0568 5482ndash6965Fe2thornt 0752 0103 0675ndash0913 0894 0135 0628ndash1029Mn 0066 0008 0057ndash0083 0082 0013 0066ndash0101Mg 0010 0015 0ndash0037 ndash ndash ndashAl 15887 0052 15805ndash15954 15526 0170 15375ndash15853Si 0007 0008 0ndash0018 0019 0025 0ndash0062P

23998 23405Fe3thorn 0064 0230Fe2thorn 0686 0658SnZn 0005 0007 0ndash0014 0106 0052 0021ndash0179ZnFe2thornt 961 143 768ndash1093 681 190 536ndash1109

n number of analysis Cation formula based on 32 atoms of oxygen Fe2thornt total Fe2thorn estimated

982 A M R Neiva

eschweizerbart_xxx

boundary layer of silicate liquid in advance of a crystal-lization front (London 2008 London amp Morgan 2012)

Lepidolite-subtype pegmatites are generally scarce(Cerny et al 2005) particularly the zoned ones In thesymmetrically zoned lepidolite-subtype pegmatites ofRozna and Dobra Voda Czech Republic micas (Cernyet al 1995) tourmaline (Selway et al 1999) and colum-bite-group minerals (Novak amp Cerny 1998) evolve fromthe outermost zone to the innermost zone following thecrystallization sequence The same was found in tourma-line from the zoned Lastovicky Dolnı Bory and Raddovicelepidolite-subtype pegmatite dikes in the Czeck Republic(Selway et al 1999)

In general beryl (Neiva amp Neiva 2005) feldsparsmicas and columbite-(Mn) (in this paper) from theNamivo lepidolite-subtype pegmatite record the progres-sive chemical evolution of the pegmatite from the wallzone to the core These minerals were produced by crystal-lization from a silicate melt rather than an aqueous fluidphase The slow cooling of melt shown by the magmaticcrystallization temperatures of feldspars cannot explain theincrease in grain-size of minerals from the wall zone to thecore but fluxes will be necessary to promote the change oftexture particularly a flux-rich hydrosilicate liquidaccording to the experimental evidence (London 2009)The constitutional zone refining model will be the best forthis zoned pegmatite and probably for all lepidolite-sub-type pegmatites because this model also produces a higherfinal concentration of incompatible components in a smal-ler volume of rock than fractional crystallization does(Morgan amp London 1999)

The core margin at the Rozna pegmatite contains K-feld-spar and quartz and the core consists mainly of quartz but it issurrounded and penetrated by a quartz-bearing albitethorn lepi-dolite complex which contains several minerals At theDobra Voda pegmatite the center of the dike is occupiedby the lepidolite unit containing albite and other minerals(Cerny et al 1995) At the Namivo pegmatite the coremargin consists of quartz and beryl and the core containsmainly quartz and spodumene but also albite lepidolite andother minerals The last-unit assemblages of primary miner-als in most of the highly fractionated LCT pegmatites are richin albite and commonly contain lepidolite or spodumene andmost of the other rare phases These units represent the lastmost fractionated liquid that can be derived by fractionalcrystallization of a crustal melt (London 2008)

The Namivo granitic pegmatite shows a significant dis-tinction from the other zoned lepidolite-subtype pegmatitesand LCT pegmatites except the Tanco petalite-subtypepegmatite in Canada because the lepidolite richest in SiLi and F FeMg-containing polylithionite and associatedcolumbite-(Mn) with the highest Ta(Ta thorn Nb) ratio tanta-lite-(Fe) and tantalite-(Mn) only occur in the outer inter-mediate zone These minerals usually form late in theconsolidation of pegmatites The lepidolite and polylithio-nite are probably derived from the disequilibrium crystal-lization of an undercooled melt Tantalite may reflect a localdecrease in Li and F that caused Ta precipitation

This paper contributes to a better understanding of theorigin and evolution of the rare zoned lepidolite-subtypepegmatites and shows that although the pegmatite evolvedfrom the wall zone to the core it presents an unusualassociation of lepidolite polylithionite and tantalite in theouter intermediate zone

Acknowledgments Thanks are due to JM Cotelo Neivaand MB Dias for the samples and information providedand to MR Machado Leite and MF Guimaraes for theuse of the electron microprobe facilities at the LaboratorioNacional de Energia e Geologia (LNEG) PortugalFinancial support was provided by the PortugueseGovernment for the project Pest-OECTEUI00732011of the Geosciences Centre through the PortugueseFoundation for Science and Technology I would like tothank D London WB Simmons and the associated editorE Widom for their constructive reviews of this manuscriptand M Prieto for his editorial work

References

Alfonso P Melgarejo JC Yusta I Velasco F (2003)

Geochemistry of feldspars and muscovite in granitic pegmatite

from the Cap de Creus field Catalonia Spain Can Mineral 41

103ndash116

Antunes IMHR Neiva AMR Ramos JMF Silva PB

Silva MMVG Corfu F (2013) Petrogenetic links between

lepidolite-subtype aplite-pegmatite aplite veins and associated

granites at Segura (central Portugal) Chemie der Erde in press

httpdxdoiorg101016jchemer20121203

Batchelor RA amp Kinnaird JA (1984) Gahnite compositions

compared Mineral Mag 48 425ndash430

Beurlen H Da Silva MRR Thomas R Soares DR Olivier P

(2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-

element granitic pegmatite fractionation in the Borborema pro-

vince Northeastern Brazil Miner Deposita 43 207ndash228

Cameron EN Jahns RH McNair AH Page LR (1949)

Internal structure of granitic pegmatites Econ Geol

Monograph 2 115 p

Cerny P (1991a) Fertile granites of Precambrian rare-element

pegmatite fields is geochemistry controlled by tectonic setting

or source lithologies Precambrian Res 51 429ndash468

mdash (1991b) Rare-element granite pegmatites I Anatomy and inter-

nal evolution of pegmatite deposits Geoscience Canada 18

49ndash67

mdash (1992) Geochemical and petrogenetic features of mineralization

in rare-element granitic pegmatites in the light of current

research Applied Geochemistry 7 393ndash416

mdash (1994) Evolution of feldspars in granitic pegmatites in

lsquolsquoFeldspars and their Reactionsrsquorsquo I Parsons ed NATO

Advanced Study Institute Series C421 501ndash539

mdash (2005) The Tanco rare-element pegmatite deposit Manitoba

regional context internal anatomy and global comparisons in

lsquolsquoRare-element Geochemistry and Mineral Depositsrsquorsquo RL

Linnen amp IM Samson eds Geochemical Association of

Canada Short Course Notes St Catherines 17 127ndash158

Silicate and oxide minerals from a zoned granitic pegmatite 983

eschweizerbart_xxx

Cerny P amp Ercit TS (2005) The classification of granitic pegma-

tites revisited Can Mineral 43 2005ndash2026

Cerny P Meintzer RE Andersen AJ (1985) Extreme fractiona-

tion in rare-element granitic pegmatites selected examples of

data and mechanisms Can Mineral 23 381ndash421

Cerny P Goad BE Hawthorne FC Chapmann R (1986)

Fractionation trends of the Nb- and Ta-bearing oxide minerals

in the Greer Lake pegmatite granite and its pegmatite aureole

southeastern Manitoba Am Mineral 71 501ndash517

Cerny P Stanek J Novak M Baadsgaard H Rieder M

Ottolini L Kavalova M Chapman R (1995) Geochemical

and structural evolution of micas in the Rozna amp Dobra Voda

pegmatites Czech Republic Mineral Petrol 55 177ndash201

Cerny P Ercit TS Vanstone PJ (1998) Mineralogy and petrol-

ogy of the Tanco rare-element pegmatite deposit southeastern

Manitoba International Mineralogical Association 17th General

Meeting Toronto Field Guidebook B6

Cerny P Chapman R Ferreira K Smeds SA (2004)

Geochemistry of oxide minerals of Nb Ta Sn and Sb in

the Varutrask granitic pegmatite Sweden The case of an

lsquolsquoanomalousrsquorsquo columbitendashtantalite trend Am Mineral 89

505ndash518

Cerny P Masau M Goad BE Ferreira K (2005) The Greer

Lake leucogranite Manitoba and the origin of lepidolite-sub-

type granitic pegmatites Lithos 80 305ndash321

Cerny P Teertstra DK Chapman R Selway JB Hawthorne

FC Ferreira K Chackowsky LE Wang X-J Meintzer

RE (2012a) Extreme fractionation and deformation of the

leucogranite-pegmatite suite at Red Cross Lake Manitoba

Canada IV Mineralogy Can Mineral 50 1839ndash1875

Cerny P Halden NM Ferreira K Meintzer RE Brisbin WC

Chackowsky LE (2012b) Extreme fractionation and deforma-

tion of the leucogranite-pegmatite suite at Red Cross Lake

Manitoba Canada II Petrology of the leucogranites and peg-

matites Can Mineral 50 1807ndash1822

Dahl PS When DC Feldmann SG (1993) The systematics of

trace-element partitioning between coexisting muscovite and

biotite in metamorphic rocks from the Black Hills South

Dakota USA Geochim Cosmochim Acta 57 2487ndash2505

Dias MB amp Wilson WE (2000) The Alto Ligonha Pegmatites

Mozambique Mineral Record 31 459ndash497

Fleet ME (2003) Rock-Forming Minerals vol 3A Sheet silicates

micas The Geological Society London second edition chap 6

Lithium micas 651ndash690

Foord EE Cerny P Jackson LL Sherman DM Eby RK

(1995) Mineralogical and geochemical evolutions of micas

from miarolitic pegmatites of the anorogenic pikes-Peak

Batholith Colorado Mineral Petrol 55 1ndash26

Foster MD (1960) Interpretation of the composition of lithium

micas US Geol Surv Prof Paper 354-E 115ndash147

Fuhrman ML amp Lindsley DK (1988) Ternary-feldspar modeling

and thermometry Am Mineral 73 201ndash215

Gomes CL Castro P Alves C (1995) Caracterizacao das espi-

nelas zincıferas e do par ganite-nigerite no campo aplito-

pegmatıtico da Serra de Arga-Minho N de Portugal IV

Congresso Nacional de Geologia Resumos Alargados

Universidade do Porto Mem 4 629ndash633

Gordiyenko VV Ilyina AN Timochina LA Badamina EB

Stanek J (1996) Geochemical model of evolution of a pegma-

tite-forming ore-magmatic system of western Moravia Proc

Russ Mineral Soc 125 38ndash48 (in Russian)

Icenhower JP amp London D (1995) An experimental study for

element partitioning between biotite muscovite and coexisting

peraluminous granitic melt at 200 MPa (H2O) Am Mineral 80

1229ndash1251

Jahns RH (1982) Internal evolution of pegmatite bodies in lsquolsquoGranitic

Pegmatites in science and industryrsquorsquo P Cerny ed Mineralogical

Association of Canada Short Course Handbook 8 293ndash327

Jahns RH amp Burnham CW (1969) Experimental studies of

pegmatite genesis I A model for the derivation and crystal-

lization of granitic pegmatites Econ Geol 64 843ndash864

Jolliff BL Papike JJ Shearer CK (1987) Fractionation trends

in mica and tourmaline as indicators of pegmatite internal evo-

lution Bob Ingersoll pegmatite Black Hills South Dakota

USA GeochimCosmochim Acta 51 519ndash534

Kile DE amp Foord EE (1998) Micas from the Pikes Peak bath-

olith and its cogenetic granitic pegmatites Colorado optical

properties composition and correlation with pegmatite evolu-

tion Can Mineral 36 463ndash482

Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic

melts with Li and Li thorn F constraints for mineralization in rare

metal granites and pegmatites Econ Geol 93 1013ndash1025

Linnen RL amp Cuney M (2005) Granite-related rare-element

deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf

mineralization in lsquolsquoRare-element geochemistry and mineral

depositsrsquorsquo RL Linnen amp IM Samson eds Geochemical

Association of Canada Short Course Notes 17 45ndash68

London D (1990) Internal differentiation of rare-element pegmatites

a synthesis of recent research in lsquolsquoOre Bearing Granite Systems

Petrogenesis and Mineralizing Processesrsquorsquo HJ Stein amp JL

Hannah eds Geol Soc America Special Paper 246 35ndash50

mdash (2008) Pegmatites The Canadian Mineralogist Special

Publication 10 347 p

mdash (2009) The origin of primary textures in granitic pegmatites

Can Mineral 47 697ndash724

London D amp Morgan GB VI (2012) The pegmatite puzzle

Elements 8 263ndash268

London D Morgan GB VI Hervig RL (1989) Vapor-under-

saturated experiments in the system macusanite-H2O at 200

MPa and the internal differentiation of granitic pegmatites

Contrib Mineral Petrol 102 1ndash17

London D Morgan GB VI Paul KA Guttery BM (2012)

Internal evolution of miarolitic granitic pegmatites at the Little

Three mine Ramona California USA Can Mineral 50

1025ndash1054

Martins T Lima A Simmons WB Folster AU Noronha F

(2011) Geochemical fractionation of Nb-Ta oxides in Li-bear-

ing pegmatites from the Barroso-Alvao pegmatite field northern

Portugal Can Mineral 49 777ndash791

Monier G Charoy B Cuney M Ohnenstetter D Robert JL

(1987) Evolution spatiale et temporelle de la composition des

micas du granite albitique a topaze-lepidolite de Beauvoir

Geologie De La France 2ndash3 179ndash188

Monier G amp Robert JL (1986) Evolution of the miscibility gap

between muscovite and biotite solid solutions with increasing

lithium content an experimental study in the systems

K2OndashLi2OndashMgOndashAl2O3ndashSiO2ndashH2OndashHF at 600 C 2 kbar

PH2O comparison with natural lithium micas Mineral Mag

50 641ndash651

Morgan GBVI amp London D (1999) Crystallization of the little

three layered pegmatite-aplite dike Ramona District California

Contrib Mineral Petrol 136 310ndash330

984 A M R Neiva

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985

Page 9: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

F contents tend to increase and the (AlIV thorn AlVI) AlVI

contents and KRb ratio tend to decrease from muscoviteto lepidolite (Table 1 Fig 7) This sequence is consistentbut rarely in the Cc lepidolite is rimmed by muscovite (Fig3j) But in the OIZ the evolution stops in lsquolsquomixed formrsquorsquoparticularly shown by the large range of the KRb ratiowhich mainly overlaps that of lepidolite from this zone(Fig 7) because this lepidolite is an Al-poorer mica whereasthe others are Al-richer micas (Fig 4)

In the OIZ the lepidolite has more Si Licalc and F andless (AlIV thorn AlVI) Ti Fe2thorn Mn Mg and Zn than zinn-waldite (Table 1) but it has larger ranges of Rb and KRbratio than zinnwaldite (Fig 7) The FeMg-containingpolylithionite is the richest mica in Si Licalc and thepoorest in (AlIV thorn AlVI) (Table 1) But at this zone scalethe polylithionite has Rb Cs contents and KRb ratiowithin the ranges for lepidolite and close to those of zinn-waldite (Fig 7)

Fig 6 Variation diagrams of micas from selected zoned crystals from the zones of the Namivo granitic pegmatite Mozambique to showtheir relationships lith musc lithian muscovite OIZ IIZa IIZb and Cc an in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 975

eschweizerbart_xxx

From the OIZ to IIZa IIZb and Cc muscovite and lithianmuscovite generally show increases in the Si Licalc F and Rbcontents and decreases in the Fe2thorn and Mg contents and KRb ratio but the Mg content is very low in these micas fromthe IIZa IIZb and Cc (Table 1 Fig 7a) The lsquolsquomixed formrsquorsquoshows increases in the Si Licalc F Rb Cs contents anddecreases in the (AlIV thorn AlVI) and Mg contents and KRbratio but the Mg content is very low in this mica from theIIZb and Cc (Table 1 Fig 7b c) The lepidolite shows anincrease in the Si Licalc F Rb and Cs contents and a decreasein the KRb ratio from the IIZa to the IIZb and Cc (Table 1Fig 7d e) Furthermore the lepidolite from the OIZ has thelowest (AlIV thorn AlVI) AlVI and OH contents the highest SiFe2thorn Licalcand F contents and KRb ratio and the lowest Rband Cs contents compared to lepidolite from the other zones(Table 1 Fig 7d e)

5 Feldspars

Selected chemical analyses of albite and K-feldspar fromfive zones of the Namivo granitic pegmatite are given inTable 2 Strontium is the most abundant trace element inalbite (eg Cerny 1994) Anorthite and Sr contents and SrCa ratio of albite decrease from the WZ to the Cc (Fig 8Table 2) Rubidium is the most abundant trace element inK-feldspar followed by Cs in IIZa IIZb and Cc In gen-eral K Rb and Cs contents of K-feldspar increase and KRb and KCs values decrease from the WZ to the Cc (Table2 Fig 9)

The program SOLVCALC 20 (Wen amp Nekvasil 1994)using the Margules model Fuhrman amp Lindsley (1988) wasapplied for the purpose of thermometry The pairing ofplagioclase cores with the K-feldspars average of eachsample was used to estimate the crystallization temperaturesof primary magmatic feldspars They are 405 C (WZ)406ndash340 C (OIZ) 390ndash335 C (IIZa) 347ndash306 C (IIZb)and 333ndash289 C (Cc) at 3 kbar The metamorphic environ-ment of rare-element-Li granitic pegmatites is one of lowpressure 2ndash4 kbar (Cerny amp Ercit 2005) In general thedifference between the maximum and minimum calculatedtemperatures at 2 3 and 4 kbar for the same feldspar pairfrom the Namivo pegmatite is lower than 40 C The tem-perature decreases from the wall zone (WZ) to the core(Cc) A similar temperature behavior of feldspars wasfound in the pegmatite-aplite dike USA (Morgan ampLondon 1999)

6 Other silicates

Tourmaline of schorl composition was only found inthe OIZ (Table 2) because there was not enough Feand Mg for schorl to precipitate in the other zonesSpodumene only occurs in the Cc and its compositionis nearly pure (Table 2)

7 Columbite-tantalite

Representative chemical analyses of columbitendashtantalitefrom the Namivo granitic pegmatite are given in Table 3and plotted in the columbite quadrilateral (Fig 10a)Most crystals are unzoned but zoned crystals with dar-ker and lighter zones in BSE images are from the Cc Thelighter zone of columbite-(Mn) has higher Ta contentTa(Ta thorn Nb) and Mn(Mn thorn Fe) values and lower Nbcontent than the darker zone (Fig 10a b) The crystals ofthe columbitendashtantalite minerals are low in W Sn and Tiimpurities (Table 3)

The main trend starts from the columbite-(Mn) of theOIZ towards the more Mn-enriched and slightly Ta-enriched columbite-(Mn) from the IIZa and Cc The high-est Ta(Ta thorn Nb) values belong to the lighter zone ofcolumbite-(Mn) with Mn(Mn thorn Fe) frac14 10 from the CcThe richest columbite-(Mn) in Ta(TathornNb) and composi-tions of tantalite-(Fe) and tantalite-(Mn) were only foundin the OIZ (Fig 10a) and are associated with lepidolite andpolylithionite (Fig 3c)

8 Gahnite

Gahnite was rarely found in the OIZ and shows a darkerzone that partially surrounds a lighter zone in a BSE image(Fig 11a) The darker zone has a higher Zn content andlower Sn Ti Nb Ta Mn contents and SnZn value than thelighter zone (Table 4 Fig 11b c) These gahnite composi-tions fall within the igneous field of Batchelor amp Kinnaird(1984) The darker zone is closer in composition to thepure gahnite (Zn8Al16O32) than the lighter zone whichcontains up to 0983 apfu Sn 0195 apfu Ti 1029 apfutotal Fe2thorn 0101 apfu Mn (Table 4) and consequently hasa composition distinct from nigerite In general both thedarker and lighter zones have higher Sn Ti and Fe contentsthan gahnite from the granitic pegmatites of Nigeria(Batchelor amp Kinnaird 1984) Arga northern Portugal(Gomes et al 1995) and Cabanas northern Portugal(Neiva amp Champness 1997) Borborema province north-eastern Brazil (Soares et al 2007) The Zn=Fe2thornt values ofthe darker and lighter zones of gahnite from Namivo arelower than those reported in Neiva amp Champness (1997)and Soares et al (2007)

9 Discussion and conclusions

91 Evolution of micas in the zoned pegmatite

In general individual mica crystals show varying patternsand compositional zoning involving several elementsmainly Si AlVI (AlIV thorn AlVI) Fe2thorn Mn (Fe2thornthorn Mn thornMg) Licalc Rb Cs F and OH and the KRb ratioProgressively zoned crystals from the IIZa show grada-tional contacts between a lithian muscovite core and a

976 A M R Neiva

eschweizerbart_xxx

lsquolsquomixed formrsquorsquo rim (Figs 3e 6e f) and the zoning patternscorrespond to fractionation trends and probably reflect adrop in temperature during the crystallization of the grani-tic pegmatite melt Progressively zoned crystals also occurin OIZ IIZb and Cc Some crystals are reversely zonedwith a) a lsquolsquomixed formrsquorsquo core and a lithian muscovite rimfrom the OIZ (Figs 3d d1 6d) b) a core consisting oflsquolsquomixed formrsquorsquo and lepidolite and a rim of muscovite andlithian muscovite from the IIZa (Figs 3f f1 6g h) c) alepidolite core and a muscovite and lithian muscovite rimfrom the Cc (Figs 3j 6o p) which may be explained bythe hypothesis of oscillations in the compositions of themelt from which they grew alternating between an Li-enriched boundary layer and a bulk melt that is less frac-tionated The muscovite evolved to lithian muscovite inIIZa and Cc (Figs 3f 6g h 3j 6o p) Replacements (Figs3a 6a b 3c 6c 3i 6m n Table 1) occur in OIZ and Ccand overgrowths (Figs 3b g 6i j k 3h 6l Table 1) occurin OIZ and IIZb as found in BSE images

Muscovite evolved to lithian muscovite as observed inOIZ IIZa IIZb and Cc (Figs 3f 6g h 3j 6o p Table 1)Lithian muscovite evolved to lsquolsquomixed formrsquorsquo in OIZ IIZaIIZb and Cc (Figs 3e 6e f Table 1) and lsquolsquomixed formrsquorsquoevolved to lepidolite in IIZa IIZb and Cc (Figs 3f f1 6gh 3h 6l Table 1) All these evolutions are due to fractionalcrystallization

In the OIZ lepidolite has more Si Licalcand F butsimilar KRb to that of zinnwaldite and replaces it (Figs

3a 6a b 7d Table 1) An FeMg-containing polylithionitehas higher Si Licalcand Rb contents and a smaller KRbratio than the lepidolite that it replaces (Figs 3c 6c Table1) and a continuous chemical evolution from lepidolite topolylithionite is shown

The trends for major and trace elements of micas withineach zone are difficult to define due to some partial over-lapping but a progressive evolution from muscovite to lithianmuscovite lsquolsquomixed formrsquorsquo and lepidolite in IIZa IIZb and Ccis mainly shown by an increase in the Si Licalc F Rb and Cscontents and a decrease in the KRb ratio and this is simi-larly shown in the OIZ from muscovite to lsquolsquomixed formrsquorsquo(Table 1 Fig 7) In the OIZ Si and Licalccontents increaseprogressively from zinnwaldite to lepidolite and FeMg-containing polylithionite but a gap occurs between zinnwal-dite and lepidolite (Table 1 Fig 4) whereas a continuousevolution from lepidolite to polylithionite is observed TheKRb ratios of zinnwaldite and polylithionite are within therange of that of lepidolite (Fig 7d e)

Each Al-richer mica (muscovite lithian muscovite andlsquolsquomixed formrsquorsquo) exhibits an evolution from the OIZ to theIIZa and then to the IIZb and Cc particularly shown by anincrease in the Si Licalc F and Rb contents and adecrease in the KRb ratio but also an increase in theCs content in the lsquolsquomixed formrsquorsquo (Table 1 Fig 7) Theseelements and ratio have been used as petrogenetic indi-cators of evolution in micas from pegmatites (eg Cernyet al 2005 Roda Robles et al 2006 2007 Vieira et al

Fig 7 Plot of some variation diagrams of micas from the OIZ IIZa IIZb and Cc of the Namivo granitic pegmatite Mozambique showingthat the Rb2O and Cs2O contents increase and the KRb ratio decreases for micas from the OIZ to the Cc OIZ IIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 977

eschweizerbart_xxx

Tab

le2

R

epre

sen

tati

ve

elec

tro

nm

icro

pro

be

anal

yse

sin

wt

o

ffe

ldsp

ars

sch

orl

and

spo

du

men

efr

om

the

Nam

ivo

gra

nit

icp

egm

atit

eM

oza

mb

iqu

e

Alb

ite

K-f

eld

spar

Sch

orl

Sp

od

um

ene

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

OIZ

Zo

ne

Cc

SiO

26

75

76

78

86

87

06

84

76

84

1S

iO2

65

10

65

55

65

46

64

96

64

72

SiO

23

52

0S

iO2

64

65

TiO

20

02

mdash0

02

mdashmdash

TiO

2mdash

00

1mdash

mdashmdash

TiO

20

35

Al 2

O3

27

20

Al 2

O3

20

25

19

74

19

67

19

88

19

97

Al 2

O3

18

96

18

23

18

31

18

24

18

05

B2O

3

10

28

Fe 2

O3

00

6F

e 2O

3mdash

mdashmdash

mdash0

10

Fe 2

O3

mdash0

02

mdash0

03

mdashA

l 2O

33

17

2M

nO

01

3M

nO

00

6mdash

mdashmdash

mdashM

nO

mdash0

03

00

3mdash

mdashF

eO1

35

2M

gO

01

8M

gO

mdashmdash

mdashmdash

mdashM

gO

00

10

01

00

5mdash

mdashM

nO

03

3N

a 2O

01

9C

aO1

04

08

00

56

03

70

32

CaO

00

10

01

00

60

01

00

2M

gO

22

8L

i 2O

8

05

Na 2

O1

06

11

12

01

12

11

13

41

13

4N

a 2O

06

50

58

04

10

59

03

8C

aO0

23

To

tal

10

04

6K

2O

00

50

17

00

60

14

01

0K

2O

14

72

14

75

15

67

15

01

15

74

Li 2

O

02

2S

rO0

72

05

00

24

01

1mdash

Rb

2O

00

90

20

03

00

59

09

0N

a 2O

22

8S

i1

99

7P

2O

50

01

00

4mdash

mdashmdash

Cs 2

O

00

6

00

60

09

01

80

20

K2O

00

1A

lIV0

00

3T

ota

l1

00

33

10

03

31

00

46

10

03

11

00

24

P2O

5mdash

00

3mdash

mdashmdash

H2O

3

18

P2

00

To

tal

99

60

99

48

10

03

89

96

11

00

01

F0

78

AlV

I0

98

7S

rC

a(w

t)0

81

07

40

50

03

50

Cl

mdashF

e3thorn

00

01

KR

b(w

t)153

68

48

23

16

Sum

1003

8P

09

9S

i1

18

23

11

87

91

19

58

11

93

21

19

21

KC

s(w

t)4

07

20

41

63

73

69

O

F0

33

Li

10

00

P0

00

10

00

6mdash

mdashmdash

To

tal

10

00

5M

n0

00

3T

i0

00

3mdash

00

03

mdashmdash

Si

11

98

61

20

88

12

04

11

20

45

12

03

3M

g0

00

8A

l4

17

64

07

14

03

54

08

34

10

1P

mdash0

00

5mdash

mdashmdash

TS

i5

95

2N

a0

01

2F

e3thorn

mdashmdash

mdashmdash

00

13

Ti

mdash0

00

1mdash

mdashmdash

Al

00

48

P1

02

Mn

00

09

mdashmdash

mdashmdash

Al

41

14

39

62

39

70

39

86

39

55

B3

00

0M

gmdash

mdashmdash

mdashmdash

Fe3thorn

mdash0

00

3mdash

00

04

mdashZ

Al

60

00

Ca

01

95

01

50

01

04

00

69

00

60

Mn

mdash0

00

50

00

5mdash

mdashY

Al

02

74

Sr

00

73

00

51

00

24

00

11

mdashM

g0

00

30

00

30

01

4mdash

mdashT

i0

04

5N

a3

59

93

80

03

78

33

83

23

83

1C

a0

00

20

00

20

01

20

00

20

00

4M

g0

57

5K

00

11

00

38

00

13

00

31

00

22

Na

02

32

02

07

01

46

02

12

01

37

Mn

00

47

K3

45

73

47

03

67

73

55

03

73

3F

e2thorn

19

12

Z1

60

01

59

61

60

01

60

11

60

4R

b0

01

10

02

40

03

50

07

00

10

8L

i0

14

8X

38

94

04

39

33

94

39

1C

s0

00

20

00

50

00

70

01

40

01

6P

Y3

00

0m

ole

s

XC

a0

04

2A

n5

13

82

71

71

5Z

16

10

16

06

16

01

16

03

15

99

Na

07

47

Ab

94

69

53

97

09

75

97

9X

37

13

72

39

03

85

40

0K

00

02

Or

03

09

03

08

06

mo

les

amp

02

09

An

01

01

03

01

01

Ab

63

56

38

56

35

OH

35

83

Or

93

69

43

95

99

43

96

4F

04

17

Cl

mdash

WZ

ndashw

allzo

ne

OIZ

ndasho

ute

rin

term

edia

tezo

ne

IIZ

aan

dII

Zb

ndashin

ner

inte

rmed

iate

zon

esC

cndash

core

asin

Fig

2B

aOis

bel

ow

the

det

ecti

on

lim

itin

bo

thfe

ldsp

ars

Cs 2

Ofrac14

00

3w

tin

the

K-

feld

spar

fro

mth

eW

Z

mdashN

ot

det

ecte

d

Nu

mb

ero

fio

ns

on

the

bas

iso

f3

2o

xy

gen

sfo

ral

bit

ean

dK

-fel

dsp

ar

31

anio

ns

(O

OH

F

)fo

rsc

ho

rlan

d6

ox

yg

ens

for

spo

du

men

e

-A

mo

un

tin

ferr

edfr

om

con

sid

erat

ion

so

fst

oic

hio

met

ry

978 A M R Neiva

eschweizerbart_xxx

2011) Lepidolite from the OIZ is an Al-poorer mica (Fig4) and has the highest Si Licalcand F contents (Table 1)indicating that an evolution cannot be shown from thislepidolite to lepidolites from the other zones which areAl-richer micas (Fig 4) However there is a regulardecrease in the KRb ratio and a progressive increase inthe Rb and Cs contents from lepidolite of the OIZ tolepidolite of IIZa IIZb and Cc (Fig 7) which indicatesthat the KRb ratio and Rb and Cs contents must not beconsidered alone to show fractional crystallization in

lepidolites particularly if some are Al-richer micas andothers Al-poorer micas The high Licalcand F contents oflepidolite from the OIZ did not decrease its KRb ratioSuch an effect is considered to have taken place in lepi-dolite (an Al-richer mica) from the wall zone of the Tancopegmatite Manitoba Canada (Van Lichtervelde et al2008) An evolution from the lepidolite of the IIZa to thatof the Cc is generally shown by the increasing Si LicalcF Rb Cs contents and a decrease in the KRb ratio (Table1 Fig 7)

At the scale of crystals the pegmatite zones and alsothose from the OIZ to the Cc of the Namivo granitic pegma-tite Al-richer micas show fractionation because theyformed from the fractionation of an Li-rich pegmatite melt

The Al-poorer micas zinnwaldite lepidolite and FeMg-containing polylithionite only occur in the OIZ (Fig 4)Polylithionite is the mica richest in Si and Licalc and lepi-dolite from this zone is the richest in Si Licalcand F (Fig 4Table 1) The high Li contents of these micas reflect aconsiderably higher D(Li) at low temperature (Icenhoweramp London 1995) These Li-rich micas may have crystal-lized from an undercooled melt This hypothesis does notimply high Rb and Cs contents and low KRb ratios Thisagrees with the fact that these micas from the OIZ havesimilar Rb and Cs contents and KRb ratios to those of Al-richer micas (muscovite lithian muscovite and lsquolsquomixedformrsquorsquo) from the same pegmatite zone (Fig 7) Howeverthe lepidolite from the wall zone of the Tanco pegmatiteCanada of a similar origin has a low KRb ratio which isattributed to the complexly interrelated structural compo-nents of this lepidolite (Van Lichtervelde et al 2008) TheLi-rich micas from the OIZ may also represent disequili-brium These two hypotheses are considered the best forthese micas of primary magmatic origin

Another hypothesis was also considered They may havecrystallized in boundary layers which concentrate Li andF But this mechanism was suggested for the most fractio-nated tourmaline enriched in Li and F from the core of the

Fig 8 Plot of albite compositions from all zones of the Namivo granitic pegmatite Mozambique showing that the anorthite content of albitedecreases from the WZ to the Cc WZ OIZ IIZa IIZb and Cc as in Fig 2

Fig 9 The Rb vs Cs diagram of K-feldspar from all zones of theNamivo granitic pegmatite Mozambique showing that the Rb andCs contents of K-feldspar increase from the WZ to the Cc WZ OIZIIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 979

eschweizerbart_xxx

Little Three pegmatite dike USA (Morgan amp London1999) and the micas enriched in Li and F from theNamivo pegmatite belonging to the OIZ Furthermore ina boundary layer melt that became enriched in Li and F theKRb ratio of micas decreases strongly (Van Lichterveldeet al 2008) which was not found in these micas from theOIZ (Fig 7d) Nor can they have resulted from the crystal-lization of a late melt that would have reacted with the OIZbecause these micas are among those containing the high-est KRb values (Fig 7d)

92 The importance of feldspars micas andcolumbitendashtantalite compositions to the Namivogranitic pegmatite evolution

The trace elements Rb and Cs and the KRb and KCs ratioshave been used to show the evolution of K-feldspar inpegmatites (eg Cerny 1994 Cerny et al 2005 RodaRobles et al 2005) The Rb and Cs contents increase andthe KRb and KCs ratios of K-feldspar decrease from theWZ to the Cc (Fig 9 Table 2) reflecting the growth of K-feldspar from an increasingly fractionated melt withouthaving grown from or having been chemically modifiedby an aqueous fluid as in the Swamp pegmatite section atthe Little Three Mine USA (London et al 2012) Thecrystallization of K-feldspar from an exsolved aqueousfluid from melt will reverse the magmatic fractionation ofRb Cs KRb and KCs because Rb and especially Cs areso much more compatible in vapor that both Rb and Csremain in the fluid phase (London et al 2012) The feldsparsolvus pairs in the Namivo pegmatite record magmaticcrystallization temperatures that decrease from WZ to CcAlbite shows a decrease in the Ca Sr contents and SrCaratio from the WZ to the Cc (Fig 8 Table 2) Therefore thefeldspars and also Al-richer micas as already explainedshow fractionation in this zoned pegmatite

In general lepidolite from the Namivo pegmatite hassimilar Rb2O and Cs2O contents and KRb (wt) values tothose of lepidolite from the Rozna and Dobra Voda lepi-dolite-subtype pegmatites in the Czech Republic (Cernyet al 1995) but lower Rb2O and Cs2O contents thanlepidolite from the lepidolite-subtype pegmatite at RedCross Lake Manitoba Canada (Cerny et al 2012a) K-feldspar from the Namivo pegmatite also has lower Rb2O

Table 3 Representative electron microprobe analyses in wt of columbitendashtantalite from the Namivo granitic pegmatite Mozambique

Outer Intermediate Zone - OIZ Inner Intermediate Zone - IIZa

Core - Cc

D L L

WO3 022 059 079 113 101 351 050 007Ta2O5 5487 5123 2503 3186 2888 2519 3127 4542Nb2O5 2537 3000 5483 4635 5113 5144 4911 3686SnO2 008 015 024 049 020 026 017 012TiO2 263 161 136 254 202 145 125 016FeO 860 710 665 471 236 068 mdash mdashMnO 793 952 1099 1304 1400 1725 1748 1718Total 9970 10020 9989 10012 9960 9978 9978 9981W 0004 0011 0013 0019 0016 0057 0008 0001Ta 1065 0975 0422 0552 0495 0430 0543 0847Nb 0819 0949 1538 1336 1456 1460 1418 1143Sn 0002 0004 0006 0012 0005 0007 0004 0003Ti 0141 0085 0063 0122 0096 0068 0060 0008Fe 0513 0416 0345 0251 0124 0036 mdash mdashMn 0479 0564 0578 0704 0747 0917 0945 0998P

3023 3004 2965 2996 2939 2975 2978 3000Mn(Mn thorn Fe) 048 058 063 074 086 096 100 100Ta(Ta thorn Nb) 057 051 022 029 025 023 028 043Classification tant-(Fe) tant-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn)

D ndash darker L ndash lighter zones mdash Not detected tant-tantalite col-columbite Cation formula on the basis of 6 atoms of oxygen

Fig 10 Compositions of columbitendashtantalite from the Namivogranitic pegmatite Mozambique in the columbite quadrilateralshowing that Mn(Mn thorn Fe) of columbite-(Mn) increases from theOIZ to the Cc and the richest columbite-(Mn) in Ta(Ta thorn Nb)tantalite-(Fe) and tantalite-(Mn) only occur in the OIZ OIZ IIZaand Cc as in Fig 2

980 A M R Neiva

eschweizerbart_xxx

and Cs2O contents than K-feldspar from the lepidolite-subtype pegmatite at Red Cross Lake The Rb2O andCs2O contents of primary and late K-feldspar of this peg-matite at Red Cross Lake attained unprecedented levels(Cerny et al 2012a) The lowest KRb (wt) values ofmuscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepido-lite from the IIZb and Cc (Fig 7) and K-feldspar (KRb frac1414) from the Cc compare well with those found in theseminerals from the AC6frac143 lepidolite-subtype pegmatitefrom Greer Lake (Cerny et al 2005) and some of themost fractionated pegmatites worldwide which belong tothe petalite-subtype (eg Tanco Manitoba Cerny 2005Cerny et al 1998 Varutrask Sweden Cerny et al 2005)but muscovite lithian muscovite and lepidolite from theIIZb and Cc have lower Rb2O and Cs2O contents than thesemicas from the Tanco pegmatite (Cerny 2005a VanLichtervelde et al 2008) K-feldspar also has lower

contents of these oxides than the most evolved K-feldsparfrom the Tanco pegmatite (Cerny 2005a) The magmaticfractionation was strong from the WZ to IIZb and Cc of theNamivo lepidolite-subtype pegmatite

The compositional trend of columbite-(Mn) from the OIZto Cc of the Namivo granitic lepidolite-subtype pegmatite(Fig 10) is identical to that of columbite-group mineralsfrom the lepidolite-subtype complex granitic pegmatitesfrom the Dobra Voda in the Moldanubicum CzechRepublic (Novak amp Cerny 1998) and the HimalayaDistrict southern California (shown in Cerny et al 2004)Experimental data for the Fe-Mn pair (Linnen amp Cuney2005) suggest an increase in Fe with fractional crystalliza-tion which is not observed in nature Other phases seem tocontrol the bahavior of Fe and Mn in the melt eg thecrystallization of tourmaline causes a rapid increase of theMnFe in the melt (Van Lichtervelde et al 2006) When thecrystallization of tourmaline stopped the columbitendashtantaliteminerals showed a constant MnFe indicating that the Fe andMn contents in the melt remained constant Schorl onlyoccurs in the OIZ of the Namivo granitic pegmatite and itscrystallization cannot be responsible for the increase in theMnFe of the melt because Mn(Mn thorn Fe) of columbite-(Mn) increases progressively from the OIZ to the IIZa and Cc(Fig 10) Garnet zinnwaldite and gahnite containing Fe andMn also only occur in the OIZ and cannot also have causedthe increase of the MnFe in the melt The dominant Mnenrichment before Ta enrichment started in the columbitendash-tantalite composition from some granitic pegmatites isattributed to an increased alkali-fluoride activity at moderatemHF (Cerny et al 2004) and an increase in the activity offluorine (Martins et al 2011) Each Al-richer mica (musco-vite lithian muscovite and lsquolsquomixed formrsquorsquo) from the Namivogranitic pegmatite shows an increase in F content from theOIZ to the IIZa IIZb and Cc (Table 1) In general the Fcontent of lepidolite also increases from the IIZa to the IIZband Cc Therefore the extreme Fe-Mn fractionation beforeTa enrichment in columbite-(Mn) (Fig 10) may be due to anincrease in the activity of fluorine as a consequence offractional crystallization The increase in the Ta content ofcolumbite-(Mn) from the Namivo granitic pegmatite isattributed to fractional crystallization

The geochemical evolution of albite and K-feldsparfrom the WZ to the Cc Al-richer micas muscovite lithianmuscovite and lsquolsquomixed formrsquorsquo from the OIZ to the Cc andlepidolite from the IIZa to the Cc and columbite-(Mn) andalso beryl (Neiva amp Neiva 2005) from the OIZ to the Ccare caused by magma fractionation The pegmatite zonesare the product of primary crystallization from a volatile-rich silicate melt The pegmatite consolidated from the WZto the Cc The IIZb is one of the most evolved zones asalso suggested by the beryl composition (Neiva amp Neiva2005) and is the richest in lsquolsquomixed formrsquorsquo and lepidolite

The richest columbite-(Mn) in Ta(Ta thorn Nb) and com-positions of tantalite-(Fe) and tantalite-(Mn) only occur inthe OIZ (Fig 10a) associated with lepidolite and polythio-nite (Fig 3c) which may be due to the local depletion of Liand F in the melt which decreases the solubility of Ta andcauses Ta precipitation (Linnen 1998 Linnen amp Cuney

Fig 11 a Backscattered-electron image of a gahnite crystal with adarker zone partially surrounding a lighter zone from the OIZ of theNamivo granitic pegmatite b c Plot of gahnite compositions in theSn-Zn-Ti diagram (atomic proportions) showing a chemical distinc-tion between the lighter and darker zones OIZ as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 981

eschweizerbart_xxx

2005) At the Tanco pegmatite Ta oxides are also asso-ciated with lepidolite enriched in Li and F from the wallzone (Van Lichtervelde et al 2008)

93 Origin and evolution of the zoned graniticlepidolite-subtype pegmatite at Namivo

In general granitic pegmatites particularly those belong-ing to the rare-element class are accepted as having beenformed by the fractional crystallization of a granite melt(eg Cerny 1991a b 1992 Neiva et al 2008 2012 Roda-Robles et al 2012) But it also has been proposed thatpegmatites may be formed by partial melting of appropri-ate rock compositions (eg Nabelek et al 1992 Nabelekamp Russ-Nabelek 1992 Shearer et al 1992 Roda Robleset al 1999) The lepidolite-subtype pegmatites belong tothe LCT (lithium-cesium-tantalum) family (Cerny amp Ercit2005) They are derived by fractional crystallization of agranite magma (eg Cerny et al 2005 Neiva amp Ramos2010 Cerny et al 2012b) Experimental work by Londonet al (1989) and London (1990) using Macusani glass as astarting material equivalent to the bulk composition ofhighly fractionated rare-alkali-rich pegmatites underhighly evolved and hydrous but H2O undersaturatedmelt obtained the latest primary assemblage consisting

of an Li-rich mica thorn albite thorn quartz deposited directlyfrom the primary melt phase Other authors egZasedatelev (1974 1977) and Stewart (1978) argue thatlepidolite-bearing pegmatites are derived from direct ana-texis and Gordiyenko et al (1996) consider that they arederived from an undefined medium and the rare-elementmineralization is superimposed on preexisting barrenpegmatites

Lepidolite-subtype pegmatites may migrate a long wayfrom their parent granites because their volatile-rich highlyfluid pegmatite melts are stable at relatively low tempera-tures (eg Cerny et al 2005 Antunes et al 2013)Therefore the Namivo pegmatite is probably derived byfractional crystallization of an S-type granite magmawhich resulted from partial melting of metamorphosed juve-nile sediments containing micas that carry most of the traceelements that define the signature of the LCT pegmatites(eg Dahl et al 1993)

The two main models for the internal evolution of peg-matites that dominated for more than a century are a) thefractional crystallization of a flux-bearing granitic melt fromthe margins to the center of the pegmatite (Cameron et al1949) b) the interactions of an aqueous fluid with graniticmelt (Jahns amp Burnham 1969 Jahns 1982) The recentmodel of constitutional zone refining combines aspects ofboth models and invokes the formation of a flux-enriched

Table 4 Electron microprobe analyses in wt of zoned gahnite from the outer intermediate zone (OIZ) of the Namivo granitic pegmatiteMozambique

Darker Zone Lighter Zone

Mean s Range Mean s Range

SnO2 036 050 0ndash097 658 281 151ndash998TiO2 008 008 0ndash021 065 034 008ndash105Nb2O5 001 002 0ndash006 018 007 007ndash029Ta2O5 001 004 0ndash010 015 013 0ndash033ZnO 3998 123 3810ndash4109 3339 318 3004ndash3848FeO 367 048 331ndash442 433 065 306ndash498MnO 032 004 028ndash040 039 006 032ndash048MgO 003 004 0ndash010 ndash ndash ndashAl2O3 5507 050 5436ndash5572 5337 070 5257ndash5443SiO2 003 003 0ndash007 008 010 0ndash025Total 9956 9912n 8 8Sn 0035 0048 0ndash0095 0648 0278 0149ndash0983Ti 0015 0015 0ndash0038 0120 0064 0015ndash0195Nb ndash 0003 0ndash0006 0021 0009 0009ndash0037Ta ndash 0002 0ndash0006 0009 0009 0ndash0021Zn 7226 0182 6890ndash7382 6086 0568 5482ndash6965Fe2thornt 0752 0103 0675ndash0913 0894 0135 0628ndash1029Mn 0066 0008 0057ndash0083 0082 0013 0066ndash0101Mg 0010 0015 0ndash0037 ndash ndash ndashAl 15887 0052 15805ndash15954 15526 0170 15375ndash15853Si 0007 0008 0ndash0018 0019 0025 0ndash0062P

23998 23405Fe3thorn 0064 0230Fe2thorn 0686 0658SnZn 0005 0007 0ndash0014 0106 0052 0021ndash0179ZnFe2thornt 961 143 768ndash1093 681 190 536ndash1109

n number of analysis Cation formula based on 32 atoms of oxygen Fe2thornt total Fe2thorn estimated

982 A M R Neiva

eschweizerbart_xxx

boundary layer of silicate liquid in advance of a crystal-lization front (London 2008 London amp Morgan 2012)

Lepidolite-subtype pegmatites are generally scarce(Cerny et al 2005) particularly the zoned ones In thesymmetrically zoned lepidolite-subtype pegmatites ofRozna and Dobra Voda Czech Republic micas (Cernyet al 1995) tourmaline (Selway et al 1999) and colum-bite-group minerals (Novak amp Cerny 1998) evolve fromthe outermost zone to the innermost zone following thecrystallization sequence The same was found in tourma-line from the zoned Lastovicky Dolnı Bory and Raddovicelepidolite-subtype pegmatite dikes in the Czeck Republic(Selway et al 1999)

In general beryl (Neiva amp Neiva 2005) feldsparsmicas and columbite-(Mn) (in this paper) from theNamivo lepidolite-subtype pegmatite record the progres-sive chemical evolution of the pegmatite from the wallzone to the core These minerals were produced by crystal-lization from a silicate melt rather than an aqueous fluidphase The slow cooling of melt shown by the magmaticcrystallization temperatures of feldspars cannot explain theincrease in grain-size of minerals from the wall zone to thecore but fluxes will be necessary to promote the change oftexture particularly a flux-rich hydrosilicate liquidaccording to the experimental evidence (London 2009)The constitutional zone refining model will be the best forthis zoned pegmatite and probably for all lepidolite-sub-type pegmatites because this model also produces a higherfinal concentration of incompatible components in a smal-ler volume of rock than fractional crystallization does(Morgan amp London 1999)

The core margin at the Rozna pegmatite contains K-feld-spar and quartz and the core consists mainly of quartz but it issurrounded and penetrated by a quartz-bearing albitethorn lepi-dolite complex which contains several minerals At theDobra Voda pegmatite the center of the dike is occupiedby the lepidolite unit containing albite and other minerals(Cerny et al 1995) At the Namivo pegmatite the coremargin consists of quartz and beryl and the core containsmainly quartz and spodumene but also albite lepidolite andother minerals The last-unit assemblages of primary miner-als in most of the highly fractionated LCT pegmatites are richin albite and commonly contain lepidolite or spodumene andmost of the other rare phases These units represent the lastmost fractionated liquid that can be derived by fractionalcrystallization of a crustal melt (London 2008)

The Namivo granitic pegmatite shows a significant dis-tinction from the other zoned lepidolite-subtype pegmatitesand LCT pegmatites except the Tanco petalite-subtypepegmatite in Canada because the lepidolite richest in SiLi and F FeMg-containing polylithionite and associatedcolumbite-(Mn) with the highest Ta(Ta thorn Nb) ratio tanta-lite-(Fe) and tantalite-(Mn) only occur in the outer inter-mediate zone These minerals usually form late in theconsolidation of pegmatites The lepidolite and polylithio-nite are probably derived from the disequilibrium crystal-lization of an undercooled melt Tantalite may reflect a localdecrease in Li and F that caused Ta precipitation

This paper contributes to a better understanding of theorigin and evolution of the rare zoned lepidolite-subtypepegmatites and shows that although the pegmatite evolvedfrom the wall zone to the core it presents an unusualassociation of lepidolite polylithionite and tantalite in theouter intermediate zone

Acknowledgments Thanks are due to JM Cotelo Neivaand MB Dias for the samples and information providedand to MR Machado Leite and MF Guimaraes for theuse of the electron microprobe facilities at the LaboratorioNacional de Energia e Geologia (LNEG) PortugalFinancial support was provided by the PortugueseGovernment for the project Pest-OECTEUI00732011of the Geosciences Centre through the PortugueseFoundation for Science and Technology I would like tothank D London WB Simmons and the associated editorE Widom for their constructive reviews of this manuscriptand M Prieto for his editorial work

References

Alfonso P Melgarejo JC Yusta I Velasco F (2003)

Geochemistry of feldspars and muscovite in granitic pegmatite

from the Cap de Creus field Catalonia Spain Can Mineral 41

103ndash116

Antunes IMHR Neiva AMR Ramos JMF Silva PB

Silva MMVG Corfu F (2013) Petrogenetic links between

lepidolite-subtype aplite-pegmatite aplite veins and associated

granites at Segura (central Portugal) Chemie der Erde in press

httpdxdoiorg101016jchemer20121203

Batchelor RA amp Kinnaird JA (1984) Gahnite compositions

compared Mineral Mag 48 425ndash430

Beurlen H Da Silva MRR Thomas R Soares DR Olivier P

(2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-

element granitic pegmatite fractionation in the Borborema pro-

vince Northeastern Brazil Miner Deposita 43 207ndash228

Cameron EN Jahns RH McNair AH Page LR (1949)

Internal structure of granitic pegmatites Econ Geol

Monograph 2 115 p

Cerny P (1991a) Fertile granites of Precambrian rare-element

pegmatite fields is geochemistry controlled by tectonic setting

or source lithologies Precambrian Res 51 429ndash468

mdash (1991b) Rare-element granite pegmatites I Anatomy and inter-

nal evolution of pegmatite deposits Geoscience Canada 18

49ndash67

mdash (1992) Geochemical and petrogenetic features of mineralization

in rare-element granitic pegmatites in the light of current

research Applied Geochemistry 7 393ndash416

mdash (1994) Evolution of feldspars in granitic pegmatites in

lsquolsquoFeldspars and their Reactionsrsquorsquo I Parsons ed NATO

Advanced Study Institute Series C421 501ndash539

mdash (2005) The Tanco rare-element pegmatite deposit Manitoba

regional context internal anatomy and global comparisons in

lsquolsquoRare-element Geochemistry and Mineral Depositsrsquorsquo RL

Linnen amp IM Samson eds Geochemical Association of

Canada Short Course Notes St Catherines 17 127ndash158

Silicate and oxide minerals from a zoned granitic pegmatite 983

eschweizerbart_xxx

Cerny P amp Ercit TS (2005) The classification of granitic pegma-

tites revisited Can Mineral 43 2005ndash2026

Cerny P Meintzer RE Andersen AJ (1985) Extreme fractiona-

tion in rare-element granitic pegmatites selected examples of

data and mechanisms Can Mineral 23 381ndash421

Cerny P Goad BE Hawthorne FC Chapmann R (1986)

Fractionation trends of the Nb- and Ta-bearing oxide minerals

in the Greer Lake pegmatite granite and its pegmatite aureole

southeastern Manitoba Am Mineral 71 501ndash517

Cerny P Stanek J Novak M Baadsgaard H Rieder M

Ottolini L Kavalova M Chapman R (1995) Geochemical

and structural evolution of micas in the Rozna amp Dobra Voda

pegmatites Czech Republic Mineral Petrol 55 177ndash201

Cerny P Ercit TS Vanstone PJ (1998) Mineralogy and petrol-

ogy of the Tanco rare-element pegmatite deposit southeastern

Manitoba International Mineralogical Association 17th General

Meeting Toronto Field Guidebook B6

Cerny P Chapman R Ferreira K Smeds SA (2004)

Geochemistry of oxide minerals of Nb Ta Sn and Sb in

the Varutrask granitic pegmatite Sweden The case of an

lsquolsquoanomalousrsquorsquo columbitendashtantalite trend Am Mineral 89

505ndash518

Cerny P Masau M Goad BE Ferreira K (2005) The Greer

Lake leucogranite Manitoba and the origin of lepidolite-sub-

type granitic pegmatites Lithos 80 305ndash321

Cerny P Teertstra DK Chapman R Selway JB Hawthorne

FC Ferreira K Chackowsky LE Wang X-J Meintzer

RE (2012a) Extreme fractionation and deformation of the

leucogranite-pegmatite suite at Red Cross Lake Manitoba

Canada IV Mineralogy Can Mineral 50 1839ndash1875

Cerny P Halden NM Ferreira K Meintzer RE Brisbin WC

Chackowsky LE (2012b) Extreme fractionation and deforma-

tion of the leucogranite-pegmatite suite at Red Cross Lake

Manitoba Canada II Petrology of the leucogranites and peg-

matites Can Mineral 50 1807ndash1822

Dahl PS When DC Feldmann SG (1993) The systematics of

trace-element partitioning between coexisting muscovite and

biotite in metamorphic rocks from the Black Hills South

Dakota USA Geochim Cosmochim Acta 57 2487ndash2505

Dias MB amp Wilson WE (2000) The Alto Ligonha Pegmatites

Mozambique Mineral Record 31 459ndash497

Fleet ME (2003) Rock-Forming Minerals vol 3A Sheet silicates

micas The Geological Society London second edition chap 6

Lithium micas 651ndash690

Foord EE Cerny P Jackson LL Sherman DM Eby RK

(1995) Mineralogical and geochemical evolutions of micas

from miarolitic pegmatites of the anorogenic pikes-Peak

Batholith Colorado Mineral Petrol 55 1ndash26

Foster MD (1960) Interpretation of the composition of lithium

micas US Geol Surv Prof Paper 354-E 115ndash147

Fuhrman ML amp Lindsley DK (1988) Ternary-feldspar modeling

and thermometry Am Mineral 73 201ndash215

Gomes CL Castro P Alves C (1995) Caracterizacao das espi-

nelas zincıferas e do par ganite-nigerite no campo aplito-

pegmatıtico da Serra de Arga-Minho N de Portugal IV

Congresso Nacional de Geologia Resumos Alargados

Universidade do Porto Mem 4 629ndash633

Gordiyenko VV Ilyina AN Timochina LA Badamina EB

Stanek J (1996) Geochemical model of evolution of a pegma-

tite-forming ore-magmatic system of western Moravia Proc

Russ Mineral Soc 125 38ndash48 (in Russian)

Icenhower JP amp London D (1995) An experimental study for

element partitioning between biotite muscovite and coexisting

peraluminous granitic melt at 200 MPa (H2O) Am Mineral 80

1229ndash1251

Jahns RH (1982) Internal evolution of pegmatite bodies in lsquolsquoGranitic

Pegmatites in science and industryrsquorsquo P Cerny ed Mineralogical

Association of Canada Short Course Handbook 8 293ndash327

Jahns RH amp Burnham CW (1969) Experimental studies of

pegmatite genesis I A model for the derivation and crystal-

lization of granitic pegmatites Econ Geol 64 843ndash864

Jolliff BL Papike JJ Shearer CK (1987) Fractionation trends

in mica and tourmaline as indicators of pegmatite internal evo-

lution Bob Ingersoll pegmatite Black Hills South Dakota

USA GeochimCosmochim Acta 51 519ndash534

Kile DE amp Foord EE (1998) Micas from the Pikes Peak bath-

olith and its cogenetic granitic pegmatites Colorado optical

properties composition and correlation with pegmatite evolu-

tion Can Mineral 36 463ndash482

Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic

melts with Li and Li thorn F constraints for mineralization in rare

metal granites and pegmatites Econ Geol 93 1013ndash1025

Linnen RL amp Cuney M (2005) Granite-related rare-element

deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf

mineralization in lsquolsquoRare-element geochemistry and mineral

depositsrsquorsquo RL Linnen amp IM Samson eds Geochemical

Association of Canada Short Course Notes 17 45ndash68

London D (1990) Internal differentiation of rare-element pegmatites

a synthesis of recent research in lsquolsquoOre Bearing Granite Systems

Petrogenesis and Mineralizing Processesrsquorsquo HJ Stein amp JL

Hannah eds Geol Soc America Special Paper 246 35ndash50

mdash (2008) Pegmatites The Canadian Mineralogist Special

Publication 10 347 p

mdash (2009) The origin of primary textures in granitic pegmatites

Can Mineral 47 697ndash724

London D amp Morgan GB VI (2012) The pegmatite puzzle

Elements 8 263ndash268

London D Morgan GB VI Hervig RL (1989) Vapor-under-

saturated experiments in the system macusanite-H2O at 200

MPa and the internal differentiation of granitic pegmatites

Contrib Mineral Petrol 102 1ndash17

London D Morgan GB VI Paul KA Guttery BM (2012)

Internal evolution of miarolitic granitic pegmatites at the Little

Three mine Ramona California USA Can Mineral 50

1025ndash1054

Martins T Lima A Simmons WB Folster AU Noronha F

(2011) Geochemical fractionation of Nb-Ta oxides in Li-bear-

ing pegmatites from the Barroso-Alvao pegmatite field northern

Portugal Can Mineral 49 777ndash791

Monier G Charoy B Cuney M Ohnenstetter D Robert JL

(1987) Evolution spatiale et temporelle de la composition des

micas du granite albitique a topaze-lepidolite de Beauvoir

Geologie De La France 2ndash3 179ndash188

Monier G amp Robert JL (1986) Evolution of the miscibility gap

between muscovite and biotite solid solutions with increasing

lithium content an experimental study in the systems

K2OndashLi2OndashMgOndashAl2O3ndashSiO2ndashH2OndashHF at 600 C 2 kbar

PH2O comparison with natural lithium micas Mineral Mag

50 641ndash651

Morgan GBVI amp London D (1999) Crystallization of the little

three layered pegmatite-aplite dike Ramona District California

Contrib Mineral Petrol 136 310ndash330

984 A M R Neiva

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985

Page 10: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

From the OIZ to IIZa IIZb and Cc muscovite and lithianmuscovite generally show increases in the Si Licalc F and Rbcontents and decreases in the Fe2thorn and Mg contents and KRb ratio but the Mg content is very low in these micas fromthe IIZa IIZb and Cc (Table 1 Fig 7a) The lsquolsquomixed formrsquorsquoshows increases in the Si Licalc F Rb Cs contents anddecreases in the (AlIV thorn AlVI) and Mg contents and KRbratio but the Mg content is very low in this mica from theIIZb and Cc (Table 1 Fig 7b c) The lepidolite shows anincrease in the Si Licalc F Rb and Cs contents and a decreasein the KRb ratio from the IIZa to the IIZb and Cc (Table 1Fig 7d e) Furthermore the lepidolite from the OIZ has thelowest (AlIV thorn AlVI) AlVI and OH contents the highest SiFe2thorn Licalcand F contents and KRb ratio and the lowest Rband Cs contents compared to lepidolite from the other zones(Table 1 Fig 7d e)

5 Feldspars

Selected chemical analyses of albite and K-feldspar fromfive zones of the Namivo granitic pegmatite are given inTable 2 Strontium is the most abundant trace element inalbite (eg Cerny 1994) Anorthite and Sr contents and SrCa ratio of albite decrease from the WZ to the Cc (Fig 8Table 2) Rubidium is the most abundant trace element inK-feldspar followed by Cs in IIZa IIZb and Cc In gen-eral K Rb and Cs contents of K-feldspar increase and KRb and KCs values decrease from the WZ to the Cc (Table2 Fig 9)

The program SOLVCALC 20 (Wen amp Nekvasil 1994)using the Margules model Fuhrman amp Lindsley (1988) wasapplied for the purpose of thermometry The pairing ofplagioclase cores with the K-feldspars average of eachsample was used to estimate the crystallization temperaturesof primary magmatic feldspars They are 405 C (WZ)406ndash340 C (OIZ) 390ndash335 C (IIZa) 347ndash306 C (IIZb)and 333ndash289 C (Cc) at 3 kbar The metamorphic environ-ment of rare-element-Li granitic pegmatites is one of lowpressure 2ndash4 kbar (Cerny amp Ercit 2005) In general thedifference between the maximum and minimum calculatedtemperatures at 2 3 and 4 kbar for the same feldspar pairfrom the Namivo pegmatite is lower than 40 C The tem-perature decreases from the wall zone (WZ) to the core(Cc) A similar temperature behavior of feldspars wasfound in the pegmatite-aplite dike USA (Morgan ampLondon 1999)

6 Other silicates

Tourmaline of schorl composition was only found inthe OIZ (Table 2) because there was not enough Feand Mg for schorl to precipitate in the other zonesSpodumene only occurs in the Cc and its compositionis nearly pure (Table 2)

7 Columbite-tantalite

Representative chemical analyses of columbitendashtantalitefrom the Namivo granitic pegmatite are given in Table 3and plotted in the columbite quadrilateral (Fig 10a)Most crystals are unzoned but zoned crystals with dar-ker and lighter zones in BSE images are from the Cc Thelighter zone of columbite-(Mn) has higher Ta contentTa(Ta thorn Nb) and Mn(Mn thorn Fe) values and lower Nbcontent than the darker zone (Fig 10a b) The crystals ofthe columbitendashtantalite minerals are low in W Sn and Tiimpurities (Table 3)

The main trend starts from the columbite-(Mn) of theOIZ towards the more Mn-enriched and slightly Ta-enriched columbite-(Mn) from the IIZa and Cc The high-est Ta(Ta thorn Nb) values belong to the lighter zone ofcolumbite-(Mn) with Mn(Mn thorn Fe) frac14 10 from the CcThe richest columbite-(Mn) in Ta(TathornNb) and composi-tions of tantalite-(Fe) and tantalite-(Mn) were only foundin the OIZ (Fig 10a) and are associated with lepidolite andpolylithionite (Fig 3c)

8 Gahnite

Gahnite was rarely found in the OIZ and shows a darkerzone that partially surrounds a lighter zone in a BSE image(Fig 11a) The darker zone has a higher Zn content andlower Sn Ti Nb Ta Mn contents and SnZn value than thelighter zone (Table 4 Fig 11b c) These gahnite composi-tions fall within the igneous field of Batchelor amp Kinnaird(1984) The darker zone is closer in composition to thepure gahnite (Zn8Al16O32) than the lighter zone whichcontains up to 0983 apfu Sn 0195 apfu Ti 1029 apfutotal Fe2thorn 0101 apfu Mn (Table 4) and consequently hasa composition distinct from nigerite In general both thedarker and lighter zones have higher Sn Ti and Fe contentsthan gahnite from the granitic pegmatites of Nigeria(Batchelor amp Kinnaird 1984) Arga northern Portugal(Gomes et al 1995) and Cabanas northern Portugal(Neiva amp Champness 1997) Borborema province north-eastern Brazil (Soares et al 2007) The Zn=Fe2thornt values ofthe darker and lighter zones of gahnite from Namivo arelower than those reported in Neiva amp Champness (1997)and Soares et al (2007)

9 Discussion and conclusions

91 Evolution of micas in the zoned pegmatite

In general individual mica crystals show varying patternsand compositional zoning involving several elementsmainly Si AlVI (AlIV thorn AlVI) Fe2thorn Mn (Fe2thornthorn Mn thornMg) Licalc Rb Cs F and OH and the KRb ratioProgressively zoned crystals from the IIZa show grada-tional contacts between a lithian muscovite core and a

976 A M R Neiva

eschweizerbart_xxx

lsquolsquomixed formrsquorsquo rim (Figs 3e 6e f) and the zoning patternscorrespond to fractionation trends and probably reflect adrop in temperature during the crystallization of the grani-tic pegmatite melt Progressively zoned crystals also occurin OIZ IIZb and Cc Some crystals are reversely zonedwith a) a lsquolsquomixed formrsquorsquo core and a lithian muscovite rimfrom the OIZ (Figs 3d d1 6d) b) a core consisting oflsquolsquomixed formrsquorsquo and lepidolite and a rim of muscovite andlithian muscovite from the IIZa (Figs 3f f1 6g h) c) alepidolite core and a muscovite and lithian muscovite rimfrom the Cc (Figs 3j 6o p) which may be explained bythe hypothesis of oscillations in the compositions of themelt from which they grew alternating between an Li-enriched boundary layer and a bulk melt that is less frac-tionated The muscovite evolved to lithian muscovite inIIZa and Cc (Figs 3f 6g h 3j 6o p) Replacements (Figs3a 6a b 3c 6c 3i 6m n Table 1) occur in OIZ and Ccand overgrowths (Figs 3b g 6i j k 3h 6l Table 1) occurin OIZ and IIZb as found in BSE images

Muscovite evolved to lithian muscovite as observed inOIZ IIZa IIZb and Cc (Figs 3f 6g h 3j 6o p Table 1)Lithian muscovite evolved to lsquolsquomixed formrsquorsquo in OIZ IIZaIIZb and Cc (Figs 3e 6e f Table 1) and lsquolsquomixed formrsquorsquoevolved to lepidolite in IIZa IIZb and Cc (Figs 3f f1 6gh 3h 6l Table 1) All these evolutions are due to fractionalcrystallization

In the OIZ lepidolite has more Si Licalcand F butsimilar KRb to that of zinnwaldite and replaces it (Figs

3a 6a b 7d Table 1) An FeMg-containing polylithionitehas higher Si Licalcand Rb contents and a smaller KRbratio than the lepidolite that it replaces (Figs 3c 6c Table1) and a continuous chemical evolution from lepidolite topolylithionite is shown

The trends for major and trace elements of micas withineach zone are difficult to define due to some partial over-lapping but a progressive evolution from muscovite to lithianmuscovite lsquolsquomixed formrsquorsquo and lepidolite in IIZa IIZb and Ccis mainly shown by an increase in the Si Licalc F Rb and Cscontents and a decrease in the KRb ratio and this is simi-larly shown in the OIZ from muscovite to lsquolsquomixed formrsquorsquo(Table 1 Fig 7) In the OIZ Si and Licalccontents increaseprogressively from zinnwaldite to lepidolite and FeMg-containing polylithionite but a gap occurs between zinnwal-dite and lepidolite (Table 1 Fig 4) whereas a continuousevolution from lepidolite to polylithionite is observed TheKRb ratios of zinnwaldite and polylithionite are within therange of that of lepidolite (Fig 7d e)

Each Al-richer mica (muscovite lithian muscovite andlsquolsquomixed formrsquorsquo) exhibits an evolution from the OIZ to theIIZa and then to the IIZb and Cc particularly shown by anincrease in the Si Licalc F and Rb contents and adecrease in the KRb ratio but also an increase in theCs content in the lsquolsquomixed formrsquorsquo (Table 1 Fig 7) Theseelements and ratio have been used as petrogenetic indi-cators of evolution in micas from pegmatites (eg Cernyet al 2005 Roda Robles et al 2006 2007 Vieira et al

Fig 7 Plot of some variation diagrams of micas from the OIZ IIZa IIZb and Cc of the Namivo granitic pegmatite Mozambique showingthat the Rb2O and Cs2O contents increase and the KRb ratio decreases for micas from the OIZ to the Cc OIZ IIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 977

eschweizerbart_xxx

Tab

le2

R

epre

sen

tati

ve

elec

tro

nm

icro

pro

be

anal

yse

sin

wt

o

ffe

ldsp

ars

sch

orl

and

spo

du

men

efr

om

the

Nam

ivo

gra

nit

icp

egm

atit

eM

oza

mb

iqu

e

Alb

ite

K-f

eld

spar

Sch

orl

Sp

od

um

ene

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

OIZ

Zo

ne

Cc

SiO

26

75

76

78

86

87

06

84

76

84

1S

iO2

65

10

65

55

65

46

64

96

64

72

SiO

23

52

0S

iO2

64

65

TiO

20

02

mdash0

02

mdashmdash

TiO

2mdash

00

1mdash

mdashmdash

TiO

20

35

Al 2

O3

27

20

Al 2

O3

20

25

19

74

19

67

19

88

19

97

Al 2

O3

18

96

18

23

18

31

18

24

18

05

B2O

3

10

28

Fe 2

O3

00

6F

e 2O

3mdash

mdashmdash

mdash0

10

Fe 2

O3

mdash0

02

mdash0

03

mdashA

l 2O

33

17

2M

nO

01

3M

nO

00

6mdash

mdashmdash

mdashM

nO

mdash0

03

00

3mdash

mdashF

eO1

35

2M

gO

01

8M

gO

mdashmdash

mdashmdash

mdashM

gO

00

10

01

00

5mdash

mdashM

nO

03

3N

a 2O

01

9C

aO1

04

08

00

56

03

70

32

CaO

00

10

01

00

60

01

00

2M

gO

22

8L

i 2O

8

05

Na 2

O1

06

11

12

01

12

11

13

41

13

4N

a 2O

06

50

58

04

10

59

03

8C

aO0

23

To

tal

10

04

6K

2O

00

50

17

00

60

14

01

0K

2O

14

72

14

75

15

67

15

01

15

74

Li 2

O

02

2S

rO0

72

05

00

24

01

1mdash

Rb

2O

00

90

20

03

00

59

09

0N

a 2O

22

8S

i1

99

7P

2O

50

01

00

4mdash

mdashmdash

Cs 2

O

00

6

00

60

09

01

80

20

K2O

00

1A

lIV0

00

3T

ota

l1

00

33

10

03

31

00

46

10

03

11

00

24

P2O

5mdash

00

3mdash

mdashmdash

H2O

3

18

P2

00

To

tal

99

60

99

48

10

03

89

96

11

00

01

F0

78

AlV

I0

98

7S

rC

a(w

t)0

81

07

40

50

03

50

Cl

mdashF

e3thorn

00

01

KR

b(w

t)153

68

48

23

16

Sum

1003

8P

09

9S

i1

18

23

11

87

91

19

58

11

93

21

19

21

KC

s(w

t)4

07

20

41

63

73

69

O

F0

33

Li

10

00

P0

00

10

00

6mdash

mdashmdash

To

tal

10

00

5M

n0

00

3T

i0

00

3mdash

00

03

mdashmdash

Si

11

98

61

20

88

12

04

11

20

45

12

03

3M

g0

00

8A

l4

17

64

07

14

03

54

08

34

10

1P

mdash0

00

5mdash

mdashmdash

TS

i5

95

2N

a0

01

2F

e3thorn

mdashmdash

mdashmdash

00

13

Ti

mdash0

00

1mdash

mdashmdash

Al

00

48

P1

02

Mn

00

09

mdashmdash

mdashmdash

Al

41

14

39

62

39

70

39

86

39

55

B3

00

0M

gmdash

mdashmdash

mdashmdash

Fe3thorn

mdash0

00

3mdash

00

04

mdashZ

Al

60

00

Ca

01

95

01

50

01

04

00

69

00

60

Mn

mdash0

00

50

00

5mdash

mdashY

Al

02

74

Sr

00

73

00

51

00

24

00

11

mdashM

g0

00

30

00

30

01

4mdash

mdashT

i0

04

5N

a3

59

93

80

03

78

33

83

23

83

1C

a0

00

20

00

20

01

20

00

20

00

4M

g0

57

5K

00

11

00

38

00

13

00

31

00

22

Na

02

32

02

07

01

46

02

12

01

37

Mn

00

47

K3

45

73

47

03

67

73

55

03

73

3F

e2thorn

19

12

Z1

60

01

59

61

60

01

60

11

60

4R

b0

01

10

02

40

03

50

07

00

10

8L

i0

14

8X

38

94

04

39

33

94

39

1C

s0

00

20

00

50

00

70

01

40

01

6P

Y3

00

0m

ole

s

XC

a0

04

2A

n5

13

82

71

71

5Z

16

10

16

06

16

01

16

03

15

99

Na

07

47

Ab

94

69

53

97

09

75

97

9X

37

13

72

39

03

85

40

0K

00

02

Or

03

09

03

08

06

mo

les

amp

02

09

An

01

01

03

01

01

Ab

63

56

38

56

35

OH

35

83

Or

93

69

43

95

99

43

96

4F

04

17

Cl

mdash

WZ

ndashw

allzo

ne

OIZ

ndasho

ute

rin

term

edia

tezo

ne

IIZ

aan

dII

Zb

ndashin

ner

inte

rmed

iate

zon

esC

cndash

core

asin

Fig

2B

aOis

bel

ow

the

det

ecti

on

lim

itin

bo

thfe

ldsp

ars

Cs 2

Ofrac14

00

3w

tin

the

K-

feld

spar

fro

mth

eW

Z

mdashN

ot

det

ecte

d

Nu

mb

ero

fio

ns

on

the

bas

iso

f3

2o

xy

gen

sfo

ral

bit

ean

dK

-fel

dsp

ar

31

anio

ns

(O

OH

F

)fo

rsc

ho

rlan

d6

ox

yg

ens

for

spo

du

men

e

-A

mo

un

tin

ferr

edfr

om

con

sid

erat

ion

so

fst

oic

hio

met

ry

978 A M R Neiva

eschweizerbart_xxx

2011) Lepidolite from the OIZ is an Al-poorer mica (Fig4) and has the highest Si Licalcand F contents (Table 1)indicating that an evolution cannot be shown from thislepidolite to lepidolites from the other zones which areAl-richer micas (Fig 4) However there is a regulardecrease in the KRb ratio and a progressive increase inthe Rb and Cs contents from lepidolite of the OIZ tolepidolite of IIZa IIZb and Cc (Fig 7) which indicatesthat the KRb ratio and Rb and Cs contents must not beconsidered alone to show fractional crystallization in

lepidolites particularly if some are Al-richer micas andothers Al-poorer micas The high Licalcand F contents oflepidolite from the OIZ did not decrease its KRb ratioSuch an effect is considered to have taken place in lepi-dolite (an Al-richer mica) from the wall zone of the Tancopegmatite Manitoba Canada (Van Lichtervelde et al2008) An evolution from the lepidolite of the IIZa to thatof the Cc is generally shown by the increasing Si LicalcF Rb Cs contents and a decrease in the KRb ratio (Table1 Fig 7)

At the scale of crystals the pegmatite zones and alsothose from the OIZ to the Cc of the Namivo granitic pegma-tite Al-richer micas show fractionation because theyformed from the fractionation of an Li-rich pegmatite melt

The Al-poorer micas zinnwaldite lepidolite and FeMg-containing polylithionite only occur in the OIZ (Fig 4)Polylithionite is the mica richest in Si and Licalc and lepi-dolite from this zone is the richest in Si Licalcand F (Fig 4Table 1) The high Li contents of these micas reflect aconsiderably higher D(Li) at low temperature (Icenhoweramp London 1995) These Li-rich micas may have crystal-lized from an undercooled melt This hypothesis does notimply high Rb and Cs contents and low KRb ratios Thisagrees with the fact that these micas from the OIZ havesimilar Rb and Cs contents and KRb ratios to those of Al-richer micas (muscovite lithian muscovite and lsquolsquomixedformrsquorsquo) from the same pegmatite zone (Fig 7) Howeverthe lepidolite from the wall zone of the Tanco pegmatiteCanada of a similar origin has a low KRb ratio which isattributed to the complexly interrelated structural compo-nents of this lepidolite (Van Lichtervelde et al 2008) TheLi-rich micas from the OIZ may also represent disequili-brium These two hypotheses are considered the best forthese micas of primary magmatic origin

Another hypothesis was also considered They may havecrystallized in boundary layers which concentrate Li andF But this mechanism was suggested for the most fractio-nated tourmaline enriched in Li and F from the core of the

Fig 8 Plot of albite compositions from all zones of the Namivo granitic pegmatite Mozambique showing that the anorthite content of albitedecreases from the WZ to the Cc WZ OIZ IIZa IIZb and Cc as in Fig 2

Fig 9 The Rb vs Cs diagram of K-feldspar from all zones of theNamivo granitic pegmatite Mozambique showing that the Rb andCs contents of K-feldspar increase from the WZ to the Cc WZ OIZIIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 979

eschweizerbart_xxx

Little Three pegmatite dike USA (Morgan amp London1999) and the micas enriched in Li and F from theNamivo pegmatite belonging to the OIZ Furthermore ina boundary layer melt that became enriched in Li and F theKRb ratio of micas decreases strongly (Van Lichterveldeet al 2008) which was not found in these micas from theOIZ (Fig 7d) Nor can they have resulted from the crystal-lization of a late melt that would have reacted with the OIZbecause these micas are among those containing the high-est KRb values (Fig 7d)

92 The importance of feldspars micas andcolumbitendashtantalite compositions to the Namivogranitic pegmatite evolution

The trace elements Rb and Cs and the KRb and KCs ratioshave been used to show the evolution of K-feldspar inpegmatites (eg Cerny 1994 Cerny et al 2005 RodaRobles et al 2005) The Rb and Cs contents increase andthe KRb and KCs ratios of K-feldspar decrease from theWZ to the Cc (Fig 9 Table 2) reflecting the growth of K-feldspar from an increasingly fractionated melt withouthaving grown from or having been chemically modifiedby an aqueous fluid as in the Swamp pegmatite section atthe Little Three Mine USA (London et al 2012) Thecrystallization of K-feldspar from an exsolved aqueousfluid from melt will reverse the magmatic fractionation ofRb Cs KRb and KCs because Rb and especially Cs areso much more compatible in vapor that both Rb and Csremain in the fluid phase (London et al 2012) The feldsparsolvus pairs in the Namivo pegmatite record magmaticcrystallization temperatures that decrease from WZ to CcAlbite shows a decrease in the Ca Sr contents and SrCaratio from the WZ to the Cc (Fig 8 Table 2) Therefore thefeldspars and also Al-richer micas as already explainedshow fractionation in this zoned pegmatite

In general lepidolite from the Namivo pegmatite hassimilar Rb2O and Cs2O contents and KRb (wt) values tothose of lepidolite from the Rozna and Dobra Voda lepi-dolite-subtype pegmatites in the Czech Republic (Cernyet al 1995) but lower Rb2O and Cs2O contents thanlepidolite from the lepidolite-subtype pegmatite at RedCross Lake Manitoba Canada (Cerny et al 2012a) K-feldspar from the Namivo pegmatite also has lower Rb2O

Table 3 Representative electron microprobe analyses in wt of columbitendashtantalite from the Namivo granitic pegmatite Mozambique

Outer Intermediate Zone - OIZ Inner Intermediate Zone - IIZa

Core - Cc

D L L

WO3 022 059 079 113 101 351 050 007Ta2O5 5487 5123 2503 3186 2888 2519 3127 4542Nb2O5 2537 3000 5483 4635 5113 5144 4911 3686SnO2 008 015 024 049 020 026 017 012TiO2 263 161 136 254 202 145 125 016FeO 860 710 665 471 236 068 mdash mdashMnO 793 952 1099 1304 1400 1725 1748 1718Total 9970 10020 9989 10012 9960 9978 9978 9981W 0004 0011 0013 0019 0016 0057 0008 0001Ta 1065 0975 0422 0552 0495 0430 0543 0847Nb 0819 0949 1538 1336 1456 1460 1418 1143Sn 0002 0004 0006 0012 0005 0007 0004 0003Ti 0141 0085 0063 0122 0096 0068 0060 0008Fe 0513 0416 0345 0251 0124 0036 mdash mdashMn 0479 0564 0578 0704 0747 0917 0945 0998P

3023 3004 2965 2996 2939 2975 2978 3000Mn(Mn thorn Fe) 048 058 063 074 086 096 100 100Ta(Ta thorn Nb) 057 051 022 029 025 023 028 043Classification tant-(Fe) tant-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn)

D ndash darker L ndash lighter zones mdash Not detected tant-tantalite col-columbite Cation formula on the basis of 6 atoms of oxygen

Fig 10 Compositions of columbitendashtantalite from the Namivogranitic pegmatite Mozambique in the columbite quadrilateralshowing that Mn(Mn thorn Fe) of columbite-(Mn) increases from theOIZ to the Cc and the richest columbite-(Mn) in Ta(Ta thorn Nb)tantalite-(Fe) and tantalite-(Mn) only occur in the OIZ OIZ IIZaand Cc as in Fig 2

980 A M R Neiva

eschweizerbart_xxx

and Cs2O contents than K-feldspar from the lepidolite-subtype pegmatite at Red Cross Lake The Rb2O andCs2O contents of primary and late K-feldspar of this peg-matite at Red Cross Lake attained unprecedented levels(Cerny et al 2012a) The lowest KRb (wt) values ofmuscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepido-lite from the IIZb and Cc (Fig 7) and K-feldspar (KRb frac1414) from the Cc compare well with those found in theseminerals from the AC6frac143 lepidolite-subtype pegmatitefrom Greer Lake (Cerny et al 2005) and some of themost fractionated pegmatites worldwide which belong tothe petalite-subtype (eg Tanco Manitoba Cerny 2005Cerny et al 1998 Varutrask Sweden Cerny et al 2005)but muscovite lithian muscovite and lepidolite from theIIZb and Cc have lower Rb2O and Cs2O contents than thesemicas from the Tanco pegmatite (Cerny 2005a VanLichtervelde et al 2008) K-feldspar also has lower

contents of these oxides than the most evolved K-feldsparfrom the Tanco pegmatite (Cerny 2005a) The magmaticfractionation was strong from the WZ to IIZb and Cc of theNamivo lepidolite-subtype pegmatite

The compositional trend of columbite-(Mn) from the OIZto Cc of the Namivo granitic lepidolite-subtype pegmatite(Fig 10) is identical to that of columbite-group mineralsfrom the lepidolite-subtype complex granitic pegmatitesfrom the Dobra Voda in the Moldanubicum CzechRepublic (Novak amp Cerny 1998) and the HimalayaDistrict southern California (shown in Cerny et al 2004)Experimental data for the Fe-Mn pair (Linnen amp Cuney2005) suggest an increase in Fe with fractional crystalliza-tion which is not observed in nature Other phases seem tocontrol the bahavior of Fe and Mn in the melt eg thecrystallization of tourmaline causes a rapid increase of theMnFe in the melt (Van Lichtervelde et al 2006) When thecrystallization of tourmaline stopped the columbitendashtantaliteminerals showed a constant MnFe indicating that the Fe andMn contents in the melt remained constant Schorl onlyoccurs in the OIZ of the Namivo granitic pegmatite and itscrystallization cannot be responsible for the increase in theMnFe of the melt because Mn(Mn thorn Fe) of columbite-(Mn) increases progressively from the OIZ to the IIZa and Cc(Fig 10) Garnet zinnwaldite and gahnite containing Fe andMn also only occur in the OIZ and cannot also have causedthe increase of the MnFe in the melt The dominant Mnenrichment before Ta enrichment started in the columbitendash-tantalite composition from some granitic pegmatites isattributed to an increased alkali-fluoride activity at moderatemHF (Cerny et al 2004) and an increase in the activity offluorine (Martins et al 2011) Each Al-richer mica (musco-vite lithian muscovite and lsquolsquomixed formrsquorsquo) from the Namivogranitic pegmatite shows an increase in F content from theOIZ to the IIZa IIZb and Cc (Table 1) In general the Fcontent of lepidolite also increases from the IIZa to the IIZband Cc Therefore the extreme Fe-Mn fractionation beforeTa enrichment in columbite-(Mn) (Fig 10) may be due to anincrease in the activity of fluorine as a consequence offractional crystallization The increase in the Ta content ofcolumbite-(Mn) from the Namivo granitic pegmatite isattributed to fractional crystallization

The geochemical evolution of albite and K-feldsparfrom the WZ to the Cc Al-richer micas muscovite lithianmuscovite and lsquolsquomixed formrsquorsquo from the OIZ to the Cc andlepidolite from the IIZa to the Cc and columbite-(Mn) andalso beryl (Neiva amp Neiva 2005) from the OIZ to the Ccare caused by magma fractionation The pegmatite zonesare the product of primary crystallization from a volatile-rich silicate melt The pegmatite consolidated from the WZto the Cc The IIZb is one of the most evolved zones asalso suggested by the beryl composition (Neiva amp Neiva2005) and is the richest in lsquolsquomixed formrsquorsquo and lepidolite

The richest columbite-(Mn) in Ta(Ta thorn Nb) and com-positions of tantalite-(Fe) and tantalite-(Mn) only occur inthe OIZ (Fig 10a) associated with lepidolite and polythio-nite (Fig 3c) which may be due to the local depletion of Liand F in the melt which decreases the solubility of Ta andcauses Ta precipitation (Linnen 1998 Linnen amp Cuney

Fig 11 a Backscattered-electron image of a gahnite crystal with adarker zone partially surrounding a lighter zone from the OIZ of theNamivo granitic pegmatite b c Plot of gahnite compositions in theSn-Zn-Ti diagram (atomic proportions) showing a chemical distinc-tion between the lighter and darker zones OIZ as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 981

eschweizerbart_xxx

2005) At the Tanco pegmatite Ta oxides are also asso-ciated with lepidolite enriched in Li and F from the wallzone (Van Lichtervelde et al 2008)

93 Origin and evolution of the zoned graniticlepidolite-subtype pegmatite at Namivo

In general granitic pegmatites particularly those belong-ing to the rare-element class are accepted as having beenformed by the fractional crystallization of a granite melt(eg Cerny 1991a b 1992 Neiva et al 2008 2012 Roda-Robles et al 2012) But it also has been proposed thatpegmatites may be formed by partial melting of appropri-ate rock compositions (eg Nabelek et al 1992 Nabelekamp Russ-Nabelek 1992 Shearer et al 1992 Roda Robleset al 1999) The lepidolite-subtype pegmatites belong tothe LCT (lithium-cesium-tantalum) family (Cerny amp Ercit2005) They are derived by fractional crystallization of agranite magma (eg Cerny et al 2005 Neiva amp Ramos2010 Cerny et al 2012b) Experimental work by Londonet al (1989) and London (1990) using Macusani glass as astarting material equivalent to the bulk composition ofhighly fractionated rare-alkali-rich pegmatites underhighly evolved and hydrous but H2O undersaturatedmelt obtained the latest primary assemblage consisting

of an Li-rich mica thorn albite thorn quartz deposited directlyfrom the primary melt phase Other authors egZasedatelev (1974 1977) and Stewart (1978) argue thatlepidolite-bearing pegmatites are derived from direct ana-texis and Gordiyenko et al (1996) consider that they arederived from an undefined medium and the rare-elementmineralization is superimposed on preexisting barrenpegmatites

Lepidolite-subtype pegmatites may migrate a long wayfrom their parent granites because their volatile-rich highlyfluid pegmatite melts are stable at relatively low tempera-tures (eg Cerny et al 2005 Antunes et al 2013)Therefore the Namivo pegmatite is probably derived byfractional crystallization of an S-type granite magmawhich resulted from partial melting of metamorphosed juve-nile sediments containing micas that carry most of the traceelements that define the signature of the LCT pegmatites(eg Dahl et al 1993)

The two main models for the internal evolution of peg-matites that dominated for more than a century are a) thefractional crystallization of a flux-bearing granitic melt fromthe margins to the center of the pegmatite (Cameron et al1949) b) the interactions of an aqueous fluid with graniticmelt (Jahns amp Burnham 1969 Jahns 1982) The recentmodel of constitutional zone refining combines aspects ofboth models and invokes the formation of a flux-enriched

Table 4 Electron microprobe analyses in wt of zoned gahnite from the outer intermediate zone (OIZ) of the Namivo granitic pegmatiteMozambique

Darker Zone Lighter Zone

Mean s Range Mean s Range

SnO2 036 050 0ndash097 658 281 151ndash998TiO2 008 008 0ndash021 065 034 008ndash105Nb2O5 001 002 0ndash006 018 007 007ndash029Ta2O5 001 004 0ndash010 015 013 0ndash033ZnO 3998 123 3810ndash4109 3339 318 3004ndash3848FeO 367 048 331ndash442 433 065 306ndash498MnO 032 004 028ndash040 039 006 032ndash048MgO 003 004 0ndash010 ndash ndash ndashAl2O3 5507 050 5436ndash5572 5337 070 5257ndash5443SiO2 003 003 0ndash007 008 010 0ndash025Total 9956 9912n 8 8Sn 0035 0048 0ndash0095 0648 0278 0149ndash0983Ti 0015 0015 0ndash0038 0120 0064 0015ndash0195Nb ndash 0003 0ndash0006 0021 0009 0009ndash0037Ta ndash 0002 0ndash0006 0009 0009 0ndash0021Zn 7226 0182 6890ndash7382 6086 0568 5482ndash6965Fe2thornt 0752 0103 0675ndash0913 0894 0135 0628ndash1029Mn 0066 0008 0057ndash0083 0082 0013 0066ndash0101Mg 0010 0015 0ndash0037 ndash ndash ndashAl 15887 0052 15805ndash15954 15526 0170 15375ndash15853Si 0007 0008 0ndash0018 0019 0025 0ndash0062P

23998 23405Fe3thorn 0064 0230Fe2thorn 0686 0658SnZn 0005 0007 0ndash0014 0106 0052 0021ndash0179ZnFe2thornt 961 143 768ndash1093 681 190 536ndash1109

n number of analysis Cation formula based on 32 atoms of oxygen Fe2thornt total Fe2thorn estimated

982 A M R Neiva

eschweizerbart_xxx

boundary layer of silicate liquid in advance of a crystal-lization front (London 2008 London amp Morgan 2012)

Lepidolite-subtype pegmatites are generally scarce(Cerny et al 2005) particularly the zoned ones In thesymmetrically zoned lepidolite-subtype pegmatites ofRozna and Dobra Voda Czech Republic micas (Cernyet al 1995) tourmaline (Selway et al 1999) and colum-bite-group minerals (Novak amp Cerny 1998) evolve fromthe outermost zone to the innermost zone following thecrystallization sequence The same was found in tourma-line from the zoned Lastovicky Dolnı Bory and Raddovicelepidolite-subtype pegmatite dikes in the Czeck Republic(Selway et al 1999)

In general beryl (Neiva amp Neiva 2005) feldsparsmicas and columbite-(Mn) (in this paper) from theNamivo lepidolite-subtype pegmatite record the progres-sive chemical evolution of the pegmatite from the wallzone to the core These minerals were produced by crystal-lization from a silicate melt rather than an aqueous fluidphase The slow cooling of melt shown by the magmaticcrystallization temperatures of feldspars cannot explain theincrease in grain-size of minerals from the wall zone to thecore but fluxes will be necessary to promote the change oftexture particularly a flux-rich hydrosilicate liquidaccording to the experimental evidence (London 2009)The constitutional zone refining model will be the best forthis zoned pegmatite and probably for all lepidolite-sub-type pegmatites because this model also produces a higherfinal concentration of incompatible components in a smal-ler volume of rock than fractional crystallization does(Morgan amp London 1999)

The core margin at the Rozna pegmatite contains K-feld-spar and quartz and the core consists mainly of quartz but it issurrounded and penetrated by a quartz-bearing albitethorn lepi-dolite complex which contains several minerals At theDobra Voda pegmatite the center of the dike is occupiedby the lepidolite unit containing albite and other minerals(Cerny et al 1995) At the Namivo pegmatite the coremargin consists of quartz and beryl and the core containsmainly quartz and spodumene but also albite lepidolite andother minerals The last-unit assemblages of primary miner-als in most of the highly fractionated LCT pegmatites are richin albite and commonly contain lepidolite or spodumene andmost of the other rare phases These units represent the lastmost fractionated liquid that can be derived by fractionalcrystallization of a crustal melt (London 2008)

The Namivo granitic pegmatite shows a significant dis-tinction from the other zoned lepidolite-subtype pegmatitesand LCT pegmatites except the Tanco petalite-subtypepegmatite in Canada because the lepidolite richest in SiLi and F FeMg-containing polylithionite and associatedcolumbite-(Mn) with the highest Ta(Ta thorn Nb) ratio tanta-lite-(Fe) and tantalite-(Mn) only occur in the outer inter-mediate zone These minerals usually form late in theconsolidation of pegmatites The lepidolite and polylithio-nite are probably derived from the disequilibrium crystal-lization of an undercooled melt Tantalite may reflect a localdecrease in Li and F that caused Ta precipitation

This paper contributes to a better understanding of theorigin and evolution of the rare zoned lepidolite-subtypepegmatites and shows that although the pegmatite evolvedfrom the wall zone to the core it presents an unusualassociation of lepidolite polylithionite and tantalite in theouter intermediate zone

Acknowledgments Thanks are due to JM Cotelo Neivaand MB Dias for the samples and information providedand to MR Machado Leite and MF Guimaraes for theuse of the electron microprobe facilities at the LaboratorioNacional de Energia e Geologia (LNEG) PortugalFinancial support was provided by the PortugueseGovernment for the project Pest-OECTEUI00732011of the Geosciences Centre through the PortugueseFoundation for Science and Technology I would like tothank D London WB Simmons and the associated editorE Widom for their constructive reviews of this manuscriptand M Prieto for his editorial work

References

Alfonso P Melgarejo JC Yusta I Velasco F (2003)

Geochemistry of feldspars and muscovite in granitic pegmatite

from the Cap de Creus field Catalonia Spain Can Mineral 41

103ndash116

Antunes IMHR Neiva AMR Ramos JMF Silva PB

Silva MMVG Corfu F (2013) Petrogenetic links between

lepidolite-subtype aplite-pegmatite aplite veins and associated

granites at Segura (central Portugal) Chemie der Erde in press

httpdxdoiorg101016jchemer20121203

Batchelor RA amp Kinnaird JA (1984) Gahnite compositions

compared Mineral Mag 48 425ndash430

Beurlen H Da Silva MRR Thomas R Soares DR Olivier P

(2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-

element granitic pegmatite fractionation in the Borborema pro-

vince Northeastern Brazil Miner Deposita 43 207ndash228

Cameron EN Jahns RH McNair AH Page LR (1949)

Internal structure of granitic pegmatites Econ Geol

Monograph 2 115 p

Cerny P (1991a) Fertile granites of Precambrian rare-element

pegmatite fields is geochemistry controlled by tectonic setting

or source lithologies Precambrian Res 51 429ndash468

mdash (1991b) Rare-element granite pegmatites I Anatomy and inter-

nal evolution of pegmatite deposits Geoscience Canada 18

49ndash67

mdash (1992) Geochemical and petrogenetic features of mineralization

in rare-element granitic pegmatites in the light of current

research Applied Geochemistry 7 393ndash416

mdash (1994) Evolution of feldspars in granitic pegmatites in

lsquolsquoFeldspars and their Reactionsrsquorsquo I Parsons ed NATO

Advanced Study Institute Series C421 501ndash539

mdash (2005) The Tanco rare-element pegmatite deposit Manitoba

regional context internal anatomy and global comparisons in

lsquolsquoRare-element Geochemistry and Mineral Depositsrsquorsquo RL

Linnen amp IM Samson eds Geochemical Association of

Canada Short Course Notes St Catherines 17 127ndash158

Silicate and oxide minerals from a zoned granitic pegmatite 983

eschweizerbart_xxx

Cerny P amp Ercit TS (2005) The classification of granitic pegma-

tites revisited Can Mineral 43 2005ndash2026

Cerny P Meintzer RE Andersen AJ (1985) Extreme fractiona-

tion in rare-element granitic pegmatites selected examples of

data and mechanisms Can Mineral 23 381ndash421

Cerny P Goad BE Hawthorne FC Chapmann R (1986)

Fractionation trends of the Nb- and Ta-bearing oxide minerals

in the Greer Lake pegmatite granite and its pegmatite aureole

southeastern Manitoba Am Mineral 71 501ndash517

Cerny P Stanek J Novak M Baadsgaard H Rieder M

Ottolini L Kavalova M Chapman R (1995) Geochemical

and structural evolution of micas in the Rozna amp Dobra Voda

pegmatites Czech Republic Mineral Petrol 55 177ndash201

Cerny P Ercit TS Vanstone PJ (1998) Mineralogy and petrol-

ogy of the Tanco rare-element pegmatite deposit southeastern

Manitoba International Mineralogical Association 17th General

Meeting Toronto Field Guidebook B6

Cerny P Chapman R Ferreira K Smeds SA (2004)

Geochemistry of oxide minerals of Nb Ta Sn and Sb in

the Varutrask granitic pegmatite Sweden The case of an

lsquolsquoanomalousrsquorsquo columbitendashtantalite trend Am Mineral 89

505ndash518

Cerny P Masau M Goad BE Ferreira K (2005) The Greer

Lake leucogranite Manitoba and the origin of lepidolite-sub-

type granitic pegmatites Lithos 80 305ndash321

Cerny P Teertstra DK Chapman R Selway JB Hawthorne

FC Ferreira K Chackowsky LE Wang X-J Meintzer

RE (2012a) Extreme fractionation and deformation of the

leucogranite-pegmatite suite at Red Cross Lake Manitoba

Canada IV Mineralogy Can Mineral 50 1839ndash1875

Cerny P Halden NM Ferreira K Meintzer RE Brisbin WC

Chackowsky LE (2012b) Extreme fractionation and deforma-

tion of the leucogranite-pegmatite suite at Red Cross Lake

Manitoba Canada II Petrology of the leucogranites and peg-

matites Can Mineral 50 1807ndash1822

Dahl PS When DC Feldmann SG (1993) The systematics of

trace-element partitioning between coexisting muscovite and

biotite in metamorphic rocks from the Black Hills South

Dakota USA Geochim Cosmochim Acta 57 2487ndash2505

Dias MB amp Wilson WE (2000) The Alto Ligonha Pegmatites

Mozambique Mineral Record 31 459ndash497

Fleet ME (2003) Rock-Forming Minerals vol 3A Sheet silicates

micas The Geological Society London second edition chap 6

Lithium micas 651ndash690

Foord EE Cerny P Jackson LL Sherman DM Eby RK

(1995) Mineralogical and geochemical evolutions of micas

from miarolitic pegmatites of the anorogenic pikes-Peak

Batholith Colorado Mineral Petrol 55 1ndash26

Foster MD (1960) Interpretation of the composition of lithium

micas US Geol Surv Prof Paper 354-E 115ndash147

Fuhrman ML amp Lindsley DK (1988) Ternary-feldspar modeling

and thermometry Am Mineral 73 201ndash215

Gomes CL Castro P Alves C (1995) Caracterizacao das espi-

nelas zincıferas e do par ganite-nigerite no campo aplito-

pegmatıtico da Serra de Arga-Minho N de Portugal IV

Congresso Nacional de Geologia Resumos Alargados

Universidade do Porto Mem 4 629ndash633

Gordiyenko VV Ilyina AN Timochina LA Badamina EB

Stanek J (1996) Geochemical model of evolution of a pegma-

tite-forming ore-magmatic system of western Moravia Proc

Russ Mineral Soc 125 38ndash48 (in Russian)

Icenhower JP amp London D (1995) An experimental study for

element partitioning between biotite muscovite and coexisting

peraluminous granitic melt at 200 MPa (H2O) Am Mineral 80

1229ndash1251

Jahns RH (1982) Internal evolution of pegmatite bodies in lsquolsquoGranitic

Pegmatites in science and industryrsquorsquo P Cerny ed Mineralogical

Association of Canada Short Course Handbook 8 293ndash327

Jahns RH amp Burnham CW (1969) Experimental studies of

pegmatite genesis I A model for the derivation and crystal-

lization of granitic pegmatites Econ Geol 64 843ndash864

Jolliff BL Papike JJ Shearer CK (1987) Fractionation trends

in mica and tourmaline as indicators of pegmatite internal evo-

lution Bob Ingersoll pegmatite Black Hills South Dakota

USA GeochimCosmochim Acta 51 519ndash534

Kile DE amp Foord EE (1998) Micas from the Pikes Peak bath-

olith and its cogenetic granitic pegmatites Colorado optical

properties composition and correlation with pegmatite evolu-

tion Can Mineral 36 463ndash482

Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic

melts with Li and Li thorn F constraints for mineralization in rare

metal granites and pegmatites Econ Geol 93 1013ndash1025

Linnen RL amp Cuney M (2005) Granite-related rare-element

deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf

mineralization in lsquolsquoRare-element geochemistry and mineral

depositsrsquorsquo RL Linnen amp IM Samson eds Geochemical

Association of Canada Short Course Notes 17 45ndash68

London D (1990) Internal differentiation of rare-element pegmatites

a synthesis of recent research in lsquolsquoOre Bearing Granite Systems

Petrogenesis and Mineralizing Processesrsquorsquo HJ Stein amp JL

Hannah eds Geol Soc America Special Paper 246 35ndash50

mdash (2008) Pegmatites The Canadian Mineralogist Special

Publication 10 347 p

mdash (2009) The origin of primary textures in granitic pegmatites

Can Mineral 47 697ndash724

London D amp Morgan GB VI (2012) The pegmatite puzzle

Elements 8 263ndash268

London D Morgan GB VI Hervig RL (1989) Vapor-under-

saturated experiments in the system macusanite-H2O at 200

MPa and the internal differentiation of granitic pegmatites

Contrib Mineral Petrol 102 1ndash17

London D Morgan GB VI Paul KA Guttery BM (2012)

Internal evolution of miarolitic granitic pegmatites at the Little

Three mine Ramona California USA Can Mineral 50

1025ndash1054

Martins T Lima A Simmons WB Folster AU Noronha F

(2011) Geochemical fractionation of Nb-Ta oxides in Li-bear-

ing pegmatites from the Barroso-Alvao pegmatite field northern

Portugal Can Mineral 49 777ndash791

Monier G Charoy B Cuney M Ohnenstetter D Robert JL

(1987) Evolution spatiale et temporelle de la composition des

micas du granite albitique a topaze-lepidolite de Beauvoir

Geologie De La France 2ndash3 179ndash188

Monier G amp Robert JL (1986) Evolution of the miscibility gap

between muscovite and biotite solid solutions with increasing

lithium content an experimental study in the systems

K2OndashLi2OndashMgOndashAl2O3ndashSiO2ndashH2OndashHF at 600 C 2 kbar

PH2O comparison with natural lithium micas Mineral Mag

50 641ndash651

Morgan GBVI amp London D (1999) Crystallization of the little

three layered pegmatite-aplite dike Ramona District California

Contrib Mineral Petrol 136 310ndash330

984 A M R Neiva

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985

Page 11: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

lsquolsquomixed formrsquorsquo rim (Figs 3e 6e f) and the zoning patternscorrespond to fractionation trends and probably reflect adrop in temperature during the crystallization of the grani-tic pegmatite melt Progressively zoned crystals also occurin OIZ IIZb and Cc Some crystals are reversely zonedwith a) a lsquolsquomixed formrsquorsquo core and a lithian muscovite rimfrom the OIZ (Figs 3d d1 6d) b) a core consisting oflsquolsquomixed formrsquorsquo and lepidolite and a rim of muscovite andlithian muscovite from the IIZa (Figs 3f f1 6g h) c) alepidolite core and a muscovite and lithian muscovite rimfrom the Cc (Figs 3j 6o p) which may be explained bythe hypothesis of oscillations in the compositions of themelt from which they grew alternating between an Li-enriched boundary layer and a bulk melt that is less frac-tionated The muscovite evolved to lithian muscovite inIIZa and Cc (Figs 3f 6g h 3j 6o p) Replacements (Figs3a 6a b 3c 6c 3i 6m n Table 1) occur in OIZ and Ccand overgrowths (Figs 3b g 6i j k 3h 6l Table 1) occurin OIZ and IIZb as found in BSE images

Muscovite evolved to lithian muscovite as observed inOIZ IIZa IIZb and Cc (Figs 3f 6g h 3j 6o p Table 1)Lithian muscovite evolved to lsquolsquomixed formrsquorsquo in OIZ IIZaIIZb and Cc (Figs 3e 6e f Table 1) and lsquolsquomixed formrsquorsquoevolved to lepidolite in IIZa IIZb and Cc (Figs 3f f1 6gh 3h 6l Table 1) All these evolutions are due to fractionalcrystallization

In the OIZ lepidolite has more Si Licalcand F butsimilar KRb to that of zinnwaldite and replaces it (Figs

3a 6a b 7d Table 1) An FeMg-containing polylithionitehas higher Si Licalcand Rb contents and a smaller KRbratio than the lepidolite that it replaces (Figs 3c 6c Table1) and a continuous chemical evolution from lepidolite topolylithionite is shown

The trends for major and trace elements of micas withineach zone are difficult to define due to some partial over-lapping but a progressive evolution from muscovite to lithianmuscovite lsquolsquomixed formrsquorsquo and lepidolite in IIZa IIZb and Ccis mainly shown by an increase in the Si Licalc F Rb and Cscontents and a decrease in the KRb ratio and this is simi-larly shown in the OIZ from muscovite to lsquolsquomixed formrsquorsquo(Table 1 Fig 7) In the OIZ Si and Licalccontents increaseprogressively from zinnwaldite to lepidolite and FeMg-containing polylithionite but a gap occurs between zinnwal-dite and lepidolite (Table 1 Fig 4) whereas a continuousevolution from lepidolite to polylithionite is observed TheKRb ratios of zinnwaldite and polylithionite are within therange of that of lepidolite (Fig 7d e)

Each Al-richer mica (muscovite lithian muscovite andlsquolsquomixed formrsquorsquo) exhibits an evolution from the OIZ to theIIZa and then to the IIZb and Cc particularly shown by anincrease in the Si Licalc F and Rb contents and adecrease in the KRb ratio but also an increase in theCs content in the lsquolsquomixed formrsquorsquo (Table 1 Fig 7) Theseelements and ratio have been used as petrogenetic indi-cators of evolution in micas from pegmatites (eg Cernyet al 2005 Roda Robles et al 2006 2007 Vieira et al

Fig 7 Plot of some variation diagrams of micas from the OIZ IIZa IIZb and Cc of the Namivo granitic pegmatite Mozambique showingthat the Rb2O and Cs2O contents increase and the KRb ratio decreases for micas from the OIZ to the Cc OIZ IIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 977

eschweizerbart_xxx

Tab

le2

R

epre

sen

tati

ve

elec

tro

nm

icro

pro

be

anal

yse

sin

wt

o

ffe

ldsp

ars

sch

orl

and

spo

du

men

efr

om

the

Nam

ivo

gra

nit

icp

egm

atit

eM

oza

mb

iqu

e

Alb

ite

K-f

eld

spar

Sch

orl

Sp

od

um

ene

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

OIZ

Zo

ne

Cc

SiO

26

75

76

78

86

87

06

84

76

84

1S

iO2

65

10

65

55

65

46

64

96

64

72

SiO

23

52

0S

iO2

64

65

TiO

20

02

mdash0

02

mdashmdash

TiO

2mdash

00

1mdash

mdashmdash

TiO

20

35

Al 2

O3

27

20

Al 2

O3

20

25

19

74

19

67

19

88

19

97

Al 2

O3

18

96

18

23

18

31

18

24

18

05

B2O

3

10

28

Fe 2

O3

00

6F

e 2O

3mdash

mdashmdash

mdash0

10

Fe 2

O3

mdash0

02

mdash0

03

mdashA

l 2O

33

17

2M

nO

01

3M

nO

00

6mdash

mdashmdash

mdashM

nO

mdash0

03

00

3mdash

mdashF

eO1

35

2M

gO

01

8M

gO

mdashmdash

mdashmdash

mdashM

gO

00

10

01

00

5mdash

mdashM

nO

03

3N

a 2O

01

9C

aO1

04

08

00

56

03

70

32

CaO

00

10

01

00

60

01

00

2M

gO

22

8L

i 2O

8

05

Na 2

O1

06

11

12

01

12

11

13

41

13

4N

a 2O

06

50

58

04

10

59

03

8C

aO0

23

To

tal

10

04

6K

2O

00

50

17

00

60

14

01

0K

2O

14

72

14

75

15

67

15

01

15

74

Li 2

O

02

2S

rO0

72

05

00

24

01

1mdash

Rb

2O

00

90

20

03

00

59

09

0N

a 2O

22

8S

i1

99

7P

2O

50

01

00

4mdash

mdashmdash

Cs 2

O

00

6

00

60

09

01

80

20

K2O

00

1A

lIV0

00

3T

ota

l1

00

33

10

03

31

00

46

10

03

11

00

24

P2O

5mdash

00

3mdash

mdashmdash

H2O

3

18

P2

00

To

tal

99

60

99

48

10

03

89

96

11

00

01

F0

78

AlV

I0

98

7S

rC

a(w

t)0

81

07

40

50

03

50

Cl

mdashF

e3thorn

00

01

KR

b(w

t)153

68

48

23

16

Sum

1003

8P

09

9S

i1

18

23

11

87

91

19

58

11

93

21

19

21

KC

s(w

t)4

07

20

41

63

73

69

O

F0

33

Li

10

00

P0

00

10

00

6mdash

mdashmdash

To

tal

10

00

5M

n0

00

3T

i0

00

3mdash

00

03

mdashmdash

Si

11

98

61

20

88

12

04

11

20

45

12

03

3M

g0

00

8A

l4

17

64

07

14

03

54

08

34

10

1P

mdash0

00

5mdash

mdashmdash

TS

i5

95

2N

a0

01

2F

e3thorn

mdashmdash

mdashmdash

00

13

Ti

mdash0

00

1mdash

mdashmdash

Al

00

48

P1

02

Mn

00

09

mdashmdash

mdashmdash

Al

41

14

39

62

39

70

39

86

39

55

B3

00

0M

gmdash

mdashmdash

mdashmdash

Fe3thorn

mdash0

00

3mdash

00

04

mdashZ

Al

60

00

Ca

01

95

01

50

01

04

00

69

00

60

Mn

mdash0

00

50

00

5mdash

mdashY

Al

02

74

Sr

00

73

00

51

00

24

00

11

mdashM

g0

00

30

00

30

01

4mdash

mdashT

i0

04

5N

a3

59

93

80

03

78

33

83

23

83

1C

a0

00

20

00

20

01

20

00

20

00

4M

g0

57

5K

00

11

00

38

00

13

00

31

00

22

Na

02

32

02

07

01

46

02

12

01

37

Mn

00

47

K3

45

73

47

03

67

73

55

03

73

3F

e2thorn

19

12

Z1

60

01

59

61

60

01

60

11

60

4R

b0

01

10

02

40

03

50

07

00

10

8L

i0

14

8X

38

94

04

39

33

94

39

1C

s0

00

20

00

50

00

70

01

40

01

6P

Y3

00

0m

ole

s

XC

a0

04

2A

n5

13

82

71

71

5Z

16

10

16

06

16

01

16

03

15

99

Na

07

47

Ab

94

69

53

97

09

75

97

9X

37

13

72

39

03

85

40

0K

00

02

Or

03

09

03

08

06

mo

les

amp

02

09

An

01

01

03

01

01

Ab

63

56

38

56

35

OH

35

83

Or

93

69

43

95

99

43

96

4F

04

17

Cl

mdash

WZ

ndashw

allzo

ne

OIZ

ndasho

ute

rin

term

edia

tezo

ne

IIZ

aan

dII

Zb

ndashin

ner

inte

rmed

iate

zon

esC

cndash

core

asin

Fig

2B

aOis

bel

ow

the

det

ecti

on

lim

itin

bo

thfe

ldsp

ars

Cs 2

Ofrac14

00

3w

tin

the

K-

feld

spar

fro

mth

eW

Z

mdashN

ot

det

ecte

d

Nu

mb

ero

fio

ns

on

the

bas

iso

f3

2o

xy

gen

sfo

ral

bit

ean

dK

-fel

dsp

ar

31

anio

ns

(O

OH

F

)fo

rsc

ho

rlan

d6

ox

yg

ens

for

spo

du

men

e

-A

mo

un

tin

ferr

edfr

om

con

sid

erat

ion

so

fst

oic

hio

met

ry

978 A M R Neiva

eschweizerbart_xxx

2011) Lepidolite from the OIZ is an Al-poorer mica (Fig4) and has the highest Si Licalcand F contents (Table 1)indicating that an evolution cannot be shown from thislepidolite to lepidolites from the other zones which areAl-richer micas (Fig 4) However there is a regulardecrease in the KRb ratio and a progressive increase inthe Rb and Cs contents from lepidolite of the OIZ tolepidolite of IIZa IIZb and Cc (Fig 7) which indicatesthat the KRb ratio and Rb and Cs contents must not beconsidered alone to show fractional crystallization in

lepidolites particularly if some are Al-richer micas andothers Al-poorer micas The high Licalcand F contents oflepidolite from the OIZ did not decrease its KRb ratioSuch an effect is considered to have taken place in lepi-dolite (an Al-richer mica) from the wall zone of the Tancopegmatite Manitoba Canada (Van Lichtervelde et al2008) An evolution from the lepidolite of the IIZa to thatof the Cc is generally shown by the increasing Si LicalcF Rb Cs contents and a decrease in the KRb ratio (Table1 Fig 7)

At the scale of crystals the pegmatite zones and alsothose from the OIZ to the Cc of the Namivo granitic pegma-tite Al-richer micas show fractionation because theyformed from the fractionation of an Li-rich pegmatite melt

The Al-poorer micas zinnwaldite lepidolite and FeMg-containing polylithionite only occur in the OIZ (Fig 4)Polylithionite is the mica richest in Si and Licalc and lepi-dolite from this zone is the richest in Si Licalcand F (Fig 4Table 1) The high Li contents of these micas reflect aconsiderably higher D(Li) at low temperature (Icenhoweramp London 1995) These Li-rich micas may have crystal-lized from an undercooled melt This hypothesis does notimply high Rb and Cs contents and low KRb ratios Thisagrees with the fact that these micas from the OIZ havesimilar Rb and Cs contents and KRb ratios to those of Al-richer micas (muscovite lithian muscovite and lsquolsquomixedformrsquorsquo) from the same pegmatite zone (Fig 7) Howeverthe lepidolite from the wall zone of the Tanco pegmatiteCanada of a similar origin has a low KRb ratio which isattributed to the complexly interrelated structural compo-nents of this lepidolite (Van Lichtervelde et al 2008) TheLi-rich micas from the OIZ may also represent disequili-brium These two hypotheses are considered the best forthese micas of primary magmatic origin

Another hypothesis was also considered They may havecrystallized in boundary layers which concentrate Li andF But this mechanism was suggested for the most fractio-nated tourmaline enriched in Li and F from the core of the

Fig 8 Plot of albite compositions from all zones of the Namivo granitic pegmatite Mozambique showing that the anorthite content of albitedecreases from the WZ to the Cc WZ OIZ IIZa IIZb and Cc as in Fig 2

Fig 9 The Rb vs Cs diagram of K-feldspar from all zones of theNamivo granitic pegmatite Mozambique showing that the Rb andCs contents of K-feldspar increase from the WZ to the Cc WZ OIZIIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 979

eschweizerbart_xxx

Little Three pegmatite dike USA (Morgan amp London1999) and the micas enriched in Li and F from theNamivo pegmatite belonging to the OIZ Furthermore ina boundary layer melt that became enriched in Li and F theKRb ratio of micas decreases strongly (Van Lichterveldeet al 2008) which was not found in these micas from theOIZ (Fig 7d) Nor can they have resulted from the crystal-lization of a late melt that would have reacted with the OIZbecause these micas are among those containing the high-est KRb values (Fig 7d)

92 The importance of feldspars micas andcolumbitendashtantalite compositions to the Namivogranitic pegmatite evolution

The trace elements Rb and Cs and the KRb and KCs ratioshave been used to show the evolution of K-feldspar inpegmatites (eg Cerny 1994 Cerny et al 2005 RodaRobles et al 2005) The Rb and Cs contents increase andthe KRb and KCs ratios of K-feldspar decrease from theWZ to the Cc (Fig 9 Table 2) reflecting the growth of K-feldspar from an increasingly fractionated melt withouthaving grown from or having been chemically modifiedby an aqueous fluid as in the Swamp pegmatite section atthe Little Three Mine USA (London et al 2012) Thecrystallization of K-feldspar from an exsolved aqueousfluid from melt will reverse the magmatic fractionation ofRb Cs KRb and KCs because Rb and especially Cs areso much more compatible in vapor that both Rb and Csremain in the fluid phase (London et al 2012) The feldsparsolvus pairs in the Namivo pegmatite record magmaticcrystallization temperatures that decrease from WZ to CcAlbite shows a decrease in the Ca Sr contents and SrCaratio from the WZ to the Cc (Fig 8 Table 2) Therefore thefeldspars and also Al-richer micas as already explainedshow fractionation in this zoned pegmatite

In general lepidolite from the Namivo pegmatite hassimilar Rb2O and Cs2O contents and KRb (wt) values tothose of lepidolite from the Rozna and Dobra Voda lepi-dolite-subtype pegmatites in the Czech Republic (Cernyet al 1995) but lower Rb2O and Cs2O contents thanlepidolite from the lepidolite-subtype pegmatite at RedCross Lake Manitoba Canada (Cerny et al 2012a) K-feldspar from the Namivo pegmatite also has lower Rb2O

Table 3 Representative electron microprobe analyses in wt of columbitendashtantalite from the Namivo granitic pegmatite Mozambique

Outer Intermediate Zone - OIZ Inner Intermediate Zone - IIZa

Core - Cc

D L L

WO3 022 059 079 113 101 351 050 007Ta2O5 5487 5123 2503 3186 2888 2519 3127 4542Nb2O5 2537 3000 5483 4635 5113 5144 4911 3686SnO2 008 015 024 049 020 026 017 012TiO2 263 161 136 254 202 145 125 016FeO 860 710 665 471 236 068 mdash mdashMnO 793 952 1099 1304 1400 1725 1748 1718Total 9970 10020 9989 10012 9960 9978 9978 9981W 0004 0011 0013 0019 0016 0057 0008 0001Ta 1065 0975 0422 0552 0495 0430 0543 0847Nb 0819 0949 1538 1336 1456 1460 1418 1143Sn 0002 0004 0006 0012 0005 0007 0004 0003Ti 0141 0085 0063 0122 0096 0068 0060 0008Fe 0513 0416 0345 0251 0124 0036 mdash mdashMn 0479 0564 0578 0704 0747 0917 0945 0998P

3023 3004 2965 2996 2939 2975 2978 3000Mn(Mn thorn Fe) 048 058 063 074 086 096 100 100Ta(Ta thorn Nb) 057 051 022 029 025 023 028 043Classification tant-(Fe) tant-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn)

D ndash darker L ndash lighter zones mdash Not detected tant-tantalite col-columbite Cation formula on the basis of 6 atoms of oxygen

Fig 10 Compositions of columbitendashtantalite from the Namivogranitic pegmatite Mozambique in the columbite quadrilateralshowing that Mn(Mn thorn Fe) of columbite-(Mn) increases from theOIZ to the Cc and the richest columbite-(Mn) in Ta(Ta thorn Nb)tantalite-(Fe) and tantalite-(Mn) only occur in the OIZ OIZ IIZaand Cc as in Fig 2

980 A M R Neiva

eschweizerbart_xxx

and Cs2O contents than K-feldspar from the lepidolite-subtype pegmatite at Red Cross Lake The Rb2O andCs2O contents of primary and late K-feldspar of this peg-matite at Red Cross Lake attained unprecedented levels(Cerny et al 2012a) The lowest KRb (wt) values ofmuscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepido-lite from the IIZb and Cc (Fig 7) and K-feldspar (KRb frac1414) from the Cc compare well with those found in theseminerals from the AC6frac143 lepidolite-subtype pegmatitefrom Greer Lake (Cerny et al 2005) and some of themost fractionated pegmatites worldwide which belong tothe petalite-subtype (eg Tanco Manitoba Cerny 2005Cerny et al 1998 Varutrask Sweden Cerny et al 2005)but muscovite lithian muscovite and lepidolite from theIIZb and Cc have lower Rb2O and Cs2O contents than thesemicas from the Tanco pegmatite (Cerny 2005a VanLichtervelde et al 2008) K-feldspar also has lower

contents of these oxides than the most evolved K-feldsparfrom the Tanco pegmatite (Cerny 2005a) The magmaticfractionation was strong from the WZ to IIZb and Cc of theNamivo lepidolite-subtype pegmatite

The compositional trend of columbite-(Mn) from the OIZto Cc of the Namivo granitic lepidolite-subtype pegmatite(Fig 10) is identical to that of columbite-group mineralsfrom the lepidolite-subtype complex granitic pegmatitesfrom the Dobra Voda in the Moldanubicum CzechRepublic (Novak amp Cerny 1998) and the HimalayaDistrict southern California (shown in Cerny et al 2004)Experimental data for the Fe-Mn pair (Linnen amp Cuney2005) suggest an increase in Fe with fractional crystalliza-tion which is not observed in nature Other phases seem tocontrol the bahavior of Fe and Mn in the melt eg thecrystallization of tourmaline causes a rapid increase of theMnFe in the melt (Van Lichtervelde et al 2006) When thecrystallization of tourmaline stopped the columbitendashtantaliteminerals showed a constant MnFe indicating that the Fe andMn contents in the melt remained constant Schorl onlyoccurs in the OIZ of the Namivo granitic pegmatite and itscrystallization cannot be responsible for the increase in theMnFe of the melt because Mn(Mn thorn Fe) of columbite-(Mn) increases progressively from the OIZ to the IIZa and Cc(Fig 10) Garnet zinnwaldite and gahnite containing Fe andMn also only occur in the OIZ and cannot also have causedthe increase of the MnFe in the melt The dominant Mnenrichment before Ta enrichment started in the columbitendash-tantalite composition from some granitic pegmatites isattributed to an increased alkali-fluoride activity at moderatemHF (Cerny et al 2004) and an increase in the activity offluorine (Martins et al 2011) Each Al-richer mica (musco-vite lithian muscovite and lsquolsquomixed formrsquorsquo) from the Namivogranitic pegmatite shows an increase in F content from theOIZ to the IIZa IIZb and Cc (Table 1) In general the Fcontent of lepidolite also increases from the IIZa to the IIZband Cc Therefore the extreme Fe-Mn fractionation beforeTa enrichment in columbite-(Mn) (Fig 10) may be due to anincrease in the activity of fluorine as a consequence offractional crystallization The increase in the Ta content ofcolumbite-(Mn) from the Namivo granitic pegmatite isattributed to fractional crystallization

The geochemical evolution of albite and K-feldsparfrom the WZ to the Cc Al-richer micas muscovite lithianmuscovite and lsquolsquomixed formrsquorsquo from the OIZ to the Cc andlepidolite from the IIZa to the Cc and columbite-(Mn) andalso beryl (Neiva amp Neiva 2005) from the OIZ to the Ccare caused by magma fractionation The pegmatite zonesare the product of primary crystallization from a volatile-rich silicate melt The pegmatite consolidated from the WZto the Cc The IIZb is one of the most evolved zones asalso suggested by the beryl composition (Neiva amp Neiva2005) and is the richest in lsquolsquomixed formrsquorsquo and lepidolite

The richest columbite-(Mn) in Ta(Ta thorn Nb) and com-positions of tantalite-(Fe) and tantalite-(Mn) only occur inthe OIZ (Fig 10a) associated with lepidolite and polythio-nite (Fig 3c) which may be due to the local depletion of Liand F in the melt which decreases the solubility of Ta andcauses Ta precipitation (Linnen 1998 Linnen amp Cuney

Fig 11 a Backscattered-electron image of a gahnite crystal with adarker zone partially surrounding a lighter zone from the OIZ of theNamivo granitic pegmatite b c Plot of gahnite compositions in theSn-Zn-Ti diagram (atomic proportions) showing a chemical distinc-tion between the lighter and darker zones OIZ as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 981

eschweizerbart_xxx

2005) At the Tanco pegmatite Ta oxides are also asso-ciated with lepidolite enriched in Li and F from the wallzone (Van Lichtervelde et al 2008)

93 Origin and evolution of the zoned graniticlepidolite-subtype pegmatite at Namivo

In general granitic pegmatites particularly those belong-ing to the rare-element class are accepted as having beenformed by the fractional crystallization of a granite melt(eg Cerny 1991a b 1992 Neiva et al 2008 2012 Roda-Robles et al 2012) But it also has been proposed thatpegmatites may be formed by partial melting of appropri-ate rock compositions (eg Nabelek et al 1992 Nabelekamp Russ-Nabelek 1992 Shearer et al 1992 Roda Robleset al 1999) The lepidolite-subtype pegmatites belong tothe LCT (lithium-cesium-tantalum) family (Cerny amp Ercit2005) They are derived by fractional crystallization of agranite magma (eg Cerny et al 2005 Neiva amp Ramos2010 Cerny et al 2012b) Experimental work by Londonet al (1989) and London (1990) using Macusani glass as astarting material equivalent to the bulk composition ofhighly fractionated rare-alkali-rich pegmatites underhighly evolved and hydrous but H2O undersaturatedmelt obtained the latest primary assemblage consisting

of an Li-rich mica thorn albite thorn quartz deposited directlyfrom the primary melt phase Other authors egZasedatelev (1974 1977) and Stewart (1978) argue thatlepidolite-bearing pegmatites are derived from direct ana-texis and Gordiyenko et al (1996) consider that they arederived from an undefined medium and the rare-elementmineralization is superimposed on preexisting barrenpegmatites

Lepidolite-subtype pegmatites may migrate a long wayfrom their parent granites because their volatile-rich highlyfluid pegmatite melts are stable at relatively low tempera-tures (eg Cerny et al 2005 Antunes et al 2013)Therefore the Namivo pegmatite is probably derived byfractional crystallization of an S-type granite magmawhich resulted from partial melting of metamorphosed juve-nile sediments containing micas that carry most of the traceelements that define the signature of the LCT pegmatites(eg Dahl et al 1993)

The two main models for the internal evolution of peg-matites that dominated for more than a century are a) thefractional crystallization of a flux-bearing granitic melt fromthe margins to the center of the pegmatite (Cameron et al1949) b) the interactions of an aqueous fluid with graniticmelt (Jahns amp Burnham 1969 Jahns 1982) The recentmodel of constitutional zone refining combines aspects ofboth models and invokes the formation of a flux-enriched

Table 4 Electron microprobe analyses in wt of zoned gahnite from the outer intermediate zone (OIZ) of the Namivo granitic pegmatiteMozambique

Darker Zone Lighter Zone

Mean s Range Mean s Range

SnO2 036 050 0ndash097 658 281 151ndash998TiO2 008 008 0ndash021 065 034 008ndash105Nb2O5 001 002 0ndash006 018 007 007ndash029Ta2O5 001 004 0ndash010 015 013 0ndash033ZnO 3998 123 3810ndash4109 3339 318 3004ndash3848FeO 367 048 331ndash442 433 065 306ndash498MnO 032 004 028ndash040 039 006 032ndash048MgO 003 004 0ndash010 ndash ndash ndashAl2O3 5507 050 5436ndash5572 5337 070 5257ndash5443SiO2 003 003 0ndash007 008 010 0ndash025Total 9956 9912n 8 8Sn 0035 0048 0ndash0095 0648 0278 0149ndash0983Ti 0015 0015 0ndash0038 0120 0064 0015ndash0195Nb ndash 0003 0ndash0006 0021 0009 0009ndash0037Ta ndash 0002 0ndash0006 0009 0009 0ndash0021Zn 7226 0182 6890ndash7382 6086 0568 5482ndash6965Fe2thornt 0752 0103 0675ndash0913 0894 0135 0628ndash1029Mn 0066 0008 0057ndash0083 0082 0013 0066ndash0101Mg 0010 0015 0ndash0037 ndash ndash ndashAl 15887 0052 15805ndash15954 15526 0170 15375ndash15853Si 0007 0008 0ndash0018 0019 0025 0ndash0062P

23998 23405Fe3thorn 0064 0230Fe2thorn 0686 0658SnZn 0005 0007 0ndash0014 0106 0052 0021ndash0179ZnFe2thornt 961 143 768ndash1093 681 190 536ndash1109

n number of analysis Cation formula based on 32 atoms of oxygen Fe2thornt total Fe2thorn estimated

982 A M R Neiva

eschweizerbart_xxx

boundary layer of silicate liquid in advance of a crystal-lization front (London 2008 London amp Morgan 2012)

Lepidolite-subtype pegmatites are generally scarce(Cerny et al 2005) particularly the zoned ones In thesymmetrically zoned lepidolite-subtype pegmatites ofRozna and Dobra Voda Czech Republic micas (Cernyet al 1995) tourmaline (Selway et al 1999) and colum-bite-group minerals (Novak amp Cerny 1998) evolve fromthe outermost zone to the innermost zone following thecrystallization sequence The same was found in tourma-line from the zoned Lastovicky Dolnı Bory and Raddovicelepidolite-subtype pegmatite dikes in the Czeck Republic(Selway et al 1999)

In general beryl (Neiva amp Neiva 2005) feldsparsmicas and columbite-(Mn) (in this paper) from theNamivo lepidolite-subtype pegmatite record the progres-sive chemical evolution of the pegmatite from the wallzone to the core These minerals were produced by crystal-lization from a silicate melt rather than an aqueous fluidphase The slow cooling of melt shown by the magmaticcrystallization temperatures of feldspars cannot explain theincrease in grain-size of minerals from the wall zone to thecore but fluxes will be necessary to promote the change oftexture particularly a flux-rich hydrosilicate liquidaccording to the experimental evidence (London 2009)The constitutional zone refining model will be the best forthis zoned pegmatite and probably for all lepidolite-sub-type pegmatites because this model also produces a higherfinal concentration of incompatible components in a smal-ler volume of rock than fractional crystallization does(Morgan amp London 1999)

The core margin at the Rozna pegmatite contains K-feld-spar and quartz and the core consists mainly of quartz but it issurrounded and penetrated by a quartz-bearing albitethorn lepi-dolite complex which contains several minerals At theDobra Voda pegmatite the center of the dike is occupiedby the lepidolite unit containing albite and other minerals(Cerny et al 1995) At the Namivo pegmatite the coremargin consists of quartz and beryl and the core containsmainly quartz and spodumene but also albite lepidolite andother minerals The last-unit assemblages of primary miner-als in most of the highly fractionated LCT pegmatites are richin albite and commonly contain lepidolite or spodumene andmost of the other rare phases These units represent the lastmost fractionated liquid that can be derived by fractionalcrystallization of a crustal melt (London 2008)

The Namivo granitic pegmatite shows a significant dis-tinction from the other zoned lepidolite-subtype pegmatitesand LCT pegmatites except the Tanco petalite-subtypepegmatite in Canada because the lepidolite richest in SiLi and F FeMg-containing polylithionite and associatedcolumbite-(Mn) with the highest Ta(Ta thorn Nb) ratio tanta-lite-(Fe) and tantalite-(Mn) only occur in the outer inter-mediate zone These minerals usually form late in theconsolidation of pegmatites The lepidolite and polylithio-nite are probably derived from the disequilibrium crystal-lization of an undercooled melt Tantalite may reflect a localdecrease in Li and F that caused Ta precipitation

This paper contributes to a better understanding of theorigin and evolution of the rare zoned lepidolite-subtypepegmatites and shows that although the pegmatite evolvedfrom the wall zone to the core it presents an unusualassociation of lepidolite polylithionite and tantalite in theouter intermediate zone

Acknowledgments Thanks are due to JM Cotelo Neivaand MB Dias for the samples and information providedand to MR Machado Leite and MF Guimaraes for theuse of the electron microprobe facilities at the LaboratorioNacional de Energia e Geologia (LNEG) PortugalFinancial support was provided by the PortugueseGovernment for the project Pest-OECTEUI00732011of the Geosciences Centre through the PortugueseFoundation for Science and Technology I would like tothank D London WB Simmons and the associated editorE Widom for their constructive reviews of this manuscriptand M Prieto for his editorial work

References

Alfonso P Melgarejo JC Yusta I Velasco F (2003)

Geochemistry of feldspars and muscovite in granitic pegmatite

from the Cap de Creus field Catalonia Spain Can Mineral 41

103ndash116

Antunes IMHR Neiva AMR Ramos JMF Silva PB

Silva MMVG Corfu F (2013) Petrogenetic links between

lepidolite-subtype aplite-pegmatite aplite veins and associated

granites at Segura (central Portugal) Chemie der Erde in press

httpdxdoiorg101016jchemer20121203

Batchelor RA amp Kinnaird JA (1984) Gahnite compositions

compared Mineral Mag 48 425ndash430

Beurlen H Da Silva MRR Thomas R Soares DR Olivier P

(2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-

element granitic pegmatite fractionation in the Borborema pro-

vince Northeastern Brazil Miner Deposita 43 207ndash228

Cameron EN Jahns RH McNair AH Page LR (1949)

Internal structure of granitic pegmatites Econ Geol

Monograph 2 115 p

Cerny P (1991a) Fertile granites of Precambrian rare-element

pegmatite fields is geochemistry controlled by tectonic setting

or source lithologies Precambrian Res 51 429ndash468

mdash (1991b) Rare-element granite pegmatites I Anatomy and inter-

nal evolution of pegmatite deposits Geoscience Canada 18

49ndash67

mdash (1992) Geochemical and petrogenetic features of mineralization

in rare-element granitic pegmatites in the light of current

research Applied Geochemistry 7 393ndash416

mdash (1994) Evolution of feldspars in granitic pegmatites in

lsquolsquoFeldspars and their Reactionsrsquorsquo I Parsons ed NATO

Advanced Study Institute Series C421 501ndash539

mdash (2005) The Tanco rare-element pegmatite deposit Manitoba

regional context internal anatomy and global comparisons in

lsquolsquoRare-element Geochemistry and Mineral Depositsrsquorsquo RL

Linnen amp IM Samson eds Geochemical Association of

Canada Short Course Notes St Catherines 17 127ndash158

Silicate and oxide minerals from a zoned granitic pegmatite 983

eschweizerbart_xxx

Cerny P amp Ercit TS (2005) The classification of granitic pegma-

tites revisited Can Mineral 43 2005ndash2026

Cerny P Meintzer RE Andersen AJ (1985) Extreme fractiona-

tion in rare-element granitic pegmatites selected examples of

data and mechanisms Can Mineral 23 381ndash421

Cerny P Goad BE Hawthorne FC Chapmann R (1986)

Fractionation trends of the Nb- and Ta-bearing oxide minerals

in the Greer Lake pegmatite granite and its pegmatite aureole

southeastern Manitoba Am Mineral 71 501ndash517

Cerny P Stanek J Novak M Baadsgaard H Rieder M

Ottolini L Kavalova M Chapman R (1995) Geochemical

and structural evolution of micas in the Rozna amp Dobra Voda

pegmatites Czech Republic Mineral Petrol 55 177ndash201

Cerny P Ercit TS Vanstone PJ (1998) Mineralogy and petrol-

ogy of the Tanco rare-element pegmatite deposit southeastern

Manitoba International Mineralogical Association 17th General

Meeting Toronto Field Guidebook B6

Cerny P Chapman R Ferreira K Smeds SA (2004)

Geochemistry of oxide minerals of Nb Ta Sn and Sb in

the Varutrask granitic pegmatite Sweden The case of an

lsquolsquoanomalousrsquorsquo columbitendashtantalite trend Am Mineral 89

505ndash518

Cerny P Masau M Goad BE Ferreira K (2005) The Greer

Lake leucogranite Manitoba and the origin of lepidolite-sub-

type granitic pegmatites Lithos 80 305ndash321

Cerny P Teertstra DK Chapman R Selway JB Hawthorne

FC Ferreira K Chackowsky LE Wang X-J Meintzer

RE (2012a) Extreme fractionation and deformation of the

leucogranite-pegmatite suite at Red Cross Lake Manitoba

Canada IV Mineralogy Can Mineral 50 1839ndash1875

Cerny P Halden NM Ferreira K Meintzer RE Brisbin WC

Chackowsky LE (2012b) Extreme fractionation and deforma-

tion of the leucogranite-pegmatite suite at Red Cross Lake

Manitoba Canada II Petrology of the leucogranites and peg-

matites Can Mineral 50 1807ndash1822

Dahl PS When DC Feldmann SG (1993) The systematics of

trace-element partitioning between coexisting muscovite and

biotite in metamorphic rocks from the Black Hills South

Dakota USA Geochim Cosmochim Acta 57 2487ndash2505

Dias MB amp Wilson WE (2000) The Alto Ligonha Pegmatites

Mozambique Mineral Record 31 459ndash497

Fleet ME (2003) Rock-Forming Minerals vol 3A Sheet silicates

micas The Geological Society London second edition chap 6

Lithium micas 651ndash690

Foord EE Cerny P Jackson LL Sherman DM Eby RK

(1995) Mineralogical and geochemical evolutions of micas

from miarolitic pegmatites of the anorogenic pikes-Peak

Batholith Colorado Mineral Petrol 55 1ndash26

Foster MD (1960) Interpretation of the composition of lithium

micas US Geol Surv Prof Paper 354-E 115ndash147

Fuhrman ML amp Lindsley DK (1988) Ternary-feldspar modeling

and thermometry Am Mineral 73 201ndash215

Gomes CL Castro P Alves C (1995) Caracterizacao das espi-

nelas zincıferas e do par ganite-nigerite no campo aplito-

pegmatıtico da Serra de Arga-Minho N de Portugal IV

Congresso Nacional de Geologia Resumos Alargados

Universidade do Porto Mem 4 629ndash633

Gordiyenko VV Ilyina AN Timochina LA Badamina EB

Stanek J (1996) Geochemical model of evolution of a pegma-

tite-forming ore-magmatic system of western Moravia Proc

Russ Mineral Soc 125 38ndash48 (in Russian)

Icenhower JP amp London D (1995) An experimental study for

element partitioning between biotite muscovite and coexisting

peraluminous granitic melt at 200 MPa (H2O) Am Mineral 80

1229ndash1251

Jahns RH (1982) Internal evolution of pegmatite bodies in lsquolsquoGranitic

Pegmatites in science and industryrsquorsquo P Cerny ed Mineralogical

Association of Canada Short Course Handbook 8 293ndash327

Jahns RH amp Burnham CW (1969) Experimental studies of

pegmatite genesis I A model for the derivation and crystal-

lization of granitic pegmatites Econ Geol 64 843ndash864

Jolliff BL Papike JJ Shearer CK (1987) Fractionation trends

in mica and tourmaline as indicators of pegmatite internal evo-

lution Bob Ingersoll pegmatite Black Hills South Dakota

USA GeochimCosmochim Acta 51 519ndash534

Kile DE amp Foord EE (1998) Micas from the Pikes Peak bath-

olith and its cogenetic granitic pegmatites Colorado optical

properties composition and correlation with pegmatite evolu-

tion Can Mineral 36 463ndash482

Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic

melts with Li and Li thorn F constraints for mineralization in rare

metal granites and pegmatites Econ Geol 93 1013ndash1025

Linnen RL amp Cuney M (2005) Granite-related rare-element

deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf

mineralization in lsquolsquoRare-element geochemistry and mineral

depositsrsquorsquo RL Linnen amp IM Samson eds Geochemical

Association of Canada Short Course Notes 17 45ndash68

London D (1990) Internal differentiation of rare-element pegmatites

a synthesis of recent research in lsquolsquoOre Bearing Granite Systems

Petrogenesis and Mineralizing Processesrsquorsquo HJ Stein amp JL

Hannah eds Geol Soc America Special Paper 246 35ndash50

mdash (2008) Pegmatites The Canadian Mineralogist Special

Publication 10 347 p

mdash (2009) The origin of primary textures in granitic pegmatites

Can Mineral 47 697ndash724

London D amp Morgan GB VI (2012) The pegmatite puzzle

Elements 8 263ndash268

London D Morgan GB VI Hervig RL (1989) Vapor-under-

saturated experiments in the system macusanite-H2O at 200

MPa and the internal differentiation of granitic pegmatites

Contrib Mineral Petrol 102 1ndash17

London D Morgan GB VI Paul KA Guttery BM (2012)

Internal evolution of miarolitic granitic pegmatites at the Little

Three mine Ramona California USA Can Mineral 50

1025ndash1054

Martins T Lima A Simmons WB Folster AU Noronha F

(2011) Geochemical fractionation of Nb-Ta oxides in Li-bear-

ing pegmatites from the Barroso-Alvao pegmatite field northern

Portugal Can Mineral 49 777ndash791

Monier G Charoy B Cuney M Ohnenstetter D Robert JL

(1987) Evolution spatiale et temporelle de la composition des

micas du granite albitique a topaze-lepidolite de Beauvoir

Geologie De La France 2ndash3 179ndash188

Monier G amp Robert JL (1986) Evolution of the miscibility gap

between muscovite and biotite solid solutions with increasing

lithium content an experimental study in the systems

K2OndashLi2OndashMgOndashAl2O3ndashSiO2ndashH2OndashHF at 600 C 2 kbar

PH2O comparison with natural lithium micas Mineral Mag

50 641ndash651

Morgan GBVI amp London D (1999) Crystallization of the little

three layered pegmatite-aplite dike Ramona District California

Contrib Mineral Petrol 136 310ndash330

984 A M R Neiva

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985

Page 12: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

Tab

le2

R

epre

sen

tati

ve

elec

tro

nm

icro

pro

be

anal

yse

sin

wt

o

ffe

ldsp

ars

sch

orl

and

spo

du

men

efr

om

the

Nam

ivo

gra

nit

icp

egm

atit

eM

oza

mb

iqu

e

Alb

ite

K-f

eld

spar

Sch

orl

Sp

od

um

ene

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

WZ

OIZ

IIZ

aII

Zb

Cc

Zo

nes

OIZ

Zo

ne

Cc

SiO

26

75

76

78

86

87

06

84

76

84

1S

iO2

65

10

65

55

65

46

64

96

64

72

SiO

23

52

0S

iO2

64

65

TiO

20

02

mdash0

02

mdashmdash

TiO

2mdash

00

1mdash

mdashmdash

TiO

20

35

Al 2

O3

27

20

Al 2

O3

20

25

19

74

19

67

19

88

19

97

Al 2

O3

18

96

18

23

18

31

18

24

18

05

B2O

3

10

28

Fe 2

O3

00

6F

e 2O

3mdash

mdashmdash

mdash0

10

Fe 2

O3

mdash0

02

mdash0

03

mdashA

l 2O

33

17

2M

nO

01

3M

nO

00

6mdash

mdashmdash

mdashM

nO

mdash0

03

00

3mdash

mdashF

eO1

35

2M

gO

01

8M

gO

mdashmdash

mdashmdash

mdashM

gO

00

10

01

00

5mdash

mdashM

nO

03

3N

a 2O

01

9C

aO1

04

08

00

56

03

70

32

CaO

00

10

01

00

60

01

00

2M

gO

22

8L

i 2O

8

05

Na 2

O1

06

11

12

01

12

11

13

41

13

4N

a 2O

06

50

58

04

10

59

03

8C

aO0

23

To

tal

10

04

6K

2O

00

50

17

00

60

14

01

0K

2O

14

72

14

75

15

67

15

01

15

74

Li 2

O

02

2S

rO0

72

05

00

24

01

1mdash

Rb

2O

00

90

20

03

00

59

09

0N

a 2O

22

8S

i1

99

7P

2O

50

01

00

4mdash

mdashmdash

Cs 2

O

00

6

00

60

09

01

80

20

K2O

00

1A

lIV0

00

3T

ota

l1

00

33

10

03

31

00

46

10

03

11

00

24

P2O

5mdash

00

3mdash

mdashmdash

H2O

3

18

P2

00

To

tal

99

60

99

48

10

03

89

96

11

00

01

F0

78

AlV

I0

98

7S

rC

a(w

t)0

81

07

40

50

03

50

Cl

mdashF

e3thorn

00

01

KR

b(w

t)153

68

48

23

16

Sum

1003

8P

09

9S

i1

18

23

11

87

91

19

58

11

93

21

19

21

KC

s(w

t)4

07

20

41

63

73

69

O

F0

33

Li

10

00

P0

00

10

00

6mdash

mdashmdash

To

tal

10

00

5M

n0

00

3T

i0

00

3mdash

00

03

mdashmdash

Si

11

98

61

20

88

12

04

11

20

45

12

03

3M

g0

00

8A

l4

17

64

07

14

03

54

08

34

10

1P

mdash0

00

5mdash

mdashmdash

TS

i5

95

2N

a0

01

2F

e3thorn

mdashmdash

mdashmdash

00

13

Ti

mdash0

00

1mdash

mdashmdash

Al

00

48

P1

02

Mn

00

09

mdashmdash

mdashmdash

Al

41

14

39

62

39

70

39

86

39

55

B3

00

0M

gmdash

mdashmdash

mdashmdash

Fe3thorn

mdash0

00

3mdash

00

04

mdashZ

Al

60

00

Ca

01

95

01

50

01

04

00

69

00

60

Mn

mdash0

00

50

00

5mdash

mdashY

Al

02

74

Sr

00

73

00

51

00

24

00

11

mdashM

g0

00

30

00

30

01

4mdash

mdashT

i0

04

5N

a3

59

93

80

03

78

33

83

23

83

1C

a0

00

20

00

20

01

20

00

20

00

4M

g0

57

5K

00

11

00

38

00

13

00

31

00

22

Na

02

32

02

07

01

46

02

12

01

37

Mn

00

47

K3

45

73

47

03

67

73

55

03

73

3F

e2thorn

19

12

Z1

60

01

59

61

60

01

60

11

60

4R

b0

01

10

02

40

03

50

07

00

10

8L

i0

14

8X

38

94

04

39

33

94

39

1C

s0

00

20

00

50

00

70

01

40

01

6P

Y3

00

0m

ole

s

XC

a0

04

2A

n5

13

82

71

71

5Z

16

10

16

06

16

01

16

03

15

99

Na

07

47

Ab

94

69

53

97

09

75

97

9X

37

13

72

39

03

85

40

0K

00

02

Or

03

09

03

08

06

mo

les

amp

02

09

An

01

01

03

01

01

Ab

63

56

38

56

35

OH

35

83

Or

93

69

43

95

99

43

96

4F

04

17

Cl

mdash

WZ

ndashw

allzo

ne

OIZ

ndasho

ute

rin

term

edia

tezo

ne

IIZ

aan

dII

Zb

ndashin

ner

inte

rmed

iate

zon

esC

cndash

core

asin

Fig

2B

aOis

bel

ow

the

det

ecti

on

lim

itin

bo

thfe

ldsp

ars

Cs 2

Ofrac14

00

3w

tin

the

K-

feld

spar

fro

mth

eW

Z

mdashN

ot

det

ecte

d

Nu

mb

ero

fio

ns

on

the

bas

iso

f3

2o

xy

gen

sfo

ral

bit

ean

dK

-fel

dsp

ar

31

anio

ns

(O

OH

F

)fo

rsc

ho

rlan

d6

ox

yg

ens

for

spo

du

men

e

-A

mo

un

tin

ferr

edfr

om

con

sid

erat

ion

so

fst

oic

hio

met

ry

978 A M R Neiva

eschweizerbart_xxx

2011) Lepidolite from the OIZ is an Al-poorer mica (Fig4) and has the highest Si Licalcand F contents (Table 1)indicating that an evolution cannot be shown from thislepidolite to lepidolites from the other zones which areAl-richer micas (Fig 4) However there is a regulardecrease in the KRb ratio and a progressive increase inthe Rb and Cs contents from lepidolite of the OIZ tolepidolite of IIZa IIZb and Cc (Fig 7) which indicatesthat the KRb ratio and Rb and Cs contents must not beconsidered alone to show fractional crystallization in

lepidolites particularly if some are Al-richer micas andothers Al-poorer micas The high Licalcand F contents oflepidolite from the OIZ did not decrease its KRb ratioSuch an effect is considered to have taken place in lepi-dolite (an Al-richer mica) from the wall zone of the Tancopegmatite Manitoba Canada (Van Lichtervelde et al2008) An evolution from the lepidolite of the IIZa to thatof the Cc is generally shown by the increasing Si LicalcF Rb Cs contents and a decrease in the KRb ratio (Table1 Fig 7)

At the scale of crystals the pegmatite zones and alsothose from the OIZ to the Cc of the Namivo granitic pegma-tite Al-richer micas show fractionation because theyformed from the fractionation of an Li-rich pegmatite melt

The Al-poorer micas zinnwaldite lepidolite and FeMg-containing polylithionite only occur in the OIZ (Fig 4)Polylithionite is the mica richest in Si and Licalc and lepi-dolite from this zone is the richest in Si Licalcand F (Fig 4Table 1) The high Li contents of these micas reflect aconsiderably higher D(Li) at low temperature (Icenhoweramp London 1995) These Li-rich micas may have crystal-lized from an undercooled melt This hypothesis does notimply high Rb and Cs contents and low KRb ratios Thisagrees with the fact that these micas from the OIZ havesimilar Rb and Cs contents and KRb ratios to those of Al-richer micas (muscovite lithian muscovite and lsquolsquomixedformrsquorsquo) from the same pegmatite zone (Fig 7) Howeverthe lepidolite from the wall zone of the Tanco pegmatiteCanada of a similar origin has a low KRb ratio which isattributed to the complexly interrelated structural compo-nents of this lepidolite (Van Lichtervelde et al 2008) TheLi-rich micas from the OIZ may also represent disequili-brium These two hypotheses are considered the best forthese micas of primary magmatic origin

Another hypothesis was also considered They may havecrystallized in boundary layers which concentrate Li andF But this mechanism was suggested for the most fractio-nated tourmaline enriched in Li and F from the core of the

Fig 8 Plot of albite compositions from all zones of the Namivo granitic pegmatite Mozambique showing that the anorthite content of albitedecreases from the WZ to the Cc WZ OIZ IIZa IIZb and Cc as in Fig 2

Fig 9 The Rb vs Cs diagram of K-feldspar from all zones of theNamivo granitic pegmatite Mozambique showing that the Rb andCs contents of K-feldspar increase from the WZ to the Cc WZ OIZIIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 979

eschweizerbart_xxx

Little Three pegmatite dike USA (Morgan amp London1999) and the micas enriched in Li and F from theNamivo pegmatite belonging to the OIZ Furthermore ina boundary layer melt that became enriched in Li and F theKRb ratio of micas decreases strongly (Van Lichterveldeet al 2008) which was not found in these micas from theOIZ (Fig 7d) Nor can they have resulted from the crystal-lization of a late melt that would have reacted with the OIZbecause these micas are among those containing the high-est KRb values (Fig 7d)

92 The importance of feldspars micas andcolumbitendashtantalite compositions to the Namivogranitic pegmatite evolution

The trace elements Rb and Cs and the KRb and KCs ratioshave been used to show the evolution of K-feldspar inpegmatites (eg Cerny 1994 Cerny et al 2005 RodaRobles et al 2005) The Rb and Cs contents increase andthe KRb and KCs ratios of K-feldspar decrease from theWZ to the Cc (Fig 9 Table 2) reflecting the growth of K-feldspar from an increasingly fractionated melt withouthaving grown from or having been chemically modifiedby an aqueous fluid as in the Swamp pegmatite section atthe Little Three Mine USA (London et al 2012) Thecrystallization of K-feldspar from an exsolved aqueousfluid from melt will reverse the magmatic fractionation ofRb Cs KRb and KCs because Rb and especially Cs areso much more compatible in vapor that both Rb and Csremain in the fluid phase (London et al 2012) The feldsparsolvus pairs in the Namivo pegmatite record magmaticcrystallization temperatures that decrease from WZ to CcAlbite shows a decrease in the Ca Sr contents and SrCaratio from the WZ to the Cc (Fig 8 Table 2) Therefore thefeldspars and also Al-richer micas as already explainedshow fractionation in this zoned pegmatite

In general lepidolite from the Namivo pegmatite hassimilar Rb2O and Cs2O contents and KRb (wt) values tothose of lepidolite from the Rozna and Dobra Voda lepi-dolite-subtype pegmatites in the Czech Republic (Cernyet al 1995) but lower Rb2O and Cs2O contents thanlepidolite from the lepidolite-subtype pegmatite at RedCross Lake Manitoba Canada (Cerny et al 2012a) K-feldspar from the Namivo pegmatite also has lower Rb2O

Table 3 Representative electron microprobe analyses in wt of columbitendashtantalite from the Namivo granitic pegmatite Mozambique

Outer Intermediate Zone - OIZ Inner Intermediate Zone - IIZa

Core - Cc

D L L

WO3 022 059 079 113 101 351 050 007Ta2O5 5487 5123 2503 3186 2888 2519 3127 4542Nb2O5 2537 3000 5483 4635 5113 5144 4911 3686SnO2 008 015 024 049 020 026 017 012TiO2 263 161 136 254 202 145 125 016FeO 860 710 665 471 236 068 mdash mdashMnO 793 952 1099 1304 1400 1725 1748 1718Total 9970 10020 9989 10012 9960 9978 9978 9981W 0004 0011 0013 0019 0016 0057 0008 0001Ta 1065 0975 0422 0552 0495 0430 0543 0847Nb 0819 0949 1538 1336 1456 1460 1418 1143Sn 0002 0004 0006 0012 0005 0007 0004 0003Ti 0141 0085 0063 0122 0096 0068 0060 0008Fe 0513 0416 0345 0251 0124 0036 mdash mdashMn 0479 0564 0578 0704 0747 0917 0945 0998P

3023 3004 2965 2996 2939 2975 2978 3000Mn(Mn thorn Fe) 048 058 063 074 086 096 100 100Ta(Ta thorn Nb) 057 051 022 029 025 023 028 043Classification tant-(Fe) tant-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn)

D ndash darker L ndash lighter zones mdash Not detected tant-tantalite col-columbite Cation formula on the basis of 6 atoms of oxygen

Fig 10 Compositions of columbitendashtantalite from the Namivogranitic pegmatite Mozambique in the columbite quadrilateralshowing that Mn(Mn thorn Fe) of columbite-(Mn) increases from theOIZ to the Cc and the richest columbite-(Mn) in Ta(Ta thorn Nb)tantalite-(Fe) and tantalite-(Mn) only occur in the OIZ OIZ IIZaand Cc as in Fig 2

980 A M R Neiva

eschweizerbart_xxx

and Cs2O contents than K-feldspar from the lepidolite-subtype pegmatite at Red Cross Lake The Rb2O andCs2O contents of primary and late K-feldspar of this peg-matite at Red Cross Lake attained unprecedented levels(Cerny et al 2012a) The lowest KRb (wt) values ofmuscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepido-lite from the IIZb and Cc (Fig 7) and K-feldspar (KRb frac1414) from the Cc compare well with those found in theseminerals from the AC6frac143 lepidolite-subtype pegmatitefrom Greer Lake (Cerny et al 2005) and some of themost fractionated pegmatites worldwide which belong tothe petalite-subtype (eg Tanco Manitoba Cerny 2005Cerny et al 1998 Varutrask Sweden Cerny et al 2005)but muscovite lithian muscovite and lepidolite from theIIZb and Cc have lower Rb2O and Cs2O contents than thesemicas from the Tanco pegmatite (Cerny 2005a VanLichtervelde et al 2008) K-feldspar also has lower

contents of these oxides than the most evolved K-feldsparfrom the Tanco pegmatite (Cerny 2005a) The magmaticfractionation was strong from the WZ to IIZb and Cc of theNamivo lepidolite-subtype pegmatite

The compositional trend of columbite-(Mn) from the OIZto Cc of the Namivo granitic lepidolite-subtype pegmatite(Fig 10) is identical to that of columbite-group mineralsfrom the lepidolite-subtype complex granitic pegmatitesfrom the Dobra Voda in the Moldanubicum CzechRepublic (Novak amp Cerny 1998) and the HimalayaDistrict southern California (shown in Cerny et al 2004)Experimental data for the Fe-Mn pair (Linnen amp Cuney2005) suggest an increase in Fe with fractional crystalliza-tion which is not observed in nature Other phases seem tocontrol the bahavior of Fe and Mn in the melt eg thecrystallization of tourmaline causes a rapid increase of theMnFe in the melt (Van Lichtervelde et al 2006) When thecrystallization of tourmaline stopped the columbitendashtantaliteminerals showed a constant MnFe indicating that the Fe andMn contents in the melt remained constant Schorl onlyoccurs in the OIZ of the Namivo granitic pegmatite and itscrystallization cannot be responsible for the increase in theMnFe of the melt because Mn(Mn thorn Fe) of columbite-(Mn) increases progressively from the OIZ to the IIZa and Cc(Fig 10) Garnet zinnwaldite and gahnite containing Fe andMn also only occur in the OIZ and cannot also have causedthe increase of the MnFe in the melt The dominant Mnenrichment before Ta enrichment started in the columbitendash-tantalite composition from some granitic pegmatites isattributed to an increased alkali-fluoride activity at moderatemHF (Cerny et al 2004) and an increase in the activity offluorine (Martins et al 2011) Each Al-richer mica (musco-vite lithian muscovite and lsquolsquomixed formrsquorsquo) from the Namivogranitic pegmatite shows an increase in F content from theOIZ to the IIZa IIZb and Cc (Table 1) In general the Fcontent of lepidolite also increases from the IIZa to the IIZband Cc Therefore the extreme Fe-Mn fractionation beforeTa enrichment in columbite-(Mn) (Fig 10) may be due to anincrease in the activity of fluorine as a consequence offractional crystallization The increase in the Ta content ofcolumbite-(Mn) from the Namivo granitic pegmatite isattributed to fractional crystallization

The geochemical evolution of albite and K-feldsparfrom the WZ to the Cc Al-richer micas muscovite lithianmuscovite and lsquolsquomixed formrsquorsquo from the OIZ to the Cc andlepidolite from the IIZa to the Cc and columbite-(Mn) andalso beryl (Neiva amp Neiva 2005) from the OIZ to the Ccare caused by magma fractionation The pegmatite zonesare the product of primary crystallization from a volatile-rich silicate melt The pegmatite consolidated from the WZto the Cc The IIZb is one of the most evolved zones asalso suggested by the beryl composition (Neiva amp Neiva2005) and is the richest in lsquolsquomixed formrsquorsquo and lepidolite

The richest columbite-(Mn) in Ta(Ta thorn Nb) and com-positions of tantalite-(Fe) and tantalite-(Mn) only occur inthe OIZ (Fig 10a) associated with lepidolite and polythio-nite (Fig 3c) which may be due to the local depletion of Liand F in the melt which decreases the solubility of Ta andcauses Ta precipitation (Linnen 1998 Linnen amp Cuney

Fig 11 a Backscattered-electron image of a gahnite crystal with adarker zone partially surrounding a lighter zone from the OIZ of theNamivo granitic pegmatite b c Plot of gahnite compositions in theSn-Zn-Ti diagram (atomic proportions) showing a chemical distinc-tion between the lighter and darker zones OIZ as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 981

eschweizerbart_xxx

2005) At the Tanco pegmatite Ta oxides are also asso-ciated with lepidolite enriched in Li and F from the wallzone (Van Lichtervelde et al 2008)

93 Origin and evolution of the zoned graniticlepidolite-subtype pegmatite at Namivo

In general granitic pegmatites particularly those belong-ing to the rare-element class are accepted as having beenformed by the fractional crystallization of a granite melt(eg Cerny 1991a b 1992 Neiva et al 2008 2012 Roda-Robles et al 2012) But it also has been proposed thatpegmatites may be formed by partial melting of appropri-ate rock compositions (eg Nabelek et al 1992 Nabelekamp Russ-Nabelek 1992 Shearer et al 1992 Roda Robleset al 1999) The lepidolite-subtype pegmatites belong tothe LCT (lithium-cesium-tantalum) family (Cerny amp Ercit2005) They are derived by fractional crystallization of agranite magma (eg Cerny et al 2005 Neiva amp Ramos2010 Cerny et al 2012b) Experimental work by Londonet al (1989) and London (1990) using Macusani glass as astarting material equivalent to the bulk composition ofhighly fractionated rare-alkali-rich pegmatites underhighly evolved and hydrous but H2O undersaturatedmelt obtained the latest primary assemblage consisting

of an Li-rich mica thorn albite thorn quartz deposited directlyfrom the primary melt phase Other authors egZasedatelev (1974 1977) and Stewart (1978) argue thatlepidolite-bearing pegmatites are derived from direct ana-texis and Gordiyenko et al (1996) consider that they arederived from an undefined medium and the rare-elementmineralization is superimposed on preexisting barrenpegmatites

Lepidolite-subtype pegmatites may migrate a long wayfrom their parent granites because their volatile-rich highlyfluid pegmatite melts are stable at relatively low tempera-tures (eg Cerny et al 2005 Antunes et al 2013)Therefore the Namivo pegmatite is probably derived byfractional crystallization of an S-type granite magmawhich resulted from partial melting of metamorphosed juve-nile sediments containing micas that carry most of the traceelements that define the signature of the LCT pegmatites(eg Dahl et al 1993)

The two main models for the internal evolution of peg-matites that dominated for more than a century are a) thefractional crystallization of a flux-bearing granitic melt fromthe margins to the center of the pegmatite (Cameron et al1949) b) the interactions of an aqueous fluid with graniticmelt (Jahns amp Burnham 1969 Jahns 1982) The recentmodel of constitutional zone refining combines aspects ofboth models and invokes the formation of a flux-enriched

Table 4 Electron microprobe analyses in wt of zoned gahnite from the outer intermediate zone (OIZ) of the Namivo granitic pegmatiteMozambique

Darker Zone Lighter Zone

Mean s Range Mean s Range

SnO2 036 050 0ndash097 658 281 151ndash998TiO2 008 008 0ndash021 065 034 008ndash105Nb2O5 001 002 0ndash006 018 007 007ndash029Ta2O5 001 004 0ndash010 015 013 0ndash033ZnO 3998 123 3810ndash4109 3339 318 3004ndash3848FeO 367 048 331ndash442 433 065 306ndash498MnO 032 004 028ndash040 039 006 032ndash048MgO 003 004 0ndash010 ndash ndash ndashAl2O3 5507 050 5436ndash5572 5337 070 5257ndash5443SiO2 003 003 0ndash007 008 010 0ndash025Total 9956 9912n 8 8Sn 0035 0048 0ndash0095 0648 0278 0149ndash0983Ti 0015 0015 0ndash0038 0120 0064 0015ndash0195Nb ndash 0003 0ndash0006 0021 0009 0009ndash0037Ta ndash 0002 0ndash0006 0009 0009 0ndash0021Zn 7226 0182 6890ndash7382 6086 0568 5482ndash6965Fe2thornt 0752 0103 0675ndash0913 0894 0135 0628ndash1029Mn 0066 0008 0057ndash0083 0082 0013 0066ndash0101Mg 0010 0015 0ndash0037 ndash ndash ndashAl 15887 0052 15805ndash15954 15526 0170 15375ndash15853Si 0007 0008 0ndash0018 0019 0025 0ndash0062P

23998 23405Fe3thorn 0064 0230Fe2thorn 0686 0658SnZn 0005 0007 0ndash0014 0106 0052 0021ndash0179ZnFe2thornt 961 143 768ndash1093 681 190 536ndash1109

n number of analysis Cation formula based on 32 atoms of oxygen Fe2thornt total Fe2thorn estimated

982 A M R Neiva

eschweizerbart_xxx

boundary layer of silicate liquid in advance of a crystal-lization front (London 2008 London amp Morgan 2012)

Lepidolite-subtype pegmatites are generally scarce(Cerny et al 2005) particularly the zoned ones In thesymmetrically zoned lepidolite-subtype pegmatites ofRozna and Dobra Voda Czech Republic micas (Cernyet al 1995) tourmaline (Selway et al 1999) and colum-bite-group minerals (Novak amp Cerny 1998) evolve fromthe outermost zone to the innermost zone following thecrystallization sequence The same was found in tourma-line from the zoned Lastovicky Dolnı Bory and Raddovicelepidolite-subtype pegmatite dikes in the Czeck Republic(Selway et al 1999)

In general beryl (Neiva amp Neiva 2005) feldsparsmicas and columbite-(Mn) (in this paper) from theNamivo lepidolite-subtype pegmatite record the progres-sive chemical evolution of the pegmatite from the wallzone to the core These minerals were produced by crystal-lization from a silicate melt rather than an aqueous fluidphase The slow cooling of melt shown by the magmaticcrystallization temperatures of feldspars cannot explain theincrease in grain-size of minerals from the wall zone to thecore but fluxes will be necessary to promote the change oftexture particularly a flux-rich hydrosilicate liquidaccording to the experimental evidence (London 2009)The constitutional zone refining model will be the best forthis zoned pegmatite and probably for all lepidolite-sub-type pegmatites because this model also produces a higherfinal concentration of incompatible components in a smal-ler volume of rock than fractional crystallization does(Morgan amp London 1999)

The core margin at the Rozna pegmatite contains K-feld-spar and quartz and the core consists mainly of quartz but it issurrounded and penetrated by a quartz-bearing albitethorn lepi-dolite complex which contains several minerals At theDobra Voda pegmatite the center of the dike is occupiedby the lepidolite unit containing albite and other minerals(Cerny et al 1995) At the Namivo pegmatite the coremargin consists of quartz and beryl and the core containsmainly quartz and spodumene but also albite lepidolite andother minerals The last-unit assemblages of primary miner-als in most of the highly fractionated LCT pegmatites are richin albite and commonly contain lepidolite or spodumene andmost of the other rare phases These units represent the lastmost fractionated liquid that can be derived by fractionalcrystallization of a crustal melt (London 2008)

The Namivo granitic pegmatite shows a significant dis-tinction from the other zoned lepidolite-subtype pegmatitesand LCT pegmatites except the Tanco petalite-subtypepegmatite in Canada because the lepidolite richest in SiLi and F FeMg-containing polylithionite and associatedcolumbite-(Mn) with the highest Ta(Ta thorn Nb) ratio tanta-lite-(Fe) and tantalite-(Mn) only occur in the outer inter-mediate zone These minerals usually form late in theconsolidation of pegmatites The lepidolite and polylithio-nite are probably derived from the disequilibrium crystal-lization of an undercooled melt Tantalite may reflect a localdecrease in Li and F that caused Ta precipitation

This paper contributes to a better understanding of theorigin and evolution of the rare zoned lepidolite-subtypepegmatites and shows that although the pegmatite evolvedfrom the wall zone to the core it presents an unusualassociation of lepidolite polylithionite and tantalite in theouter intermediate zone

Acknowledgments Thanks are due to JM Cotelo Neivaand MB Dias for the samples and information providedand to MR Machado Leite and MF Guimaraes for theuse of the electron microprobe facilities at the LaboratorioNacional de Energia e Geologia (LNEG) PortugalFinancial support was provided by the PortugueseGovernment for the project Pest-OECTEUI00732011of the Geosciences Centre through the PortugueseFoundation for Science and Technology I would like tothank D London WB Simmons and the associated editorE Widom for their constructive reviews of this manuscriptand M Prieto for his editorial work

References

Alfonso P Melgarejo JC Yusta I Velasco F (2003)

Geochemistry of feldspars and muscovite in granitic pegmatite

from the Cap de Creus field Catalonia Spain Can Mineral 41

103ndash116

Antunes IMHR Neiva AMR Ramos JMF Silva PB

Silva MMVG Corfu F (2013) Petrogenetic links between

lepidolite-subtype aplite-pegmatite aplite veins and associated

granites at Segura (central Portugal) Chemie der Erde in press

httpdxdoiorg101016jchemer20121203

Batchelor RA amp Kinnaird JA (1984) Gahnite compositions

compared Mineral Mag 48 425ndash430

Beurlen H Da Silva MRR Thomas R Soares DR Olivier P

(2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-

element granitic pegmatite fractionation in the Borborema pro-

vince Northeastern Brazil Miner Deposita 43 207ndash228

Cameron EN Jahns RH McNair AH Page LR (1949)

Internal structure of granitic pegmatites Econ Geol

Monograph 2 115 p

Cerny P (1991a) Fertile granites of Precambrian rare-element

pegmatite fields is geochemistry controlled by tectonic setting

or source lithologies Precambrian Res 51 429ndash468

mdash (1991b) Rare-element granite pegmatites I Anatomy and inter-

nal evolution of pegmatite deposits Geoscience Canada 18

49ndash67

mdash (1992) Geochemical and petrogenetic features of mineralization

in rare-element granitic pegmatites in the light of current

research Applied Geochemistry 7 393ndash416

mdash (1994) Evolution of feldspars in granitic pegmatites in

lsquolsquoFeldspars and their Reactionsrsquorsquo I Parsons ed NATO

Advanced Study Institute Series C421 501ndash539

mdash (2005) The Tanco rare-element pegmatite deposit Manitoba

regional context internal anatomy and global comparisons in

lsquolsquoRare-element Geochemistry and Mineral Depositsrsquorsquo RL

Linnen amp IM Samson eds Geochemical Association of

Canada Short Course Notes St Catherines 17 127ndash158

Silicate and oxide minerals from a zoned granitic pegmatite 983

eschweizerbart_xxx

Cerny P amp Ercit TS (2005) The classification of granitic pegma-

tites revisited Can Mineral 43 2005ndash2026

Cerny P Meintzer RE Andersen AJ (1985) Extreme fractiona-

tion in rare-element granitic pegmatites selected examples of

data and mechanisms Can Mineral 23 381ndash421

Cerny P Goad BE Hawthorne FC Chapmann R (1986)

Fractionation trends of the Nb- and Ta-bearing oxide minerals

in the Greer Lake pegmatite granite and its pegmatite aureole

southeastern Manitoba Am Mineral 71 501ndash517

Cerny P Stanek J Novak M Baadsgaard H Rieder M

Ottolini L Kavalova M Chapman R (1995) Geochemical

and structural evolution of micas in the Rozna amp Dobra Voda

pegmatites Czech Republic Mineral Petrol 55 177ndash201

Cerny P Ercit TS Vanstone PJ (1998) Mineralogy and petrol-

ogy of the Tanco rare-element pegmatite deposit southeastern

Manitoba International Mineralogical Association 17th General

Meeting Toronto Field Guidebook B6

Cerny P Chapman R Ferreira K Smeds SA (2004)

Geochemistry of oxide minerals of Nb Ta Sn and Sb in

the Varutrask granitic pegmatite Sweden The case of an

lsquolsquoanomalousrsquorsquo columbitendashtantalite trend Am Mineral 89

505ndash518

Cerny P Masau M Goad BE Ferreira K (2005) The Greer

Lake leucogranite Manitoba and the origin of lepidolite-sub-

type granitic pegmatites Lithos 80 305ndash321

Cerny P Teertstra DK Chapman R Selway JB Hawthorne

FC Ferreira K Chackowsky LE Wang X-J Meintzer

RE (2012a) Extreme fractionation and deformation of the

leucogranite-pegmatite suite at Red Cross Lake Manitoba

Canada IV Mineralogy Can Mineral 50 1839ndash1875

Cerny P Halden NM Ferreira K Meintzer RE Brisbin WC

Chackowsky LE (2012b) Extreme fractionation and deforma-

tion of the leucogranite-pegmatite suite at Red Cross Lake

Manitoba Canada II Petrology of the leucogranites and peg-

matites Can Mineral 50 1807ndash1822

Dahl PS When DC Feldmann SG (1993) The systematics of

trace-element partitioning between coexisting muscovite and

biotite in metamorphic rocks from the Black Hills South

Dakota USA Geochim Cosmochim Acta 57 2487ndash2505

Dias MB amp Wilson WE (2000) The Alto Ligonha Pegmatites

Mozambique Mineral Record 31 459ndash497

Fleet ME (2003) Rock-Forming Minerals vol 3A Sheet silicates

micas The Geological Society London second edition chap 6

Lithium micas 651ndash690

Foord EE Cerny P Jackson LL Sherman DM Eby RK

(1995) Mineralogical and geochemical evolutions of micas

from miarolitic pegmatites of the anorogenic pikes-Peak

Batholith Colorado Mineral Petrol 55 1ndash26

Foster MD (1960) Interpretation of the composition of lithium

micas US Geol Surv Prof Paper 354-E 115ndash147

Fuhrman ML amp Lindsley DK (1988) Ternary-feldspar modeling

and thermometry Am Mineral 73 201ndash215

Gomes CL Castro P Alves C (1995) Caracterizacao das espi-

nelas zincıferas e do par ganite-nigerite no campo aplito-

pegmatıtico da Serra de Arga-Minho N de Portugal IV

Congresso Nacional de Geologia Resumos Alargados

Universidade do Porto Mem 4 629ndash633

Gordiyenko VV Ilyina AN Timochina LA Badamina EB

Stanek J (1996) Geochemical model of evolution of a pegma-

tite-forming ore-magmatic system of western Moravia Proc

Russ Mineral Soc 125 38ndash48 (in Russian)

Icenhower JP amp London D (1995) An experimental study for

element partitioning between biotite muscovite and coexisting

peraluminous granitic melt at 200 MPa (H2O) Am Mineral 80

1229ndash1251

Jahns RH (1982) Internal evolution of pegmatite bodies in lsquolsquoGranitic

Pegmatites in science and industryrsquorsquo P Cerny ed Mineralogical

Association of Canada Short Course Handbook 8 293ndash327

Jahns RH amp Burnham CW (1969) Experimental studies of

pegmatite genesis I A model for the derivation and crystal-

lization of granitic pegmatites Econ Geol 64 843ndash864

Jolliff BL Papike JJ Shearer CK (1987) Fractionation trends

in mica and tourmaline as indicators of pegmatite internal evo-

lution Bob Ingersoll pegmatite Black Hills South Dakota

USA GeochimCosmochim Acta 51 519ndash534

Kile DE amp Foord EE (1998) Micas from the Pikes Peak bath-

olith and its cogenetic granitic pegmatites Colorado optical

properties composition and correlation with pegmatite evolu-

tion Can Mineral 36 463ndash482

Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic

melts with Li and Li thorn F constraints for mineralization in rare

metal granites and pegmatites Econ Geol 93 1013ndash1025

Linnen RL amp Cuney M (2005) Granite-related rare-element

deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf

mineralization in lsquolsquoRare-element geochemistry and mineral

depositsrsquorsquo RL Linnen amp IM Samson eds Geochemical

Association of Canada Short Course Notes 17 45ndash68

London D (1990) Internal differentiation of rare-element pegmatites

a synthesis of recent research in lsquolsquoOre Bearing Granite Systems

Petrogenesis and Mineralizing Processesrsquorsquo HJ Stein amp JL

Hannah eds Geol Soc America Special Paper 246 35ndash50

mdash (2008) Pegmatites The Canadian Mineralogist Special

Publication 10 347 p

mdash (2009) The origin of primary textures in granitic pegmatites

Can Mineral 47 697ndash724

London D amp Morgan GB VI (2012) The pegmatite puzzle

Elements 8 263ndash268

London D Morgan GB VI Hervig RL (1989) Vapor-under-

saturated experiments in the system macusanite-H2O at 200

MPa and the internal differentiation of granitic pegmatites

Contrib Mineral Petrol 102 1ndash17

London D Morgan GB VI Paul KA Guttery BM (2012)

Internal evolution of miarolitic granitic pegmatites at the Little

Three mine Ramona California USA Can Mineral 50

1025ndash1054

Martins T Lima A Simmons WB Folster AU Noronha F

(2011) Geochemical fractionation of Nb-Ta oxides in Li-bear-

ing pegmatites from the Barroso-Alvao pegmatite field northern

Portugal Can Mineral 49 777ndash791

Monier G Charoy B Cuney M Ohnenstetter D Robert JL

(1987) Evolution spatiale et temporelle de la composition des

micas du granite albitique a topaze-lepidolite de Beauvoir

Geologie De La France 2ndash3 179ndash188

Monier G amp Robert JL (1986) Evolution of the miscibility gap

between muscovite and biotite solid solutions with increasing

lithium content an experimental study in the systems

K2OndashLi2OndashMgOndashAl2O3ndashSiO2ndashH2OndashHF at 600 C 2 kbar

PH2O comparison with natural lithium micas Mineral Mag

50 641ndash651

Morgan GBVI amp London D (1999) Crystallization of the little

three layered pegmatite-aplite dike Ramona District California

Contrib Mineral Petrol 136 310ndash330

984 A M R Neiva

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985

Page 13: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

2011) Lepidolite from the OIZ is an Al-poorer mica (Fig4) and has the highest Si Licalcand F contents (Table 1)indicating that an evolution cannot be shown from thislepidolite to lepidolites from the other zones which areAl-richer micas (Fig 4) However there is a regulardecrease in the KRb ratio and a progressive increase inthe Rb and Cs contents from lepidolite of the OIZ tolepidolite of IIZa IIZb and Cc (Fig 7) which indicatesthat the KRb ratio and Rb and Cs contents must not beconsidered alone to show fractional crystallization in

lepidolites particularly if some are Al-richer micas andothers Al-poorer micas The high Licalcand F contents oflepidolite from the OIZ did not decrease its KRb ratioSuch an effect is considered to have taken place in lepi-dolite (an Al-richer mica) from the wall zone of the Tancopegmatite Manitoba Canada (Van Lichtervelde et al2008) An evolution from the lepidolite of the IIZa to thatof the Cc is generally shown by the increasing Si LicalcF Rb Cs contents and a decrease in the KRb ratio (Table1 Fig 7)

At the scale of crystals the pegmatite zones and alsothose from the OIZ to the Cc of the Namivo granitic pegma-tite Al-richer micas show fractionation because theyformed from the fractionation of an Li-rich pegmatite melt

The Al-poorer micas zinnwaldite lepidolite and FeMg-containing polylithionite only occur in the OIZ (Fig 4)Polylithionite is the mica richest in Si and Licalc and lepi-dolite from this zone is the richest in Si Licalcand F (Fig 4Table 1) The high Li contents of these micas reflect aconsiderably higher D(Li) at low temperature (Icenhoweramp London 1995) These Li-rich micas may have crystal-lized from an undercooled melt This hypothesis does notimply high Rb and Cs contents and low KRb ratios Thisagrees with the fact that these micas from the OIZ havesimilar Rb and Cs contents and KRb ratios to those of Al-richer micas (muscovite lithian muscovite and lsquolsquomixedformrsquorsquo) from the same pegmatite zone (Fig 7) Howeverthe lepidolite from the wall zone of the Tanco pegmatiteCanada of a similar origin has a low KRb ratio which isattributed to the complexly interrelated structural compo-nents of this lepidolite (Van Lichtervelde et al 2008) TheLi-rich micas from the OIZ may also represent disequili-brium These two hypotheses are considered the best forthese micas of primary magmatic origin

Another hypothesis was also considered They may havecrystallized in boundary layers which concentrate Li andF But this mechanism was suggested for the most fractio-nated tourmaline enriched in Li and F from the core of the

Fig 8 Plot of albite compositions from all zones of the Namivo granitic pegmatite Mozambique showing that the anorthite content of albitedecreases from the WZ to the Cc WZ OIZ IIZa IIZb and Cc as in Fig 2

Fig 9 The Rb vs Cs diagram of K-feldspar from all zones of theNamivo granitic pegmatite Mozambique showing that the Rb andCs contents of K-feldspar increase from the WZ to the Cc WZ OIZIIZa IIZb and Cc as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 979

eschweizerbart_xxx

Little Three pegmatite dike USA (Morgan amp London1999) and the micas enriched in Li and F from theNamivo pegmatite belonging to the OIZ Furthermore ina boundary layer melt that became enriched in Li and F theKRb ratio of micas decreases strongly (Van Lichterveldeet al 2008) which was not found in these micas from theOIZ (Fig 7d) Nor can they have resulted from the crystal-lization of a late melt that would have reacted with the OIZbecause these micas are among those containing the high-est KRb values (Fig 7d)

92 The importance of feldspars micas andcolumbitendashtantalite compositions to the Namivogranitic pegmatite evolution

The trace elements Rb and Cs and the KRb and KCs ratioshave been used to show the evolution of K-feldspar inpegmatites (eg Cerny 1994 Cerny et al 2005 RodaRobles et al 2005) The Rb and Cs contents increase andthe KRb and KCs ratios of K-feldspar decrease from theWZ to the Cc (Fig 9 Table 2) reflecting the growth of K-feldspar from an increasingly fractionated melt withouthaving grown from or having been chemically modifiedby an aqueous fluid as in the Swamp pegmatite section atthe Little Three Mine USA (London et al 2012) Thecrystallization of K-feldspar from an exsolved aqueousfluid from melt will reverse the magmatic fractionation ofRb Cs KRb and KCs because Rb and especially Cs areso much more compatible in vapor that both Rb and Csremain in the fluid phase (London et al 2012) The feldsparsolvus pairs in the Namivo pegmatite record magmaticcrystallization temperatures that decrease from WZ to CcAlbite shows a decrease in the Ca Sr contents and SrCaratio from the WZ to the Cc (Fig 8 Table 2) Therefore thefeldspars and also Al-richer micas as already explainedshow fractionation in this zoned pegmatite

In general lepidolite from the Namivo pegmatite hassimilar Rb2O and Cs2O contents and KRb (wt) values tothose of lepidolite from the Rozna and Dobra Voda lepi-dolite-subtype pegmatites in the Czech Republic (Cernyet al 1995) but lower Rb2O and Cs2O contents thanlepidolite from the lepidolite-subtype pegmatite at RedCross Lake Manitoba Canada (Cerny et al 2012a) K-feldspar from the Namivo pegmatite also has lower Rb2O

Table 3 Representative electron microprobe analyses in wt of columbitendashtantalite from the Namivo granitic pegmatite Mozambique

Outer Intermediate Zone - OIZ Inner Intermediate Zone - IIZa

Core - Cc

D L L

WO3 022 059 079 113 101 351 050 007Ta2O5 5487 5123 2503 3186 2888 2519 3127 4542Nb2O5 2537 3000 5483 4635 5113 5144 4911 3686SnO2 008 015 024 049 020 026 017 012TiO2 263 161 136 254 202 145 125 016FeO 860 710 665 471 236 068 mdash mdashMnO 793 952 1099 1304 1400 1725 1748 1718Total 9970 10020 9989 10012 9960 9978 9978 9981W 0004 0011 0013 0019 0016 0057 0008 0001Ta 1065 0975 0422 0552 0495 0430 0543 0847Nb 0819 0949 1538 1336 1456 1460 1418 1143Sn 0002 0004 0006 0012 0005 0007 0004 0003Ti 0141 0085 0063 0122 0096 0068 0060 0008Fe 0513 0416 0345 0251 0124 0036 mdash mdashMn 0479 0564 0578 0704 0747 0917 0945 0998P

3023 3004 2965 2996 2939 2975 2978 3000Mn(Mn thorn Fe) 048 058 063 074 086 096 100 100Ta(Ta thorn Nb) 057 051 022 029 025 023 028 043Classification tant-(Fe) tant-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn)

D ndash darker L ndash lighter zones mdash Not detected tant-tantalite col-columbite Cation formula on the basis of 6 atoms of oxygen

Fig 10 Compositions of columbitendashtantalite from the Namivogranitic pegmatite Mozambique in the columbite quadrilateralshowing that Mn(Mn thorn Fe) of columbite-(Mn) increases from theOIZ to the Cc and the richest columbite-(Mn) in Ta(Ta thorn Nb)tantalite-(Fe) and tantalite-(Mn) only occur in the OIZ OIZ IIZaand Cc as in Fig 2

980 A M R Neiva

eschweizerbart_xxx

and Cs2O contents than K-feldspar from the lepidolite-subtype pegmatite at Red Cross Lake The Rb2O andCs2O contents of primary and late K-feldspar of this peg-matite at Red Cross Lake attained unprecedented levels(Cerny et al 2012a) The lowest KRb (wt) values ofmuscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepido-lite from the IIZb and Cc (Fig 7) and K-feldspar (KRb frac1414) from the Cc compare well with those found in theseminerals from the AC6frac143 lepidolite-subtype pegmatitefrom Greer Lake (Cerny et al 2005) and some of themost fractionated pegmatites worldwide which belong tothe petalite-subtype (eg Tanco Manitoba Cerny 2005Cerny et al 1998 Varutrask Sweden Cerny et al 2005)but muscovite lithian muscovite and lepidolite from theIIZb and Cc have lower Rb2O and Cs2O contents than thesemicas from the Tanco pegmatite (Cerny 2005a VanLichtervelde et al 2008) K-feldspar also has lower

contents of these oxides than the most evolved K-feldsparfrom the Tanco pegmatite (Cerny 2005a) The magmaticfractionation was strong from the WZ to IIZb and Cc of theNamivo lepidolite-subtype pegmatite

The compositional trend of columbite-(Mn) from the OIZto Cc of the Namivo granitic lepidolite-subtype pegmatite(Fig 10) is identical to that of columbite-group mineralsfrom the lepidolite-subtype complex granitic pegmatitesfrom the Dobra Voda in the Moldanubicum CzechRepublic (Novak amp Cerny 1998) and the HimalayaDistrict southern California (shown in Cerny et al 2004)Experimental data for the Fe-Mn pair (Linnen amp Cuney2005) suggest an increase in Fe with fractional crystalliza-tion which is not observed in nature Other phases seem tocontrol the bahavior of Fe and Mn in the melt eg thecrystallization of tourmaline causes a rapid increase of theMnFe in the melt (Van Lichtervelde et al 2006) When thecrystallization of tourmaline stopped the columbitendashtantaliteminerals showed a constant MnFe indicating that the Fe andMn contents in the melt remained constant Schorl onlyoccurs in the OIZ of the Namivo granitic pegmatite and itscrystallization cannot be responsible for the increase in theMnFe of the melt because Mn(Mn thorn Fe) of columbite-(Mn) increases progressively from the OIZ to the IIZa and Cc(Fig 10) Garnet zinnwaldite and gahnite containing Fe andMn also only occur in the OIZ and cannot also have causedthe increase of the MnFe in the melt The dominant Mnenrichment before Ta enrichment started in the columbitendash-tantalite composition from some granitic pegmatites isattributed to an increased alkali-fluoride activity at moderatemHF (Cerny et al 2004) and an increase in the activity offluorine (Martins et al 2011) Each Al-richer mica (musco-vite lithian muscovite and lsquolsquomixed formrsquorsquo) from the Namivogranitic pegmatite shows an increase in F content from theOIZ to the IIZa IIZb and Cc (Table 1) In general the Fcontent of lepidolite also increases from the IIZa to the IIZband Cc Therefore the extreme Fe-Mn fractionation beforeTa enrichment in columbite-(Mn) (Fig 10) may be due to anincrease in the activity of fluorine as a consequence offractional crystallization The increase in the Ta content ofcolumbite-(Mn) from the Namivo granitic pegmatite isattributed to fractional crystallization

The geochemical evolution of albite and K-feldsparfrom the WZ to the Cc Al-richer micas muscovite lithianmuscovite and lsquolsquomixed formrsquorsquo from the OIZ to the Cc andlepidolite from the IIZa to the Cc and columbite-(Mn) andalso beryl (Neiva amp Neiva 2005) from the OIZ to the Ccare caused by magma fractionation The pegmatite zonesare the product of primary crystallization from a volatile-rich silicate melt The pegmatite consolidated from the WZto the Cc The IIZb is one of the most evolved zones asalso suggested by the beryl composition (Neiva amp Neiva2005) and is the richest in lsquolsquomixed formrsquorsquo and lepidolite

The richest columbite-(Mn) in Ta(Ta thorn Nb) and com-positions of tantalite-(Fe) and tantalite-(Mn) only occur inthe OIZ (Fig 10a) associated with lepidolite and polythio-nite (Fig 3c) which may be due to the local depletion of Liand F in the melt which decreases the solubility of Ta andcauses Ta precipitation (Linnen 1998 Linnen amp Cuney

Fig 11 a Backscattered-electron image of a gahnite crystal with adarker zone partially surrounding a lighter zone from the OIZ of theNamivo granitic pegmatite b c Plot of gahnite compositions in theSn-Zn-Ti diagram (atomic proportions) showing a chemical distinc-tion between the lighter and darker zones OIZ as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 981

eschweizerbart_xxx

2005) At the Tanco pegmatite Ta oxides are also asso-ciated with lepidolite enriched in Li and F from the wallzone (Van Lichtervelde et al 2008)

93 Origin and evolution of the zoned graniticlepidolite-subtype pegmatite at Namivo

In general granitic pegmatites particularly those belong-ing to the rare-element class are accepted as having beenformed by the fractional crystallization of a granite melt(eg Cerny 1991a b 1992 Neiva et al 2008 2012 Roda-Robles et al 2012) But it also has been proposed thatpegmatites may be formed by partial melting of appropri-ate rock compositions (eg Nabelek et al 1992 Nabelekamp Russ-Nabelek 1992 Shearer et al 1992 Roda Robleset al 1999) The lepidolite-subtype pegmatites belong tothe LCT (lithium-cesium-tantalum) family (Cerny amp Ercit2005) They are derived by fractional crystallization of agranite magma (eg Cerny et al 2005 Neiva amp Ramos2010 Cerny et al 2012b) Experimental work by Londonet al (1989) and London (1990) using Macusani glass as astarting material equivalent to the bulk composition ofhighly fractionated rare-alkali-rich pegmatites underhighly evolved and hydrous but H2O undersaturatedmelt obtained the latest primary assemblage consisting

of an Li-rich mica thorn albite thorn quartz deposited directlyfrom the primary melt phase Other authors egZasedatelev (1974 1977) and Stewart (1978) argue thatlepidolite-bearing pegmatites are derived from direct ana-texis and Gordiyenko et al (1996) consider that they arederived from an undefined medium and the rare-elementmineralization is superimposed on preexisting barrenpegmatites

Lepidolite-subtype pegmatites may migrate a long wayfrom their parent granites because their volatile-rich highlyfluid pegmatite melts are stable at relatively low tempera-tures (eg Cerny et al 2005 Antunes et al 2013)Therefore the Namivo pegmatite is probably derived byfractional crystallization of an S-type granite magmawhich resulted from partial melting of metamorphosed juve-nile sediments containing micas that carry most of the traceelements that define the signature of the LCT pegmatites(eg Dahl et al 1993)

The two main models for the internal evolution of peg-matites that dominated for more than a century are a) thefractional crystallization of a flux-bearing granitic melt fromthe margins to the center of the pegmatite (Cameron et al1949) b) the interactions of an aqueous fluid with graniticmelt (Jahns amp Burnham 1969 Jahns 1982) The recentmodel of constitutional zone refining combines aspects ofboth models and invokes the formation of a flux-enriched

Table 4 Electron microprobe analyses in wt of zoned gahnite from the outer intermediate zone (OIZ) of the Namivo granitic pegmatiteMozambique

Darker Zone Lighter Zone

Mean s Range Mean s Range

SnO2 036 050 0ndash097 658 281 151ndash998TiO2 008 008 0ndash021 065 034 008ndash105Nb2O5 001 002 0ndash006 018 007 007ndash029Ta2O5 001 004 0ndash010 015 013 0ndash033ZnO 3998 123 3810ndash4109 3339 318 3004ndash3848FeO 367 048 331ndash442 433 065 306ndash498MnO 032 004 028ndash040 039 006 032ndash048MgO 003 004 0ndash010 ndash ndash ndashAl2O3 5507 050 5436ndash5572 5337 070 5257ndash5443SiO2 003 003 0ndash007 008 010 0ndash025Total 9956 9912n 8 8Sn 0035 0048 0ndash0095 0648 0278 0149ndash0983Ti 0015 0015 0ndash0038 0120 0064 0015ndash0195Nb ndash 0003 0ndash0006 0021 0009 0009ndash0037Ta ndash 0002 0ndash0006 0009 0009 0ndash0021Zn 7226 0182 6890ndash7382 6086 0568 5482ndash6965Fe2thornt 0752 0103 0675ndash0913 0894 0135 0628ndash1029Mn 0066 0008 0057ndash0083 0082 0013 0066ndash0101Mg 0010 0015 0ndash0037 ndash ndash ndashAl 15887 0052 15805ndash15954 15526 0170 15375ndash15853Si 0007 0008 0ndash0018 0019 0025 0ndash0062P

23998 23405Fe3thorn 0064 0230Fe2thorn 0686 0658SnZn 0005 0007 0ndash0014 0106 0052 0021ndash0179ZnFe2thornt 961 143 768ndash1093 681 190 536ndash1109

n number of analysis Cation formula based on 32 atoms of oxygen Fe2thornt total Fe2thorn estimated

982 A M R Neiva

eschweizerbart_xxx

boundary layer of silicate liquid in advance of a crystal-lization front (London 2008 London amp Morgan 2012)

Lepidolite-subtype pegmatites are generally scarce(Cerny et al 2005) particularly the zoned ones In thesymmetrically zoned lepidolite-subtype pegmatites ofRozna and Dobra Voda Czech Republic micas (Cernyet al 1995) tourmaline (Selway et al 1999) and colum-bite-group minerals (Novak amp Cerny 1998) evolve fromthe outermost zone to the innermost zone following thecrystallization sequence The same was found in tourma-line from the zoned Lastovicky Dolnı Bory and Raddovicelepidolite-subtype pegmatite dikes in the Czeck Republic(Selway et al 1999)

In general beryl (Neiva amp Neiva 2005) feldsparsmicas and columbite-(Mn) (in this paper) from theNamivo lepidolite-subtype pegmatite record the progres-sive chemical evolution of the pegmatite from the wallzone to the core These minerals were produced by crystal-lization from a silicate melt rather than an aqueous fluidphase The slow cooling of melt shown by the magmaticcrystallization temperatures of feldspars cannot explain theincrease in grain-size of minerals from the wall zone to thecore but fluxes will be necessary to promote the change oftexture particularly a flux-rich hydrosilicate liquidaccording to the experimental evidence (London 2009)The constitutional zone refining model will be the best forthis zoned pegmatite and probably for all lepidolite-sub-type pegmatites because this model also produces a higherfinal concentration of incompatible components in a smal-ler volume of rock than fractional crystallization does(Morgan amp London 1999)

The core margin at the Rozna pegmatite contains K-feld-spar and quartz and the core consists mainly of quartz but it issurrounded and penetrated by a quartz-bearing albitethorn lepi-dolite complex which contains several minerals At theDobra Voda pegmatite the center of the dike is occupiedby the lepidolite unit containing albite and other minerals(Cerny et al 1995) At the Namivo pegmatite the coremargin consists of quartz and beryl and the core containsmainly quartz and spodumene but also albite lepidolite andother minerals The last-unit assemblages of primary miner-als in most of the highly fractionated LCT pegmatites are richin albite and commonly contain lepidolite or spodumene andmost of the other rare phases These units represent the lastmost fractionated liquid that can be derived by fractionalcrystallization of a crustal melt (London 2008)

The Namivo granitic pegmatite shows a significant dis-tinction from the other zoned lepidolite-subtype pegmatitesand LCT pegmatites except the Tanco petalite-subtypepegmatite in Canada because the lepidolite richest in SiLi and F FeMg-containing polylithionite and associatedcolumbite-(Mn) with the highest Ta(Ta thorn Nb) ratio tanta-lite-(Fe) and tantalite-(Mn) only occur in the outer inter-mediate zone These minerals usually form late in theconsolidation of pegmatites The lepidolite and polylithio-nite are probably derived from the disequilibrium crystal-lization of an undercooled melt Tantalite may reflect a localdecrease in Li and F that caused Ta precipitation

This paper contributes to a better understanding of theorigin and evolution of the rare zoned lepidolite-subtypepegmatites and shows that although the pegmatite evolvedfrom the wall zone to the core it presents an unusualassociation of lepidolite polylithionite and tantalite in theouter intermediate zone

Acknowledgments Thanks are due to JM Cotelo Neivaand MB Dias for the samples and information providedand to MR Machado Leite and MF Guimaraes for theuse of the electron microprobe facilities at the LaboratorioNacional de Energia e Geologia (LNEG) PortugalFinancial support was provided by the PortugueseGovernment for the project Pest-OECTEUI00732011of the Geosciences Centre through the PortugueseFoundation for Science and Technology I would like tothank D London WB Simmons and the associated editorE Widom for their constructive reviews of this manuscriptand M Prieto for his editorial work

References

Alfonso P Melgarejo JC Yusta I Velasco F (2003)

Geochemistry of feldspars and muscovite in granitic pegmatite

from the Cap de Creus field Catalonia Spain Can Mineral 41

103ndash116

Antunes IMHR Neiva AMR Ramos JMF Silva PB

Silva MMVG Corfu F (2013) Petrogenetic links between

lepidolite-subtype aplite-pegmatite aplite veins and associated

granites at Segura (central Portugal) Chemie der Erde in press

httpdxdoiorg101016jchemer20121203

Batchelor RA amp Kinnaird JA (1984) Gahnite compositions

compared Mineral Mag 48 425ndash430

Beurlen H Da Silva MRR Thomas R Soares DR Olivier P

(2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-

element granitic pegmatite fractionation in the Borborema pro-

vince Northeastern Brazil Miner Deposita 43 207ndash228

Cameron EN Jahns RH McNair AH Page LR (1949)

Internal structure of granitic pegmatites Econ Geol

Monograph 2 115 p

Cerny P (1991a) Fertile granites of Precambrian rare-element

pegmatite fields is geochemistry controlled by tectonic setting

or source lithologies Precambrian Res 51 429ndash468

mdash (1991b) Rare-element granite pegmatites I Anatomy and inter-

nal evolution of pegmatite deposits Geoscience Canada 18

49ndash67

mdash (1992) Geochemical and petrogenetic features of mineralization

in rare-element granitic pegmatites in the light of current

research Applied Geochemistry 7 393ndash416

mdash (1994) Evolution of feldspars in granitic pegmatites in

lsquolsquoFeldspars and their Reactionsrsquorsquo I Parsons ed NATO

Advanced Study Institute Series C421 501ndash539

mdash (2005) The Tanco rare-element pegmatite deposit Manitoba

regional context internal anatomy and global comparisons in

lsquolsquoRare-element Geochemistry and Mineral Depositsrsquorsquo RL

Linnen amp IM Samson eds Geochemical Association of

Canada Short Course Notes St Catherines 17 127ndash158

Silicate and oxide minerals from a zoned granitic pegmatite 983

eschweizerbart_xxx

Cerny P amp Ercit TS (2005) The classification of granitic pegma-

tites revisited Can Mineral 43 2005ndash2026

Cerny P Meintzer RE Andersen AJ (1985) Extreme fractiona-

tion in rare-element granitic pegmatites selected examples of

data and mechanisms Can Mineral 23 381ndash421

Cerny P Goad BE Hawthorne FC Chapmann R (1986)

Fractionation trends of the Nb- and Ta-bearing oxide minerals

in the Greer Lake pegmatite granite and its pegmatite aureole

southeastern Manitoba Am Mineral 71 501ndash517

Cerny P Stanek J Novak M Baadsgaard H Rieder M

Ottolini L Kavalova M Chapman R (1995) Geochemical

and structural evolution of micas in the Rozna amp Dobra Voda

pegmatites Czech Republic Mineral Petrol 55 177ndash201

Cerny P Ercit TS Vanstone PJ (1998) Mineralogy and petrol-

ogy of the Tanco rare-element pegmatite deposit southeastern

Manitoba International Mineralogical Association 17th General

Meeting Toronto Field Guidebook B6

Cerny P Chapman R Ferreira K Smeds SA (2004)

Geochemistry of oxide minerals of Nb Ta Sn and Sb in

the Varutrask granitic pegmatite Sweden The case of an

lsquolsquoanomalousrsquorsquo columbitendashtantalite trend Am Mineral 89

505ndash518

Cerny P Masau M Goad BE Ferreira K (2005) The Greer

Lake leucogranite Manitoba and the origin of lepidolite-sub-

type granitic pegmatites Lithos 80 305ndash321

Cerny P Teertstra DK Chapman R Selway JB Hawthorne

FC Ferreira K Chackowsky LE Wang X-J Meintzer

RE (2012a) Extreme fractionation and deformation of the

leucogranite-pegmatite suite at Red Cross Lake Manitoba

Canada IV Mineralogy Can Mineral 50 1839ndash1875

Cerny P Halden NM Ferreira K Meintzer RE Brisbin WC

Chackowsky LE (2012b) Extreme fractionation and deforma-

tion of the leucogranite-pegmatite suite at Red Cross Lake

Manitoba Canada II Petrology of the leucogranites and peg-

matites Can Mineral 50 1807ndash1822

Dahl PS When DC Feldmann SG (1993) The systematics of

trace-element partitioning between coexisting muscovite and

biotite in metamorphic rocks from the Black Hills South

Dakota USA Geochim Cosmochim Acta 57 2487ndash2505

Dias MB amp Wilson WE (2000) The Alto Ligonha Pegmatites

Mozambique Mineral Record 31 459ndash497

Fleet ME (2003) Rock-Forming Minerals vol 3A Sheet silicates

micas The Geological Society London second edition chap 6

Lithium micas 651ndash690

Foord EE Cerny P Jackson LL Sherman DM Eby RK

(1995) Mineralogical and geochemical evolutions of micas

from miarolitic pegmatites of the anorogenic pikes-Peak

Batholith Colorado Mineral Petrol 55 1ndash26

Foster MD (1960) Interpretation of the composition of lithium

micas US Geol Surv Prof Paper 354-E 115ndash147

Fuhrman ML amp Lindsley DK (1988) Ternary-feldspar modeling

and thermometry Am Mineral 73 201ndash215

Gomes CL Castro P Alves C (1995) Caracterizacao das espi-

nelas zincıferas e do par ganite-nigerite no campo aplito-

pegmatıtico da Serra de Arga-Minho N de Portugal IV

Congresso Nacional de Geologia Resumos Alargados

Universidade do Porto Mem 4 629ndash633

Gordiyenko VV Ilyina AN Timochina LA Badamina EB

Stanek J (1996) Geochemical model of evolution of a pegma-

tite-forming ore-magmatic system of western Moravia Proc

Russ Mineral Soc 125 38ndash48 (in Russian)

Icenhower JP amp London D (1995) An experimental study for

element partitioning between biotite muscovite and coexisting

peraluminous granitic melt at 200 MPa (H2O) Am Mineral 80

1229ndash1251

Jahns RH (1982) Internal evolution of pegmatite bodies in lsquolsquoGranitic

Pegmatites in science and industryrsquorsquo P Cerny ed Mineralogical

Association of Canada Short Course Handbook 8 293ndash327

Jahns RH amp Burnham CW (1969) Experimental studies of

pegmatite genesis I A model for the derivation and crystal-

lization of granitic pegmatites Econ Geol 64 843ndash864

Jolliff BL Papike JJ Shearer CK (1987) Fractionation trends

in mica and tourmaline as indicators of pegmatite internal evo-

lution Bob Ingersoll pegmatite Black Hills South Dakota

USA GeochimCosmochim Acta 51 519ndash534

Kile DE amp Foord EE (1998) Micas from the Pikes Peak bath-

olith and its cogenetic granitic pegmatites Colorado optical

properties composition and correlation with pegmatite evolu-

tion Can Mineral 36 463ndash482

Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic

melts with Li and Li thorn F constraints for mineralization in rare

metal granites and pegmatites Econ Geol 93 1013ndash1025

Linnen RL amp Cuney M (2005) Granite-related rare-element

deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf

mineralization in lsquolsquoRare-element geochemistry and mineral

depositsrsquorsquo RL Linnen amp IM Samson eds Geochemical

Association of Canada Short Course Notes 17 45ndash68

London D (1990) Internal differentiation of rare-element pegmatites

a synthesis of recent research in lsquolsquoOre Bearing Granite Systems

Petrogenesis and Mineralizing Processesrsquorsquo HJ Stein amp JL

Hannah eds Geol Soc America Special Paper 246 35ndash50

mdash (2008) Pegmatites The Canadian Mineralogist Special

Publication 10 347 p

mdash (2009) The origin of primary textures in granitic pegmatites

Can Mineral 47 697ndash724

London D amp Morgan GB VI (2012) The pegmatite puzzle

Elements 8 263ndash268

London D Morgan GB VI Hervig RL (1989) Vapor-under-

saturated experiments in the system macusanite-H2O at 200

MPa and the internal differentiation of granitic pegmatites

Contrib Mineral Petrol 102 1ndash17

London D Morgan GB VI Paul KA Guttery BM (2012)

Internal evolution of miarolitic granitic pegmatites at the Little

Three mine Ramona California USA Can Mineral 50

1025ndash1054

Martins T Lima A Simmons WB Folster AU Noronha F

(2011) Geochemical fractionation of Nb-Ta oxides in Li-bear-

ing pegmatites from the Barroso-Alvao pegmatite field northern

Portugal Can Mineral 49 777ndash791

Monier G Charoy B Cuney M Ohnenstetter D Robert JL

(1987) Evolution spatiale et temporelle de la composition des

micas du granite albitique a topaze-lepidolite de Beauvoir

Geologie De La France 2ndash3 179ndash188

Monier G amp Robert JL (1986) Evolution of the miscibility gap

between muscovite and biotite solid solutions with increasing

lithium content an experimental study in the systems

K2OndashLi2OndashMgOndashAl2O3ndashSiO2ndashH2OndashHF at 600 C 2 kbar

PH2O comparison with natural lithium micas Mineral Mag

50 641ndash651

Morgan GBVI amp London D (1999) Crystallization of the little

three layered pegmatite-aplite dike Ramona District California

Contrib Mineral Petrol 136 310ndash330

984 A M R Neiva

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985

Page 14: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

Little Three pegmatite dike USA (Morgan amp London1999) and the micas enriched in Li and F from theNamivo pegmatite belonging to the OIZ Furthermore ina boundary layer melt that became enriched in Li and F theKRb ratio of micas decreases strongly (Van Lichterveldeet al 2008) which was not found in these micas from theOIZ (Fig 7d) Nor can they have resulted from the crystal-lization of a late melt that would have reacted with the OIZbecause these micas are among those containing the high-est KRb values (Fig 7d)

92 The importance of feldspars micas andcolumbitendashtantalite compositions to the Namivogranitic pegmatite evolution

The trace elements Rb and Cs and the KRb and KCs ratioshave been used to show the evolution of K-feldspar inpegmatites (eg Cerny 1994 Cerny et al 2005 RodaRobles et al 2005) The Rb and Cs contents increase andthe KRb and KCs ratios of K-feldspar decrease from theWZ to the Cc (Fig 9 Table 2) reflecting the growth of K-feldspar from an increasingly fractionated melt withouthaving grown from or having been chemically modifiedby an aqueous fluid as in the Swamp pegmatite section atthe Little Three Mine USA (London et al 2012) Thecrystallization of K-feldspar from an exsolved aqueousfluid from melt will reverse the magmatic fractionation ofRb Cs KRb and KCs because Rb and especially Cs areso much more compatible in vapor that both Rb and Csremain in the fluid phase (London et al 2012) The feldsparsolvus pairs in the Namivo pegmatite record magmaticcrystallization temperatures that decrease from WZ to CcAlbite shows a decrease in the Ca Sr contents and SrCaratio from the WZ to the Cc (Fig 8 Table 2) Therefore thefeldspars and also Al-richer micas as already explainedshow fractionation in this zoned pegmatite

In general lepidolite from the Namivo pegmatite hassimilar Rb2O and Cs2O contents and KRb (wt) values tothose of lepidolite from the Rozna and Dobra Voda lepi-dolite-subtype pegmatites in the Czech Republic (Cernyet al 1995) but lower Rb2O and Cs2O contents thanlepidolite from the lepidolite-subtype pegmatite at RedCross Lake Manitoba Canada (Cerny et al 2012a) K-feldspar from the Namivo pegmatite also has lower Rb2O

Table 3 Representative electron microprobe analyses in wt of columbitendashtantalite from the Namivo granitic pegmatite Mozambique

Outer Intermediate Zone - OIZ Inner Intermediate Zone - IIZa

Core - Cc

D L L

WO3 022 059 079 113 101 351 050 007Ta2O5 5487 5123 2503 3186 2888 2519 3127 4542Nb2O5 2537 3000 5483 4635 5113 5144 4911 3686SnO2 008 015 024 049 020 026 017 012TiO2 263 161 136 254 202 145 125 016FeO 860 710 665 471 236 068 mdash mdashMnO 793 952 1099 1304 1400 1725 1748 1718Total 9970 10020 9989 10012 9960 9978 9978 9981W 0004 0011 0013 0019 0016 0057 0008 0001Ta 1065 0975 0422 0552 0495 0430 0543 0847Nb 0819 0949 1538 1336 1456 1460 1418 1143Sn 0002 0004 0006 0012 0005 0007 0004 0003Ti 0141 0085 0063 0122 0096 0068 0060 0008Fe 0513 0416 0345 0251 0124 0036 mdash mdashMn 0479 0564 0578 0704 0747 0917 0945 0998P

3023 3004 2965 2996 2939 2975 2978 3000Mn(Mn thorn Fe) 048 058 063 074 086 096 100 100Ta(Ta thorn Nb) 057 051 022 029 025 023 028 043Classification tant-(Fe) tant-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn) col-(Mn)

D ndash darker L ndash lighter zones mdash Not detected tant-tantalite col-columbite Cation formula on the basis of 6 atoms of oxygen

Fig 10 Compositions of columbitendashtantalite from the Namivogranitic pegmatite Mozambique in the columbite quadrilateralshowing that Mn(Mn thorn Fe) of columbite-(Mn) increases from theOIZ to the Cc and the richest columbite-(Mn) in Ta(Ta thorn Nb)tantalite-(Fe) and tantalite-(Mn) only occur in the OIZ OIZ IIZaand Cc as in Fig 2

980 A M R Neiva

eschweizerbart_xxx

and Cs2O contents than K-feldspar from the lepidolite-subtype pegmatite at Red Cross Lake The Rb2O andCs2O contents of primary and late K-feldspar of this peg-matite at Red Cross Lake attained unprecedented levels(Cerny et al 2012a) The lowest KRb (wt) values ofmuscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepido-lite from the IIZb and Cc (Fig 7) and K-feldspar (KRb frac1414) from the Cc compare well with those found in theseminerals from the AC6frac143 lepidolite-subtype pegmatitefrom Greer Lake (Cerny et al 2005) and some of themost fractionated pegmatites worldwide which belong tothe petalite-subtype (eg Tanco Manitoba Cerny 2005Cerny et al 1998 Varutrask Sweden Cerny et al 2005)but muscovite lithian muscovite and lepidolite from theIIZb and Cc have lower Rb2O and Cs2O contents than thesemicas from the Tanco pegmatite (Cerny 2005a VanLichtervelde et al 2008) K-feldspar also has lower

contents of these oxides than the most evolved K-feldsparfrom the Tanco pegmatite (Cerny 2005a) The magmaticfractionation was strong from the WZ to IIZb and Cc of theNamivo lepidolite-subtype pegmatite

The compositional trend of columbite-(Mn) from the OIZto Cc of the Namivo granitic lepidolite-subtype pegmatite(Fig 10) is identical to that of columbite-group mineralsfrom the lepidolite-subtype complex granitic pegmatitesfrom the Dobra Voda in the Moldanubicum CzechRepublic (Novak amp Cerny 1998) and the HimalayaDistrict southern California (shown in Cerny et al 2004)Experimental data for the Fe-Mn pair (Linnen amp Cuney2005) suggest an increase in Fe with fractional crystalliza-tion which is not observed in nature Other phases seem tocontrol the bahavior of Fe and Mn in the melt eg thecrystallization of tourmaline causes a rapid increase of theMnFe in the melt (Van Lichtervelde et al 2006) When thecrystallization of tourmaline stopped the columbitendashtantaliteminerals showed a constant MnFe indicating that the Fe andMn contents in the melt remained constant Schorl onlyoccurs in the OIZ of the Namivo granitic pegmatite and itscrystallization cannot be responsible for the increase in theMnFe of the melt because Mn(Mn thorn Fe) of columbite-(Mn) increases progressively from the OIZ to the IIZa and Cc(Fig 10) Garnet zinnwaldite and gahnite containing Fe andMn also only occur in the OIZ and cannot also have causedthe increase of the MnFe in the melt The dominant Mnenrichment before Ta enrichment started in the columbitendash-tantalite composition from some granitic pegmatites isattributed to an increased alkali-fluoride activity at moderatemHF (Cerny et al 2004) and an increase in the activity offluorine (Martins et al 2011) Each Al-richer mica (musco-vite lithian muscovite and lsquolsquomixed formrsquorsquo) from the Namivogranitic pegmatite shows an increase in F content from theOIZ to the IIZa IIZb and Cc (Table 1) In general the Fcontent of lepidolite also increases from the IIZa to the IIZband Cc Therefore the extreme Fe-Mn fractionation beforeTa enrichment in columbite-(Mn) (Fig 10) may be due to anincrease in the activity of fluorine as a consequence offractional crystallization The increase in the Ta content ofcolumbite-(Mn) from the Namivo granitic pegmatite isattributed to fractional crystallization

The geochemical evolution of albite and K-feldsparfrom the WZ to the Cc Al-richer micas muscovite lithianmuscovite and lsquolsquomixed formrsquorsquo from the OIZ to the Cc andlepidolite from the IIZa to the Cc and columbite-(Mn) andalso beryl (Neiva amp Neiva 2005) from the OIZ to the Ccare caused by magma fractionation The pegmatite zonesare the product of primary crystallization from a volatile-rich silicate melt The pegmatite consolidated from the WZto the Cc The IIZb is one of the most evolved zones asalso suggested by the beryl composition (Neiva amp Neiva2005) and is the richest in lsquolsquomixed formrsquorsquo and lepidolite

The richest columbite-(Mn) in Ta(Ta thorn Nb) and com-positions of tantalite-(Fe) and tantalite-(Mn) only occur inthe OIZ (Fig 10a) associated with lepidolite and polythio-nite (Fig 3c) which may be due to the local depletion of Liand F in the melt which decreases the solubility of Ta andcauses Ta precipitation (Linnen 1998 Linnen amp Cuney

Fig 11 a Backscattered-electron image of a gahnite crystal with adarker zone partially surrounding a lighter zone from the OIZ of theNamivo granitic pegmatite b c Plot of gahnite compositions in theSn-Zn-Ti diagram (atomic proportions) showing a chemical distinc-tion between the lighter and darker zones OIZ as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 981

eschweizerbart_xxx

2005) At the Tanco pegmatite Ta oxides are also asso-ciated with lepidolite enriched in Li and F from the wallzone (Van Lichtervelde et al 2008)

93 Origin and evolution of the zoned graniticlepidolite-subtype pegmatite at Namivo

In general granitic pegmatites particularly those belong-ing to the rare-element class are accepted as having beenformed by the fractional crystallization of a granite melt(eg Cerny 1991a b 1992 Neiva et al 2008 2012 Roda-Robles et al 2012) But it also has been proposed thatpegmatites may be formed by partial melting of appropri-ate rock compositions (eg Nabelek et al 1992 Nabelekamp Russ-Nabelek 1992 Shearer et al 1992 Roda Robleset al 1999) The lepidolite-subtype pegmatites belong tothe LCT (lithium-cesium-tantalum) family (Cerny amp Ercit2005) They are derived by fractional crystallization of agranite magma (eg Cerny et al 2005 Neiva amp Ramos2010 Cerny et al 2012b) Experimental work by Londonet al (1989) and London (1990) using Macusani glass as astarting material equivalent to the bulk composition ofhighly fractionated rare-alkali-rich pegmatites underhighly evolved and hydrous but H2O undersaturatedmelt obtained the latest primary assemblage consisting

of an Li-rich mica thorn albite thorn quartz deposited directlyfrom the primary melt phase Other authors egZasedatelev (1974 1977) and Stewart (1978) argue thatlepidolite-bearing pegmatites are derived from direct ana-texis and Gordiyenko et al (1996) consider that they arederived from an undefined medium and the rare-elementmineralization is superimposed on preexisting barrenpegmatites

Lepidolite-subtype pegmatites may migrate a long wayfrom their parent granites because their volatile-rich highlyfluid pegmatite melts are stable at relatively low tempera-tures (eg Cerny et al 2005 Antunes et al 2013)Therefore the Namivo pegmatite is probably derived byfractional crystallization of an S-type granite magmawhich resulted from partial melting of metamorphosed juve-nile sediments containing micas that carry most of the traceelements that define the signature of the LCT pegmatites(eg Dahl et al 1993)

The two main models for the internal evolution of peg-matites that dominated for more than a century are a) thefractional crystallization of a flux-bearing granitic melt fromthe margins to the center of the pegmatite (Cameron et al1949) b) the interactions of an aqueous fluid with graniticmelt (Jahns amp Burnham 1969 Jahns 1982) The recentmodel of constitutional zone refining combines aspects ofboth models and invokes the formation of a flux-enriched

Table 4 Electron microprobe analyses in wt of zoned gahnite from the outer intermediate zone (OIZ) of the Namivo granitic pegmatiteMozambique

Darker Zone Lighter Zone

Mean s Range Mean s Range

SnO2 036 050 0ndash097 658 281 151ndash998TiO2 008 008 0ndash021 065 034 008ndash105Nb2O5 001 002 0ndash006 018 007 007ndash029Ta2O5 001 004 0ndash010 015 013 0ndash033ZnO 3998 123 3810ndash4109 3339 318 3004ndash3848FeO 367 048 331ndash442 433 065 306ndash498MnO 032 004 028ndash040 039 006 032ndash048MgO 003 004 0ndash010 ndash ndash ndashAl2O3 5507 050 5436ndash5572 5337 070 5257ndash5443SiO2 003 003 0ndash007 008 010 0ndash025Total 9956 9912n 8 8Sn 0035 0048 0ndash0095 0648 0278 0149ndash0983Ti 0015 0015 0ndash0038 0120 0064 0015ndash0195Nb ndash 0003 0ndash0006 0021 0009 0009ndash0037Ta ndash 0002 0ndash0006 0009 0009 0ndash0021Zn 7226 0182 6890ndash7382 6086 0568 5482ndash6965Fe2thornt 0752 0103 0675ndash0913 0894 0135 0628ndash1029Mn 0066 0008 0057ndash0083 0082 0013 0066ndash0101Mg 0010 0015 0ndash0037 ndash ndash ndashAl 15887 0052 15805ndash15954 15526 0170 15375ndash15853Si 0007 0008 0ndash0018 0019 0025 0ndash0062P

23998 23405Fe3thorn 0064 0230Fe2thorn 0686 0658SnZn 0005 0007 0ndash0014 0106 0052 0021ndash0179ZnFe2thornt 961 143 768ndash1093 681 190 536ndash1109

n number of analysis Cation formula based on 32 atoms of oxygen Fe2thornt total Fe2thorn estimated

982 A M R Neiva

eschweizerbart_xxx

boundary layer of silicate liquid in advance of a crystal-lization front (London 2008 London amp Morgan 2012)

Lepidolite-subtype pegmatites are generally scarce(Cerny et al 2005) particularly the zoned ones In thesymmetrically zoned lepidolite-subtype pegmatites ofRozna and Dobra Voda Czech Republic micas (Cernyet al 1995) tourmaline (Selway et al 1999) and colum-bite-group minerals (Novak amp Cerny 1998) evolve fromthe outermost zone to the innermost zone following thecrystallization sequence The same was found in tourma-line from the zoned Lastovicky Dolnı Bory and Raddovicelepidolite-subtype pegmatite dikes in the Czeck Republic(Selway et al 1999)

In general beryl (Neiva amp Neiva 2005) feldsparsmicas and columbite-(Mn) (in this paper) from theNamivo lepidolite-subtype pegmatite record the progres-sive chemical evolution of the pegmatite from the wallzone to the core These minerals were produced by crystal-lization from a silicate melt rather than an aqueous fluidphase The slow cooling of melt shown by the magmaticcrystallization temperatures of feldspars cannot explain theincrease in grain-size of minerals from the wall zone to thecore but fluxes will be necessary to promote the change oftexture particularly a flux-rich hydrosilicate liquidaccording to the experimental evidence (London 2009)The constitutional zone refining model will be the best forthis zoned pegmatite and probably for all lepidolite-sub-type pegmatites because this model also produces a higherfinal concentration of incompatible components in a smal-ler volume of rock than fractional crystallization does(Morgan amp London 1999)

The core margin at the Rozna pegmatite contains K-feld-spar and quartz and the core consists mainly of quartz but it issurrounded and penetrated by a quartz-bearing albitethorn lepi-dolite complex which contains several minerals At theDobra Voda pegmatite the center of the dike is occupiedby the lepidolite unit containing albite and other minerals(Cerny et al 1995) At the Namivo pegmatite the coremargin consists of quartz and beryl and the core containsmainly quartz and spodumene but also albite lepidolite andother minerals The last-unit assemblages of primary miner-als in most of the highly fractionated LCT pegmatites are richin albite and commonly contain lepidolite or spodumene andmost of the other rare phases These units represent the lastmost fractionated liquid that can be derived by fractionalcrystallization of a crustal melt (London 2008)

The Namivo granitic pegmatite shows a significant dis-tinction from the other zoned lepidolite-subtype pegmatitesand LCT pegmatites except the Tanco petalite-subtypepegmatite in Canada because the lepidolite richest in SiLi and F FeMg-containing polylithionite and associatedcolumbite-(Mn) with the highest Ta(Ta thorn Nb) ratio tanta-lite-(Fe) and tantalite-(Mn) only occur in the outer inter-mediate zone These minerals usually form late in theconsolidation of pegmatites The lepidolite and polylithio-nite are probably derived from the disequilibrium crystal-lization of an undercooled melt Tantalite may reflect a localdecrease in Li and F that caused Ta precipitation

This paper contributes to a better understanding of theorigin and evolution of the rare zoned lepidolite-subtypepegmatites and shows that although the pegmatite evolvedfrom the wall zone to the core it presents an unusualassociation of lepidolite polylithionite and tantalite in theouter intermediate zone

Acknowledgments Thanks are due to JM Cotelo Neivaand MB Dias for the samples and information providedand to MR Machado Leite and MF Guimaraes for theuse of the electron microprobe facilities at the LaboratorioNacional de Energia e Geologia (LNEG) PortugalFinancial support was provided by the PortugueseGovernment for the project Pest-OECTEUI00732011of the Geosciences Centre through the PortugueseFoundation for Science and Technology I would like tothank D London WB Simmons and the associated editorE Widom for their constructive reviews of this manuscriptand M Prieto for his editorial work

References

Alfonso P Melgarejo JC Yusta I Velasco F (2003)

Geochemistry of feldspars and muscovite in granitic pegmatite

from the Cap de Creus field Catalonia Spain Can Mineral 41

103ndash116

Antunes IMHR Neiva AMR Ramos JMF Silva PB

Silva MMVG Corfu F (2013) Petrogenetic links between

lepidolite-subtype aplite-pegmatite aplite veins and associated

granites at Segura (central Portugal) Chemie der Erde in press

httpdxdoiorg101016jchemer20121203

Batchelor RA amp Kinnaird JA (1984) Gahnite compositions

compared Mineral Mag 48 425ndash430

Beurlen H Da Silva MRR Thomas R Soares DR Olivier P

(2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-

element granitic pegmatite fractionation in the Borborema pro-

vince Northeastern Brazil Miner Deposita 43 207ndash228

Cameron EN Jahns RH McNair AH Page LR (1949)

Internal structure of granitic pegmatites Econ Geol

Monograph 2 115 p

Cerny P (1991a) Fertile granites of Precambrian rare-element

pegmatite fields is geochemistry controlled by tectonic setting

or source lithologies Precambrian Res 51 429ndash468

mdash (1991b) Rare-element granite pegmatites I Anatomy and inter-

nal evolution of pegmatite deposits Geoscience Canada 18

49ndash67

mdash (1992) Geochemical and petrogenetic features of mineralization

in rare-element granitic pegmatites in the light of current

research Applied Geochemistry 7 393ndash416

mdash (1994) Evolution of feldspars in granitic pegmatites in

lsquolsquoFeldspars and their Reactionsrsquorsquo I Parsons ed NATO

Advanced Study Institute Series C421 501ndash539

mdash (2005) The Tanco rare-element pegmatite deposit Manitoba

regional context internal anatomy and global comparisons in

lsquolsquoRare-element Geochemistry and Mineral Depositsrsquorsquo RL

Linnen amp IM Samson eds Geochemical Association of

Canada Short Course Notes St Catherines 17 127ndash158

Silicate and oxide minerals from a zoned granitic pegmatite 983

eschweizerbart_xxx

Cerny P amp Ercit TS (2005) The classification of granitic pegma-

tites revisited Can Mineral 43 2005ndash2026

Cerny P Meintzer RE Andersen AJ (1985) Extreme fractiona-

tion in rare-element granitic pegmatites selected examples of

data and mechanisms Can Mineral 23 381ndash421

Cerny P Goad BE Hawthorne FC Chapmann R (1986)

Fractionation trends of the Nb- and Ta-bearing oxide minerals

in the Greer Lake pegmatite granite and its pegmatite aureole

southeastern Manitoba Am Mineral 71 501ndash517

Cerny P Stanek J Novak M Baadsgaard H Rieder M

Ottolini L Kavalova M Chapman R (1995) Geochemical

and structural evolution of micas in the Rozna amp Dobra Voda

pegmatites Czech Republic Mineral Petrol 55 177ndash201

Cerny P Ercit TS Vanstone PJ (1998) Mineralogy and petrol-

ogy of the Tanco rare-element pegmatite deposit southeastern

Manitoba International Mineralogical Association 17th General

Meeting Toronto Field Guidebook B6

Cerny P Chapman R Ferreira K Smeds SA (2004)

Geochemistry of oxide minerals of Nb Ta Sn and Sb in

the Varutrask granitic pegmatite Sweden The case of an

lsquolsquoanomalousrsquorsquo columbitendashtantalite trend Am Mineral 89

505ndash518

Cerny P Masau M Goad BE Ferreira K (2005) The Greer

Lake leucogranite Manitoba and the origin of lepidolite-sub-

type granitic pegmatites Lithos 80 305ndash321

Cerny P Teertstra DK Chapman R Selway JB Hawthorne

FC Ferreira K Chackowsky LE Wang X-J Meintzer

RE (2012a) Extreme fractionation and deformation of the

leucogranite-pegmatite suite at Red Cross Lake Manitoba

Canada IV Mineralogy Can Mineral 50 1839ndash1875

Cerny P Halden NM Ferreira K Meintzer RE Brisbin WC

Chackowsky LE (2012b) Extreme fractionation and deforma-

tion of the leucogranite-pegmatite suite at Red Cross Lake

Manitoba Canada II Petrology of the leucogranites and peg-

matites Can Mineral 50 1807ndash1822

Dahl PS When DC Feldmann SG (1993) The systematics of

trace-element partitioning between coexisting muscovite and

biotite in metamorphic rocks from the Black Hills South

Dakota USA Geochim Cosmochim Acta 57 2487ndash2505

Dias MB amp Wilson WE (2000) The Alto Ligonha Pegmatites

Mozambique Mineral Record 31 459ndash497

Fleet ME (2003) Rock-Forming Minerals vol 3A Sheet silicates

micas The Geological Society London second edition chap 6

Lithium micas 651ndash690

Foord EE Cerny P Jackson LL Sherman DM Eby RK

(1995) Mineralogical and geochemical evolutions of micas

from miarolitic pegmatites of the anorogenic pikes-Peak

Batholith Colorado Mineral Petrol 55 1ndash26

Foster MD (1960) Interpretation of the composition of lithium

micas US Geol Surv Prof Paper 354-E 115ndash147

Fuhrman ML amp Lindsley DK (1988) Ternary-feldspar modeling

and thermometry Am Mineral 73 201ndash215

Gomes CL Castro P Alves C (1995) Caracterizacao das espi-

nelas zincıferas e do par ganite-nigerite no campo aplito-

pegmatıtico da Serra de Arga-Minho N de Portugal IV

Congresso Nacional de Geologia Resumos Alargados

Universidade do Porto Mem 4 629ndash633

Gordiyenko VV Ilyina AN Timochina LA Badamina EB

Stanek J (1996) Geochemical model of evolution of a pegma-

tite-forming ore-magmatic system of western Moravia Proc

Russ Mineral Soc 125 38ndash48 (in Russian)

Icenhower JP amp London D (1995) An experimental study for

element partitioning between biotite muscovite and coexisting

peraluminous granitic melt at 200 MPa (H2O) Am Mineral 80

1229ndash1251

Jahns RH (1982) Internal evolution of pegmatite bodies in lsquolsquoGranitic

Pegmatites in science and industryrsquorsquo P Cerny ed Mineralogical

Association of Canada Short Course Handbook 8 293ndash327

Jahns RH amp Burnham CW (1969) Experimental studies of

pegmatite genesis I A model for the derivation and crystal-

lization of granitic pegmatites Econ Geol 64 843ndash864

Jolliff BL Papike JJ Shearer CK (1987) Fractionation trends

in mica and tourmaline as indicators of pegmatite internal evo-

lution Bob Ingersoll pegmatite Black Hills South Dakota

USA GeochimCosmochim Acta 51 519ndash534

Kile DE amp Foord EE (1998) Micas from the Pikes Peak bath-

olith and its cogenetic granitic pegmatites Colorado optical

properties composition and correlation with pegmatite evolu-

tion Can Mineral 36 463ndash482

Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic

melts with Li and Li thorn F constraints for mineralization in rare

metal granites and pegmatites Econ Geol 93 1013ndash1025

Linnen RL amp Cuney M (2005) Granite-related rare-element

deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf

mineralization in lsquolsquoRare-element geochemistry and mineral

depositsrsquorsquo RL Linnen amp IM Samson eds Geochemical

Association of Canada Short Course Notes 17 45ndash68

London D (1990) Internal differentiation of rare-element pegmatites

a synthesis of recent research in lsquolsquoOre Bearing Granite Systems

Petrogenesis and Mineralizing Processesrsquorsquo HJ Stein amp JL

Hannah eds Geol Soc America Special Paper 246 35ndash50

mdash (2008) Pegmatites The Canadian Mineralogist Special

Publication 10 347 p

mdash (2009) The origin of primary textures in granitic pegmatites

Can Mineral 47 697ndash724

London D amp Morgan GB VI (2012) The pegmatite puzzle

Elements 8 263ndash268

London D Morgan GB VI Hervig RL (1989) Vapor-under-

saturated experiments in the system macusanite-H2O at 200

MPa and the internal differentiation of granitic pegmatites

Contrib Mineral Petrol 102 1ndash17

London D Morgan GB VI Paul KA Guttery BM (2012)

Internal evolution of miarolitic granitic pegmatites at the Little

Three mine Ramona California USA Can Mineral 50

1025ndash1054

Martins T Lima A Simmons WB Folster AU Noronha F

(2011) Geochemical fractionation of Nb-Ta oxides in Li-bear-

ing pegmatites from the Barroso-Alvao pegmatite field northern

Portugal Can Mineral 49 777ndash791

Monier G Charoy B Cuney M Ohnenstetter D Robert JL

(1987) Evolution spatiale et temporelle de la composition des

micas du granite albitique a topaze-lepidolite de Beauvoir

Geologie De La France 2ndash3 179ndash188

Monier G amp Robert JL (1986) Evolution of the miscibility gap

between muscovite and biotite solid solutions with increasing

lithium content an experimental study in the systems

K2OndashLi2OndashMgOndashAl2O3ndashSiO2ndashH2OndashHF at 600 C 2 kbar

PH2O comparison with natural lithium micas Mineral Mag

50 641ndash651

Morgan GBVI amp London D (1999) Crystallization of the little

three layered pegmatite-aplite dike Ramona District California

Contrib Mineral Petrol 136 310ndash330

984 A M R Neiva

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985

Page 15: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

and Cs2O contents than K-feldspar from the lepidolite-subtype pegmatite at Red Cross Lake The Rb2O andCs2O contents of primary and late K-feldspar of this peg-matite at Red Cross Lake attained unprecedented levels(Cerny et al 2012a) The lowest KRb (wt) values ofmuscovite lithian muscovite lsquolsquomixed formrsquorsquo and lepido-lite from the IIZb and Cc (Fig 7) and K-feldspar (KRb frac1414) from the Cc compare well with those found in theseminerals from the AC6frac143 lepidolite-subtype pegmatitefrom Greer Lake (Cerny et al 2005) and some of themost fractionated pegmatites worldwide which belong tothe petalite-subtype (eg Tanco Manitoba Cerny 2005Cerny et al 1998 Varutrask Sweden Cerny et al 2005)but muscovite lithian muscovite and lepidolite from theIIZb and Cc have lower Rb2O and Cs2O contents than thesemicas from the Tanco pegmatite (Cerny 2005a VanLichtervelde et al 2008) K-feldspar also has lower

contents of these oxides than the most evolved K-feldsparfrom the Tanco pegmatite (Cerny 2005a) The magmaticfractionation was strong from the WZ to IIZb and Cc of theNamivo lepidolite-subtype pegmatite

The compositional trend of columbite-(Mn) from the OIZto Cc of the Namivo granitic lepidolite-subtype pegmatite(Fig 10) is identical to that of columbite-group mineralsfrom the lepidolite-subtype complex granitic pegmatitesfrom the Dobra Voda in the Moldanubicum CzechRepublic (Novak amp Cerny 1998) and the HimalayaDistrict southern California (shown in Cerny et al 2004)Experimental data for the Fe-Mn pair (Linnen amp Cuney2005) suggest an increase in Fe with fractional crystalliza-tion which is not observed in nature Other phases seem tocontrol the bahavior of Fe and Mn in the melt eg thecrystallization of tourmaline causes a rapid increase of theMnFe in the melt (Van Lichtervelde et al 2006) When thecrystallization of tourmaline stopped the columbitendashtantaliteminerals showed a constant MnFe indicating that the Fe andMn contents in the melt remained constant Schorl onlyoccurs in the OIZ of the Namivo granitic pegmatite and itscrystallization cannot be responsible for the increase in theMnFe of the melt because Mn(Mn thorn Fe) of columbite-(Mn) increases progressively from the OIZ to the IIZa and Cc(Fig 10) Garnet zinnwaldite and gahnite containing Fe andMn also only occur in the OIZ and cannot also have causedthe increase of the MnFe in the melt The dominant Mnenrichment before Ta enrichment started in the columbitendash-tantalite composition from some granitic pegmatites isattributed to an increased alkali-fluoride activity at moderatemHF (Cerny et al 2004) and an increase in the activity offluorine (Martins et al 2011) Each Al-richer mica (musco-vite lithian muscovite and lsquolsquomixed formrsquorsquo) from the Namivogranitic pegmatite shows an increase in F content from theOIZ to the IIZa IIZb and Cc (Table 1) In general the Fcontent of lepidolite also increases from the IIZa to the IIZband Cc Therefore the extreme Fe-Mn fractionation beforeTa enrichment in columbite-(Mn) (Fig 10) may be due to anincrease in the activity of fluorine as a consequence offractional crystallization The increase in the Ta content ofcolumbite-(Mn) from the Namivo granitic pegmatite isattributed to fractional crystallization

The geochemical evolution of albite and K-feldsparfrom the WZ to the Cc Al-richer micas muscovite lithianmuscovite and lsquolsquomixed formrsquorsquo from the OIZ to the Cc andlepidolite from the IIZa to the Cc and columbite-(Mn) andalso beryl (Neiva amp Neiva 2005) from the OIZ to the Ccare caused by magma fractionation The pegmatite zonesare the product of primary crystallization from a volatile-rich silicate melt The pegmatite consolidated from the WZto the Cc The IIZb is one of the most evolved zones asalso suggested by the beryl composition (Neiva amp Neiva2005) and is the richest in lsquolsquomixed formrsquorsquo and lepidolite

The richest columbite-(Mn) in Ta(Ta thorn Nb) and com-positions of tantalite-(Fe) and tantalite-(Mn) only occur inthe OIZ (Fig 10a) associated with lepidolite and polythio-nite (Fig 3c) which may be due to the local depletion of Liand F in the melt which decreases the solubility of Ta andcauses Ta precipitation (Linnen 1998 Linnen amp Cuney

Fig 11 a Backscattered-electron image of a gahnite crystal with adarker zone partially surrounding a lighter zone from the OIZ of theNamivo granitic pegmatite b c Plot of gahnite compositions in theSn-Zn-Ti diagram (atomic proportions) showing a chemical distinc-tion between the lighter and darker zones OIZ as in Fig 2

Silicate and oxide minerals from a zoned granitic pegmatite 981

eschweizerbart_xxx

2005) At the Tanco pegmatite Ta oxides are also asso-ciated with lepidolite enriched in Li and F from the wallzone (Van Lichtervelde et al 2008)

93 Origin and evolution of the zoned graniticlepidolite-subtype pegmatite at Namivo

In general granitic pegmatites particularly those belong-ing to the rare-element class are accepted as having beenformed by the fractional crystallization of a granite melt(eg Cerny 1991a b 1992 Neiva et al 2008 2012 Roda-Robles et al 2012) But it also has been proposed thatpegmatites may be formed by partial melting of appropri-ate rock compositions (eg Nabelek et al 1992 Nabelekamp Russ-Nabelek 1992 Shearer et al 1992 Roda Robleset al 1999) The lepidolite-subtype pegmatites belong tothe LCT (lithium-cesium-tantalum) family (Cerny amp Ercit2005) They are derived by fractional crystallization of agranite magma (eg Cerny et al 2005 Neiva amp Ramos2010 Cerny et al 2012b) Experimental work by Londonet al (1989) and London (1990) using Macusani glass as astarting material equivalent to the bulk composition ofhighly fractionated rare-alkali-rich pegmatites underhighly evolved and hydrous but H2O undersaturatedmelt obtained the latest primary assemblage consisting

of an Li-rich mica thorn albite thorn quartz deposited directlyfrom the primary melt phase Other authors egZasedatelev (1974 1977) and Stewart (1978) argue thatlepidolite-bearing pegmatites are derived from direct ana-texis and Gordiyenko et al (1996) consider that they arederived from an undefined medium and the rare-elementmineralization is superimposed on preexisting barrenpegmatites

Lepidolite-subtype pegmatites may migrate a long wayfrom their parent granites because their volatile-rich highlyfluid pegmatite melts are stable at relatively low tempera-tures (eg Cerny et al 2005 Antunes et al 2013)Therefore the Namivo pegmatite is probably derived byfractional crystallization of an S-type granite magmawhich resulted from partial melting of metamorphosed juve-nile sediments containing micas that carry most of the traceelements that define the signature of the LCT pegmatites(eg Dahl et al 1993)

The two main models for the internal evolution of peg-matites that dominated for more than a century are a) thefractional crystallization of a flux-bearing granitic melt fromthe margins to the center of the pegmatite (Cameron et al1949) b) the interactions of an aqueous fluid with graniticmelt (Jahns amp Burnham 1969 Jahns 1982) The recentmodel of constitutional zone refining combines aspects ofboth models and invokes the formation of a flux-enriched

Table 4 Electron microprobe analyses in wt of zoned gahnite from the outer intermediate zone (OIZ) of the Namivo granitic pegmatiteMozambique

Darker Zone Lighter Zone

Mean s Range Mean s Range

SnO2 036 050 0ndash097 658 281 151ndash998TiO2 008 008 0ndash021 065 034 008ndash105Nb2O5 001 002 0ndash006 018 007 007ndash029Ta2O5 001 004 0ndash010 015 013 0ndash033ZnO 3998 123 3810ndash4109 3339 318 3004ndash3848FeO 367 048 331ndash442 433 065 306ndash498MnO 032 004 028ndash040 039 006 032ndash048MgO 003 004 0ndash010 ndash ndash ndashAl2O3 5507 050 5436ndash5572 5337 070 5257ndash5443SiO2 003 003 0ndash007 008 010 0ndash025Total 9956 9912n 8 8Sn 0035 0048 0ndash0095 0648 0278 0149ndash0983Ti 0015 0015 0ndash0038 0120 0064 0015ndash0195Nb ndash 0003 0ndash0006 0021 0009 0009ndash0037Ta ndash 0002 0ndash0006 0009 0009 0ndash0021Zn 7226 0182 6890ndash7382 6086 0568 5482ndash6965Fe2thornt 0752 0103 0675ndash0913 0894 0135 0628ndash1029Mn 0066 0008 0057ndash0083 0082 0013 0066ndash0101Mg 0010 0015 0ndash0037 ndash ndash ndashAl 15887 0052 15805ndash15954 15526 0170 15375ndash15853Si 0007 0008 0ndash0018 0019 0025 0ndash0062P

23998 23405Fe3thorn 0064 0230Fe2thorn 0686 0658SnZn 0005 0007 0ndash0014 0106 0052 0021ndash0179ZnFe2thornt 961 143 768ndash1093 681 190 536ndash1109

n number of analysis Cation formula based on 32 atoms of oxygen Fe2thornt total Fe2thorn estimated

982 A M R Neiva

eschweizerbart_xxx

boundary layer of silicate liquid in advance of a crystal-lization front (London 2008 London amp Morgan 2012)

Lepidolite-subtype pegmatites are generally scarce(Cerny et al 2005) particularly the zoned ones In thesymmetrically zoned lepidolite-subtype pegmatites ofRozna and Dobra Voda Czech Republic micas (Cernyet al 1995) tourmaline (Selway et al 1999) and colum-bite-group minerals (Novak amp Cerny 1998) evolve fromthe outermost zone to the innermost zone following thecrystallization sequence The same was found in tourma-line from the zoned Lastovicky Dolnı Bory and Raddovicelepidolite-subtype pegmatite dikes in the Czeck Republic(Selway et al 1999)

In general beryl (Neiva amp Neiva 2005) feldsparsmicas and columbite-(Mn) (in this paper) from theNamivo lepidolite-subtype pegmatite record the progres-sive chemical evolution of the pegmatite from the wallzone to the core These minerals were produced by crystal-lization from a silicate melt rather than an aqueous fluidphase The slow cooling of melt shown by the magmaticcrystallization temperatures of feldspars cannot explain theincrease in grain-size of minerals from the wall zone to thecore but fluxes will be necessary to promote the change oftexture particularly a flux-rich hydrosilicate liquidaccording to the experimental evidence (London 2009)The constitutional zone refining model will be the best forthis zoned pegmatite and probably for all lepidolite-sub-type pegmatites because this model also produces a higherfinal concentration of incompatible components in a smal-ler volume of rock than fractional crystallization does(Morgan amp London 1999)

The core margin at the Rozna pegmatite contains K-feld-spar and quartz and the core consists mainly of quartz but it issurrounded and penetrated by a quartz-bearing albitethorn lepi-dolite complex which contains several minerals At theDobra Voda pegmatite the center of the dike is occupiedby the lepidolite unit containing albite and other minerals(Cerny et al 1995) At the Namivo pegmatite the coremargin consists of quartz and beryl and the core containsmainly quartz and spodumene but also albite lepidolite andother minerals The last-unit assemblages of primary miner-als in most of the highly fractionated LCT pegmatites are richin albite and commonly contain lepidolite or spodumene andmost of the other rare phases These units represent the lastmost fractionated liquid that can be derived by fractionalcrystallization of a crustal melt (London 2008)

The Namivo granitic pegmatite shows a significant dis-tinction from the other zoned lepidolite-subtype pegmatitesand LCT pegmatites except the Tanco petalite-subtypepegmatite in Canada because the lepidolite richest in SiLi and F FeMg-containing polylithionite and associatedcolumbite-(Mn) with the highest Ta(Ta thorn Nb) ratio tanta-lite-(Fe) and tantalite-(Mn) only occur in the outer inter-mediate zone These minerals usually form late in theconsolidation of pegmatites The lepidolite and polylithio-nite are probably derived from the disequilibrium crystal-lization of an undercooled melt Tantalite may reflect a localdecrease in Li and F that caused Ta precipitation

This paper contributes to a better understanding of theorigin and evolution of the rare zoned lepidolite-subtypepegmatites and shows that although the pegmatite evolvedfrom the wall zone to the core it presents an unusualassociation of lepidolite polylithionite and tantalite in theouter intermediate zone

Acknowledgments Thanks are due to JM Cotelo Neivaand MB Dias for the samples and information providedand to MR Machado Leite and MF Guimaraes for theuse of the electron microprobe facilities at the LaboratorioNacional de Energia e Geologia (LNEG) PortugalFinancial support was provided by the PortugueseGovernment for the project Pest-OECTEUI00732011of the Geosciences Centre through the PortugueseFoundation for Science and Technology I would like tothank D London WB Simmons and the associated editorE Widom for their constructive reviews of this manuscriptand M Prieto for his editorial work

References

Alfonso P Melgarejo JC Yusta I Velasco F (2003)

Geochemistry of feldspars and muscovite in granitic pegmatite

from the Cap de Creus field Catalonia Spain Can Mineral 41

103ndash116

Antunes IMHR Neiva AMR Ramos JMF Silva PB

Silva MMVG Corfu F (2013) Petrogenetic links between

lepidolite-subtype aplite-pegmatite aplite veins and associated

granites at Segura (central Portugal) Chemie der Erde in press

httpdxdoiorg101016jchemer20121203

Batchelor RA amp Kinnaird JA (1984) Gahnite compositions

compared Mineral Mag 48 425ndash430

Beurlen H Da Silva MRR Thomas R Soares DR Olivier P

(2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-

element granitic pegmatite fractionation in the Borborema pro-

vince Northeastern Brazil Miner Deposita 43 207ndash228

Cameron EN Jahns RH McNair AH Page LR (1949)

Internal structure of granitic pegmatites Econ Geol

Monograph 2 115 p

Cerny P (1991a) Fertile granites of Precambrian rare-element

pegmatite fields is geochemistry controlled by tectonic setting

or source lithologies Precambrian Res 51 429ndash468

mdash (1991b) Rare-element granite pegmatites I Anatomy and inter-

nal evolution of pegmatite deposits Geoscience Canada 18

49ndash67

mdash (1992) Geochemical and petrogenetic features of mineralization

in rare-element granitic pegmatites in the light of current

research Applied Geochemistry 7 393ndash416

mdash (1994) Evolution of feldspars in granitic pegmatites in

lsquolsquoFeldspars and their Reactionsrsquorsquo I Parsons ed NATO

Advanced Study Institute Series C421 501ndash539

mdash (2005) The Tanco rare-element pegmatite deposit Manitoba

regional context internal anatomy and global comparisons in

lsquolsquoRare-element Geochemistry and Mineral Depositsrsquorsquo RL

Linnen amp IM Samson eds Geochemical Association of

Canada Short Course Notes St Catherines 17 127ndash158

Silicate and oxide minerals from a zoned granitic pegmatite 983

eschweizerbart_xxx

Cerny P amp Ercit TS (2005) The classification of granitic pegma-

tites revisited Can Mineral 43 2005ndash2026

Cerny P Meintzer RE Andersen AJ (1985) Extreme fractiona-

tion in rare-element granitic pegmatites selected examples of

data and mechanisms Can Mineral 23 381ndash421

Cerny P Goad BE Hawthorne FC Chapmann R (1986)

Fractionation trends of the Nb- and Ta-bearing oxide minerals

in the Greer Lake pegmatite granite and its pegmatite aureole

southeastern Manitoba Am Mineral 71 501ndash517

Cerny P Stanek J Novak M Baadsgaard H Rieder M

Ottolini L Kavalova M Chapman R (1995) Geochemical

and structural evolution of micas in the Rozna amp Dobra Voda

pegmatites Czech Republic Mineral Petrol 55 177ndash201

Cerny P Ercit TS Vanstone PJ (1998) Mineralogy and petrol-

ogy of the Tanco rare-element pegmatite deposit southeastern

Manitoba International Mineralogical Association 17th General

Meeting Toronto Field Guidebook B6

Cerny P Chapman R Ferreira K Smeds SA (2004)

Geochemistry of oxide minerals of Nb Ta Sn and Sb in

the Varutrask granitic pegmatite Sweden The case of an

lsquolsquoanomalousrsquorsquo columbitendashtantalite trend Am Mineral 89

505ndash518

Cerny P Masau M Goad BE Ferreira K (2005) The Greer

Lake leucogranite Manitoba and the origin of lepidolite-sub-

type granitic pegmatites Lithos 80 305ndash321

Cerny P Teertstra DK Chapman R Selway JB Hawthorne

FC Ferreira K Chackowsky LE Wang X-J Meintzer

RE (2012a) Extreme fractionation and deformation of the

leucogranite-pegmatite suite at Red Cross Lake Manitoba

Canada IV Mineralogy Can Mineral 50 1839ndash1875

Cerny P Halden NM Ferreira K Meintzer RE Brisbin WC

Chackowsky LE (2012b) Extreme fractionation and deforma-

tion of the leucogranite-pegmatite suite at Red Cross Lake

Manitoba Canada II Petrology of the leucogranites and peg-

matites Can Mineral 50 1807ndash1822

Dahl PS When DC Feldmann SG (1993) The systematics of

trace-element partitioning between coexisting muscovite and

biotite in metamorphic rocks from the Black Hills South

Dakota USA Geochim Cosmochim Acta 57 2487ndash2505

Dias MB amp Wilson WE (2000) The Alto Ligonha Pegmatites

Mozambique Mineral Record 31 459ndash497

Fleet ME (2003) Rock-Forming Minerals vol 3A Sheet silicates

micas The Geological Society London second edition chap 6

Lithium micas 651ndash690

Foord EE Cerny P Jackson LL Sherman DM Eby RK

(1995) Mineralogical and geochemical evolutions of micas

from miarolitic pegmatites of the anorogenic pikes-Peak

Batholith Colorado Mineral Petrol 55 1ndash26

Foster MD (1960) Interpretation of the composition of lithium

micas US Geol Surv Prof Paper 354-E 115ndash147

Fuhrman ML amp Lindsley DK (1988) Ternary-feldspar modeling

and thermometry Am Mineral 73 201ndash215

Gomes CL Castro P Alves C (1995) Caracterizacao das espi-

nelas zincıferas e do par ganite-nigerite no campo aplito-

pegmatıtico da Serra de Arga-Minho N de Portugal IV

Congresso Nacional de Geologia Resumos Alargados

Universidade do Porto Mem 4 629ndash633

Gordiyenko VV Ilyina AN Timochina LA Badamina EB

Stanek J (1996) Geochemical model of evolution of a pegma-

tite-forming ore-magmatic system of western Moravia Proc

Russ Mineral Soc 125 38ndash48 (in Russian)

Icenhower JP amp London D (1995) An experimental study for

element partitioning between biotite muscovite and coexisting

peraluminous granitic melt at 200 MPa (H2O) Am Mineral 80

1229ndash1251

Jahns RH (1982) Internal evolution of pegmatite bodies in lsquolsquoGranitic

Pegmatites in science and industryrsquorsquo P Cerny ed Mineralogical

Association of Canada Short Course Handbook 8 293ndash327

Jahns RH amp Burnham CW (1969) Experimental studies of

pegmatite genesis I A model for the derivation and crystal-

lization of granitic pegmatites Econ Geol 64 843ndash864

Jolliff BL Papike JJ Shearer CK (1987) Fractionation trends

in mica and tourmaline as indicators of pegmatite internal evo-

lution Bob Ingersoll pegmatite Black Hills South Dakota

USA GeochimCosmochim Acta 51 519ndash534

Kile DE amp Foord EE (1998) Micas from the Pikes Peak bath-

olith and its cogenetic granitic pegmatites Colorado optical

properties composition and correlation with pegmatite evolu-

tion Can Mineral 36 463ndash482

Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic

melts with Li and Li thorn F constraints for mineralization in rare

metal granites and pegmatites Econ Geol 93 1013ndash1025

Linnen RL amp Cuney M (2005) Granite-related rare-element

deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf

mineralization in lsquolsquoRare-element geochemistry and mineral

depositsrsquorsquo RL Linnen amp IM Samson eds Geochemical

Association of Canada Short Course Notes 17 45ndash68

London D (1990) Internal differentiation of rare-element pegmatites

a synthesis of recent research in lsquolsquoOre Bearing Granite Systems

Petrogenesis and Mineralizing Processesrsquorsquo HJ Stein amp JL

Hannah eds Geol Soc America Special Paper 246 35ndash50

mdash (2008) Pegmatites The Canadian Mineralogist Special

Publication 10 347 p

mdash (2009) The origin of primary textures in granitic pegmatites

Can Mineral 47 697ndash724

London D amp Morgan GB VI (2012) The pegmatite puzzle

Elements 8 263ndash268

London D Morgan GB VI Hervig RL (1989) Vapor-under-

saturated experiments in the system macusanite-H2O at 200

MPa and the internal differentiation of granitic pegmatites

Contrib Mineral Petrol 102 1ndash17

London D Morgan GB VI Paul KA Guttery BM (2012)

Internal evolution of miarolitic granitic pegmatites at the Little

Three mine Ramona California USA Can Mineral 50

1025ndash1054

Martins T Lima A Simmons WB Folster AU Noronha F

(2011) Geochemical fractionation of Nb-Ta oxides in Li-bear-

ing pegmatites from the Barroso-Alvao pegmatite field northern

Portugal Can Mineral 49 777ndash791

Monier G Charoy B Cuney M Ohnenstetter D Robert JL

(1987) Evolution spatiale et temporelle de la composition des

micas du granite albitique a topaze-lepidolite de Beauvoir

Geologie De La France 2ndash3 179ndash188

Monier G amp Robert JL (1986) Evolution of the miscibility gap

between muscovite and biotite solid solutions with increasing

lithium content an experimental study in the systems

K2OndashLi2OndashMgOndashAl2O3ndashSiO2ndashH2OndashHF at 600 C 2 kbar

PH2O comparison with natural lithium micas Mineral Mag

50 641ndash651

Morgan GBVI amp London D (1999) Crystallization of the little

three layered pegmatite-aplite dike Ramona District California

Contrib Mineral Petrol 136 310ndash330

984 A M R Neiva

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985

Page 16: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

2005) At the Tanco pegmatite Ta oxides are also asso-ciated with lepidolite enriched in Li and F from the wallzone (Van Lichtervelde et al 2008)

93 Origin and evolution of the zoned graniticlepidolite-subtype pegmatite at Namivo

In general granitic pegmatites particularly those belong-ing to the rare-element class are accepted as having beenformed by the fractional crystallization of a granite melt(eg Cerny 1991a b 1992 Neiva et al 2008 2012 Roda-Robles et al 2012) But it also has been proposed thatpegmatites may be formed by partial melting of appropri-ate rock compositions (eg Nabelek et al 1992 Nabelekamp Russ-Nabelek 1992 Shearer et al 1992 Roda Robleset al 1999) The lepidolite-subtype pegmatites belong tothe LCT (lithium-cesium-tantalum) family (Cerny amp Ercit2005) They are derived by fractional crystallization of agranite magma (eg Cerny et al 2005 Neiva amp Ramos2010 Cerny et al 2012b) Experimental work by Londonet al (1989) and London (1990) using Macusani glass as astarting material equivalent to the bulk composition ofhighly fractionated rare-alkali-rich pegmatites underhighly evolved and hydrous but H2O undersaturatedmelt obtained the latest primary assemblage consisting

of an Li-rich mica thorn albite thorn quartz deposited directlyfrom the primary melt phase Other authors egZasedatelev (1974 1977) and Stewart (1978) argue thatlepidolite-bearing pegmatites are derived from direct ana-texis and Gordiyenko et al (1996) consider that they arederived from an undefined medium and the rare-elementmineralization is superimposed on preexisting barrenpegmatites

Lepidolite-subtype pegmatites may migrate a long wayfrom their parent granites because their volatile-rich highlyfluid pegmatite melts are stable at relatively low tempera-tures (eg Cerny et al 2005 Antunes et al 2013)Therefore the Namivo pegmatite is probably derived byfractional crystallization of an S-type granite magmawhich resulted from partial melting of metamorphosed juve-nile sediments containing micas that carry most of the traceelements that define the signature of the LCT pegmatites(eg Dahl et al 1993)

The two main models for the internal evolution of peg-matites that dominated for more than a century are a) thefractional crystallization of a flux-bearing granitic melt fromthe margins to the center of the pegmatite (Cameron et al1949) b) the interactions of an aqueous fluid with graniticmelt (Jahns amp Burnham 1969 Jahns 1982) The recentmodel of constitutional zone refining combines aspects ofboth models and invokes the formation of a flux-enriched

Table 4 Electron microprobe analyses in wt of zoned gahnite from the outer intermediate zone (OIZ) of the Namivo granitic pegmatiteMozambique

Darker Zone Lighter Zone

Mean s Range Mean s Range

SnO2 036 050 0ndash097 658 281 151ndash998TiO2 008 008 0ndash021 065 034 008ndash105Nb2O5 001 002 0ndash006 018 007 007ndash029Ta2O5 001 004 0ndash010 015 013 0ndash033ZnO 3998 123 3810ndash4109 3339 318 3004ndash3848FeO 367 048 331ndash442 433 065 306ndash498MnO 032 004 028ndash040 039 006 032ndash048MgO 003 004 0ndash010 ndash ndash ndashAl2O3 5507 050 5436ndash5572 5337 070 5257ndash5443SiO2 003 003 0ndash007 008 010 0ndash025Total 9956 9912n 8 8Sn 0035 0048 0ndash0095 0648 0278 0149ndash0983Ti 0015 0015 0ndash0038 0120 0064 0015ndash0195Nb ndash 0003 0ndash0006 0021 0009 0009ndash0037Ta ndash 0002 0ndash0006 0009 0009 0ndash0021Zn 7226 0182 6890ndash7382 6086 0568 5482ndash6965Fe2thornt 0752 0103 0675ndash0913 0894 0135 0628ndash1029Mn 0066 0008 0057ndash0083 0082 0013 0066ndash0101Mg 0010 0015 0ndash0037 ndash ndash ndashAl 15887 0052 15805ndash15954 15526 0170 15375ndash15853Si 0007 0008 0ndash0018 0019 0025 0ndash0062P

23998 23405Fe3thorn 0064 0230Fe2thorn 0686 0658SnZn 0005 0007 0ndash0014 0106 0052 0021ndash0179ZnFe2thornt 961 143 768ndash1093 681 190 536ndash1109

n number of analysis Cation formula based on 32 atoms of oxygen Fe2thornt total Fe2thorn estimated

982 A M R Neiva

eschweizerbart_xxx

boundary layer of silicate liquid in advance of a crystal-lization front (London 2008 London amp Morgan 2012)

Lepidolite-subtype pegmatites are generally scarce(Cerny et al 2005) particularly the zoned ones In thesymmetrically zoned lepidolite-subtype pegmatites ofRozna and Dobra Voda Czech Republic micas (Cernyet al 1995) tourmaline (Selway et al 1999) and colum-bite-group minerals (Novak amp Cerny 1998) evolve fromthe outermost zone to the innermost zone following thecrystallization sequence The same was found in tourma-line from the zoned Lastovicky Dolnı Bory and Raddovicelepidolite-subtype pegmatite dikes in the Czeck Republic(Selway et al 1999)

In general beryl (Neiva amp Neiva 2005) feldsparsmicas and columbite-(Mn) (in this paper) from theNamivo lepidolite-subtype pegmatite record the progres-sive chemical evolution of the pegmatite from the wallzone to the core These minerals were produced by crystal-lization from a silicate melt rather than an aqueous fluidphase The slow cooling of melt shown by the magmaticcrystallization temperatures of feldspars cannot explain theincrease in grain-size of minerals from the wall zone to thecore but fluxes will be necessary to promote the change oftexture particularly a flux-rich hydrosilicate liquidaccording to the experimental evidence (London 2009)The constitutional zone refining model will be the best forthis zoned pegmatite and probably for all lepidolite-sub-type pegmatites because this model also produces a higherfinal concentration of incompatible components in a smal-ler volume of rock than fractional crystallization does(Morgan amp London 1999)

The core margin at the Rozna pegmatite contains K-feld-spar and quartz and the core consists mainly of quartz but it issurrounded and penetrated by a quartz-bearing albitethorn lepi-dolite complex which contains several minerals At theDobra Voda pegmatite the center of the dike is occupiedby the lepidolite unit containing albite and other minerals(Cerny et al 1995) At the Namivo pegmatite the coremargin consists of quartz and beryl and the core containsmainly quartz and spodumene but also albite lepidolite andother minerals The last-unit assemblages of primary miner-als in most of the highly fractionated LCT pegmatites are richin albite and commonly contain lepidolite or spodumene andmost of the other rare phases These units represent the lastmost fractionated liquid that can be derived by fractionalcrystallization of a crustal melt (London 2008)

The Namivo granitic pegmatite shows a significant dis-tinction from the other zoned lepidolite-subtype pegmatitesand LCT pegmatites except the Tanco petalite-subtypepegmatite in Canada because the lepidolite richest in SiLi and F FeMg-containing polylithionite and associatedcolumbite-(Mn) with the highest Ta(Ta thorn Nb) ratio tanta-lite-(Fe) and tantalite-(Mn) only occur in the outer inter-mediate zone These minerals usually form late in theconsolidation of pegmatites The lepidolite and polylithio-nite are probably derived from the disequilibrium crystal-lization of an undercooled melt Tantalite may reflect a localdecrease in Li and F that caused Ta precipitation

This paper contributes to a better understanding of theorigin and evolution of the rare zoned lepidolite-subtypepegmatites and shows that although the pegmatite evolvedfrom the wall zone to the core it presents an unusualassociation of lepidolite polylithionite and tantalite in theouter intermediate zone

Acknowledgments Thanks are due to JM Cotelo Neivaand MB Dias for the samples and information providedand to MR Machado Leite and MF Guimaraes for theuse of the electron microprobe facilities at the LaboratorioNacional de Energia e Geologia (LNEG) PortugalFinancial support was provided by the PortugueseGovernment for the project Pest-OECTEUI00732011of the Geosciences Centre through the PortugueseFoundation for Science and Technology I would like tothank D London WB Simmons and the associated editorE Widom for their constructive reviews of this manuscriptand M Prieto for his editorial work

References

Alfonso P Melgarejo JC Yusta I Velasco F (2003)

Geochemistry of feldspars and muscovite in granitic pegmatite

from the Cap de Creus field Catalonia Spain Can Mineral 41

103ndash116

Antunes IMHR Neiva AMR Ramos JMF Silva PB

Silva MMVG Corfu F (2013) Petrogenetic links between

lepidolite-subtype aplite-pegmatite aplite veins and associated

granites at Segura (central Portugal) Chemie der Erde in press

httpdxdoiorg101016jchemer20121203

Batchelor RA amp Kinnaird JA (1984) Gahnite compositions

compared Mineral Mag 48 425ndash430

Beurlen H Da Silva MRR Thomas R Soares DR Olivier P

(2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-

element granitic pegmatite fractionation in the Borborema pro-

vince Northeastern Brazil Miner Deposita 43 207ndash228

Cameron EN Jahns RH McNair AH Page LR (1949)

Internal structure of granitic pegmatites Econ Geol

Monograph 2 115 p

Cerny P (1991a) Fertile granites of Precambrian rare-element

pegmatite fields is geochemistry controlled by tectonic setting

or source lithologies Precambrian Res 51 429ndash468

mdash (1991b) Rare-element granite pegmatites I Anatomy and inter-

nal evolution of pegmatite deposits Geoscience Canada 18

49ndash67

mdash (1992) Geochemical and petrogenetic features of mineralization

in rare-element granitic pegmatites in the light of current

research Applied Geochemistry 7 393ndash416

mdash (1994) Evolution of feldspars in granitic pegmatites in

lsquolsquoFeldspars and their Reactionsrsquorsquo I Parsons ed NATO

Advanced Study Institute Series C421 501ndash539

mdash (2005) The Tanco rare-element pegmatite deposit Manitoba

regional context internal anatomy and global comparisons in

lsquolsquoRare-element Geochemistry and Mineral Depositsrsquorsquo RL

Linnen amp IM Samson eds Geochemical Association of

Canada Short Course Notes St Catherines 17 127ndash158

Silicate and oxide minerals from a zoned granitic pegmatite 983

eschweizerbart_xxx

Cerny P amp Ercit TS (2005) The classification of granitic pegma-

tites revisited Can Mineral 43 2005ndash2026

Cerny P Meintzer RE Andersen AJ (1985) Extreme fractiona-

tion in rare-element granitic pegmatites selected examples of

data and mechanisms Can Mineral 23 381ndash421

Cerny P Goad BE Hawthorne FC Chapmann R (1986)

Fractionation trends of the Nb- and Ta-bearing oxide minerals

in the Greer Lake pegmatite granite and its pegmatite aureole

southeastern Manitoba Am Mineral 71 501ndash517

Cerny P Stanek J Novak M Baadsgaard H Rieder M

Ottolini L Kavalova M Chapman R (1995) Geochemical

and structural evolution of micas in the Rozna amp Dobra Voda

pegmatites Czech Republic Mineral Petrol 55 177ndash201

Cerny P Ercit TS Vanstone PJ (1998) Mineralogy and petrol-

ogy of the Tanco rare-element pegmatite deposit southeastern

Manitoba International Mineralogical Association 17th General

Meeting Toronto Field Guidebook B6

Cerny P Chapman R Ferreira K Smeds SA (2004)

Geochemistry of oxide minerals of Nb Ta Sn and Sb in

the Varutrask granitic pegmatite Sweden The case of an

lsquolsquoanomalousrsquorsquo columbitendashtantalite trend Am Mineral 89

505ndash518

Cerny P Masau M Goad BE Ferreira K (2005) The Greer

Lake leucogranite Manitoba and the origin of lepidolite-sub-

type granitic pegmatites Lithos 80 305ndash321

Cerny P Teertstra DK Chapman R Selway JB Hawthorne

FC Ferreira K Chackowsky LE Wang X-J Meintzer

RE (2012a) Extreme fractionation and deformation of the

leucogranite-pegmatite suite at Red Cross Lake Manitoba

Canada IV Mineralogy Can Mineral 50 1839ndash1875

Cerny P Halden NM Ferreira K Meintzer RE Brisbin WC

Chackowsky LE (2012b) Extreme fractionation and deforma-

tion of the leucogranite-pegmatite suite at Red Cross Lake

Manitoba Canada II Petrology of the leucogranites and peg-

matites Can Mineral 50 1807ndash1822

Dahl PS When DC Feldmann SG (1993) The systematics of

trace-element partitioning between coexisting muscovite and

biotite in metamorphic rocks from the Black Hills South

Dakota USA Geochim Cosmochim Acta 57 2487ndash2505

Dias MB amp Wilson WE (2000) The Alto Ligonha Pegmatites

Mozambique Mineral Record 31 459ndash497

Fleet ME (2003) Rock-Forming Minerals vol 3A Sheet silicates

micas The Geological Society London second edition chap 6

Lithium micas 651ndash690

Foord EE Cerny P Jackson LL Sherman DM Eby RK

(1995) Mineralogical and geochemical evolutions of micas

from miarolitic pegmatites of the anorogenic pikes-Peak

Batholith Colorado Mineral Petrol 55 1ndash26

Foster MD (1960) Interpretation of the composition of lithium

micas US Geol Surv Prof Paper 354-E 115ndash147

Fuhrman ML amp Lindsley DK (1988) Ternary-feldspar modeling

and thermometry Am Mineral 73 201ndash215

Gomes CL Castro P Alves C (1995) Caracterizacao das espi-

nelas zincıferas e do par ganite-nigerite no campo aplito-

pegmatıtico da Serra de Arga-Minho N de Portugal IV

Congresso Nacional de Geologia Resumos Alargados

Universidade do Porto Mem 4 629ndash633

Gordiyenko VV Ilyina AN Timochina LA Badamina EB

Stanek J (1996) Geochemical model of evolution of a pegma-

tite-forming ore-magmatic system of western Moravia Proc

Russ Mineral Soc 125 38ndash48 (in Russian)

Icenhower JP amp London D (1995) An experimental study for

element partitioning between biotite muscovite and coexisting

peraluminous granitic melt at 200 MPa (H2O) Am Mineral 80

1229ndash1251

Jahns RH (1982) Internal evolution of pegmatite bodies in lsquolsquoGranitic

Pegmatites in science and industryrsquorsquo P Cerny ed Mineralogical

Association of Canada Short Course Handbook 8 293ndash327

Jahns RH amp Burnham CW (1969) Experimental studies of

pegmatite genesis I A model for the derivation and crystal-

lization of granitic pegmatites Econ Geol 64 843ndash864

Jolliff BL Papike JJ Shearer CK (1987) Fractionation trends

in mica and tourmaline as indicators of pegmatite internal evo-

lution Bob Ingersoll pegmatite Black Hills South Dakota

USA GeochimCosmochim Acta 51 519ndash534

Kile DE amp Foord EE (1998) Micas from the Pikes Peak bath-

olith and its cogenetic granitic pegmatites Colorado optical

properties composition and correlation with pegmatite evolu-

tion Can Mineral 36 463ndash482

Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic

melts with Li and Li thorn F constraints for mineralization in rare

metal granites and pegmatites Econ Geol 93 1013ndash1025

Linnen RL amp Cuney M (2005) Granite-related rare-element

deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf

mineralization in lsquolsquoRare-element geochemistry and mineral

depositsrsquorsquo RL Linnen amp IM Samson eds Geochemical

Association of Canada Short Course Notes 17 45ndash68

London D (1990) Internal differentiation of rare-element pegmatites

a synthesis of recent research in lsquolsquoOre Bearing Granite Systems

Petrogenesis and Mineralizing Processesrsquorsquo HJ Stein amp JL

Hannah eds Geol Soc America Special Paper 246 35ndash50

mdash (2008) Pegmatites The Canadian Mineralogist Special

Publication 10 347 p

mdash (2009) The origin of primary textures in granitic pegmatites

Can Mineral 47 697ndash724

London D amp Morgan GB VI (2012) The pegmatite puzzle

Elements 8 263ndash268

London D Morgan GB VI Hervig RL (1989) Vapor-under-

saturated experiments in the system macusanite-H2O at 200

MPa and the internal differentiation of granitic pegmatites

Contrib Mineral Petrol 102 1ndash17

London D Morgan GB VI Paul KA Guttery BM (2012)

Internal evolution of miarolitic granitic pegmatites at the Little

Three mine Ramona California USA Can Mineral 50

1025ndash1054

Martins T Lima A Simmons WB Folster AU Noronha F

(2011) Geochemical fractionation of Nb-Ta oxides in Li-bear-

ing pegmatites from the Barroso-Alvao pegmatite field northern

Portugal Can Mineral 49 777ndash791

Monier G Charoy B Cuney M Ohnenstetter D Robert JL

(1987) Evolution spatiale et temporelle de la composition des

micas du granite albitique a topaze-lepidolite de Beauvoir

Geologie De La France 2ndash3 179ndash188

Monier G amp Robert JL (1986) Evolution of the miscibility gap

between muscovite and biotite solid solutions with increasing

lithium content an experimental study in the systems

K2OndashLi2OndashMgOndashAl2O3ndashSiO2ndashH2OndashHF at 600 C 2 kbar

PH2O comparison with natural lithium micas Mineral Mag

50 641ndash651

Morgan GBVI amp London D (1999) Crystallization of the little

three layered pegmatite-aplite dike Ramona District California

Contrib Mineral Petrol 136 310ndash330

984 A M R Neiva

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985

Page 17: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

boundary layer of silicate liquid in advance of a crystal-lization front (London 2008 London amp Morgan 2012)

Lepidolite-subtype pegmatites are generally scarce(Cerny et al 2005) particularly the zoned ones In thesymmetrically zoned lepidolite-subtype pegmatites ofRozna and Dobra Voda Czech Republic micas (Cernyet al 1995) tourmaline (Selway et al 1999) and colum-bite-group minerals (Novak amp Cerny 1998) evolve fromthe outermost zone to the innermost zone following thecrystallization sequence The same was found in tourma-line from the zoned Lastovicky Dolnı Bory and Raddovicelepidolite-subtype pegmatite dikes in the Czeck Republic(Selway et al 1999)

In general beryl (Neiva amp Neiva 2005) feldsparsmicas and columbite-(Mn) (in this paper) from theNamivo lepidolite-subtype pegmatite record the progres-sive chemical evolution of the pegmatite from the wallzone to the core These minerals were produced by crystal-lization from a silicate melt rather than an aqueous fluidphase The slow cooling of melt shown by the magmaticcrystallization temperatures of feldspars cannot explain theincrease in grain-size of minerals from the wall zone to thecore but fluxes will be necessary to promote the change oftexture particularly a flux-rich hydrosilicate liquidaccording to the experimental evidence (London 2009)The constitutional zone refining model will be the best forthis zoned pegmatite and probably for all lepidolite-sub-type pegmatites because this model also produces a higherfinal concentration of incompatible components in a smal-ler volume of rock than fractional crystallization does(Morgan amp London 1999)

The core margin at the Rozna pegmatite contains K-feld-spar and quartz and the core consists mainly of quartz but it issurrounded and penetrated by a quartz-bearing albitethorn lepi-dolite complex which contains several minerals At theDobra Voda pegmatite the center of the dike is occupiedby the lepidolite unit containing albite and other minerals(Cerny et al 1995) At the Namivo pegmatite the coremargin consists of quartz and beryl and the core containsmainly quartz and spodumene but also albite lepidolite andother minerals The last-unit assemblages of primary miner-als in most of the highly fractionated LCT pegmatites are richin albite and commonly contain lepidolite or spodumene andmost of the other rare phases These units represent the lastmost fractionated liquid that can be derived by fractionalcrystallization of a crustal melt (London 2008)

The Namivo granitic pegmatite shows a significant dis-tinction from the other zoned lepidolite-subtype pegmatitesand LCT pegmatites except the Tanco petalite-subtypepegmatite in Canada because the lepidolite richest in SiLi and F FeMg-containing polylithionite and associatedcolumbite-(Mn) with the highest Ta(Ta thorn Nb) ratio tanta-lite-(Fe) and tantalite-(Mn) only occur in the outer inter-mediate zone These minerals usually form late in theconsolidation of pegmatites The lepidolite and polylithio-nite are probably derived from the disequilibrium crystal-lization of an undercooled melt Tantalite may reflect a localdecrease in Li and F that caused Ta precipitation

This paper contributes to a better understanding of theorigin and evolution of the rare zoned lepidolite-subtypepegmatites and shows that although the pegmatite evolvedfrom the wall zone to the core it presents an unusualassociation of lepidolite polylithionite and tantalite in theouter intermediate zone

Acknowledgments Thanks are due to JM Cotelo Neivaand MB Dias for the samples and information providedand to MR Machado Leite and MF Guimaraes for theuse of the electron microprobe facilities at the LaboratorioNacional de Energia e Geologia (LNEG) PortugalFinancial support was provided by the PortugueseGovernment for the project Pest-OECTEUI00732011of the Geosciences Centre through the PortugueseFoundation for Science and Technology I would like tothank D London WB Simmons and the associated editorE Widom for their constructive reviews of this manuscriptand M Prieto for his editorial work

References

Alfonso P Melgarejo JC Yusta I Velasco F (2003)

Geochemistry of feldspars and muscovite in granitic pegmatite

from the Cap de Creus field Catalonia Spain Can Mineral 41

103ndash116

Antunes IMHR Neiva AMR Ramos JMF Silva PB

Silva MMVG Corfu F (2013) Petrogenetic links between

lepidolite-subtype aplite-pegmatite aplite veins and associated

granites at Segura (central Portugal) Chemie der Erde in press

httpdxdoiorg101016jchemer20121203

Batchelor RA amp Kinnaird JA (1984) Gahnite compositions

compared Mineral Mag 48 425ndash430

Beurlen H Da Silva MRR Thomas R Soares DR Olivier P

(2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-

element granitic pegmatite fractionation in the Borborema pro-

vince Northeastern Brazil Miner Deposita 43 207ndash228

Cameron EN Jahns RH McNair AH Page LR (1949)

Internal structure of granitic pegmatites Econ Geol

Monograph 2 115 p

Cerny P (1991a) Fertile granites of Precambrian rare-element

pegmatite fields is geochemistry controlled by tectonic setting

or source lithologies Precambrian Res 51 429ndash468

mdash (1991b) Rare-element granite pegmatites I Anatomy and inter-

nal evolution of pegmatite deposits Geoscience Canada 18

49ndash67

mdash (1992) Geochemical and petrogenetic features of mineralization

in rare-element granitic pegmatites in the light of current

research Applied Geochemistry 7 393ndash416

mdash (1994) Evolution of feldspars in granitic pegmatites in

lsquolsquoFeldspars and their Reactionsrsquorsquo I Parsons ed NATO

Advanced Study Institute Series C421 501ndash539

mdash (2005) The Tanco rare-element pegmatite deposit Manitoba

regional context internal anatomy and global comparisons in

lsquolsquoRare-element Geochemistry and Mineral Depositsrsquorsquo RL

Linnen amp IM Samson eds Geochemical Association of

Canada Short Course Notes St Catherines 17 127ndash158

Silicate and oxide minerals from a zoned granitic pegmatite 983

eschweizerbart_xxx

Cerny P amp Ercit TS (2005) The classification of granitic pegma-

tites revisited Can Mineral 43 2005ndash2026

Cerny P Meintzer RE Andersen AJ (1985) Extreme fractiona-

tion in rare-element granitic pegmatites selected examples of

data and mechanisms Can Mineral 23 381ndash421

Cerny P Goad BE Hawthorne FC Chapmann R (1986)

Fractionation trends of the Nb- and Ta-bearing oxide minerals

in the Greer Lake pegmatite granite and its pegmatite aureole

southeastern Manitoba Am Mineral 71 501ndash517

Cerny P Stanek J Novak M Baadsgaard H Rieder M

Ottolini L Kavalova M Chapman R (1995) Geochemical

and structural evolution of micas in the Rozna amp Dobra Voda

pegmatites Czech Republic Mineral Petrol 55 177ndash201

Cerny P Ercit TS Vanstone PJ (1998) Mineralogy and petrol-

ogy of the Tanco rare-element pegmatite deposit southeastern

Manitoba International Mineralogical Association 17th General

Meeting Toronto Field Guidebook B6

Cerny P Chapman R Ferreira K Smeds SA (2004)

Geochemistry of oxide minerals of Nb Ta Sn and Sb in

the Varutrask granitic pegmatite Sweden The case of an

lsquolsquoanomalousrsquorsquo columbitendashtantalite trend Am Mineral 89

505ndash518

Cerny P Masau M Goad BE Ferreira K (2005) The Greer

Lake leucogranite Manitoba and the origin of lepidolite-sub-

type granitic pegmatites Lithos 80 305ndash321

Cerny P Teertstra DK Chapman R Selway JB Hawthorne

FC Ferreira K Chackowsky LE Wang X-J Meintzer

RE (2012a) Extreme fractionation and deformation of the

leucogranite-pegmatite suite at Red Cross Lake Manitoba

Canada IV Mineralogy Can Mineral 50 1839ndash1875

Cerny P Halden NM Ferreira K Meintzer RE Brisbin WC

Chackowsky LE (2012b) Extreme fractionation and deforma-

tion of the leucogranite-pegmatite suite at Red Cross Lake

Manitoba Canada II Petrology of the leucogranites and peg-

matites Can Mineral 50 1807ndash1822

Dahl PS When DC Feldmann SG (1993) The systematics of

trace-element partitioning between coexisting muscovite and

biotite in metamorphic rocks from the Black Hills South

Dakota USA Geochim Cosmochim Acta 57 2487ndash2505

Dias MB amp Wilson WE (2000) The Alto Ligonha Pegmatites

Mozambique Mineral Record 31 459ndash497

Fleet ME (2003) Rock-Forming Minerals vol 3A Sheet silicates

micas The Geological Society London second edition chap 6

Lithium micas 651ndash690

Foord EE Cerny P Jackson LL Sherman DM Eby RK

(1995) Mineralogical and geochemical evolutions of micas

from miarolitic pegmatites of the anorogenic pikes-Peak

Batholith Colorado Mineral Petrol 55 1ndash26

Foster MD (1960) Interpretation of the composition of lithium

micas US Geol Surv Prof Paper 354-E 115ndash147

Fuhrman ML amp Lindsley DK (1988) Ternary-feldspar modeling

and thermometry Am Mineral 73 201ndash215

Gomes CL Castro P Alves C (1995) Caracterizacao das espi-

nelas zincıferas e do par ganite-nigerite no campo aplito-

pegmatıtico da Serra de Arga-Minho N de Portugal IV

Congresso Nacional de Geologia Resumos Alargados

Universidade do Porto Mem 4 629ndash633

Gordiyenko VV Ilyina AN Timochina LA Badamina EB

Stanek J (1996) Geochemical model of evolution of a pegma-

tite-forming ore-magmatic system of western Moravia Proc

Russ Mineral Soc 125 38ndash48 (in Russian)

Icenhower JP amp London D (1995) An experimental study for

element partitioning between biotite muscovite and coexisting

peraluminous granitic melt at 200 MPa (H2O) Am Mineral 80

1229ndash1251

Jahns RH (1982) Internal evolution of pegmatite bodies in lsquolsquoGranitic

Pegmatites in science and industryrsquorsquo P Cerny ed Mineralogical

Association of Canada Short Course Handbook 8 293ndash327

Jahns RH amp Burnham CW (1969) Experimental studies of

pegmatite genesis I A model for the derivation and crystal-

lization of granitic pegmatites Econ Geol 64 843ndash864

Jolliff BL Papike JJ Shearer CK (1987) Fractionation trends

in mica and tourmaline as indicators of pegmatite internal evo-

lution Bob Ingersoll pegmatite Black Hills South Dakota

USA GeochimCosmochim Acta 51 519ndash534

Kile DE amp Foord EE (1998) Micas from the Pikes Peak bath-

olith and its cogenetic granitic pegmatites Colorado optical

properties composition and correlation with pegmatite evolu-

tion Can Mineral 36 463ndash482

Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic

melts with Li and Li thorn F constraints for mineralization in rare

metal granites and pegmatites Econ Geol 93 1013ndash1025

Linnen RL amp Cuney M (2005) Granite-related rare-element

deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf

mineralization in lsquolsquoRare-element geochemistry and mineral

depositsrsquorsquo RL Linnen amp IM Samson eds Geochemical

Association of Canada Short Course Notes 17 45ndash68

London D (1990) Internal differentiation of rare-element pegmatites

a synthesis of recent research in lsquolsquoOre Bearing Granite Systems

Petrogenesis and Mineralizing Processesrsquorsquo HJ Stein amp JL

Hannah eds Geol Soc America Special Paper 246 35ndash50

mdash (2008) Pegmatites The Canadian Mineralogist Special

Publication 10 347 p

mdash (2009) The origin of primary textures in granitic pegmatites

Can Mineral 47 697ndash724

London D amp Morgan GB VI (2012) The pegmatite puzzle

Elements 8 263ndash268

London D Morgan GB VI Hervig RL (1989) Vapor-under-

saturated experiments in the system macusanite-H2O at 200

MPa and the internal differentiation of granitic pegmatites

Contrib Mineral Petrol 102 1ndash17

London D Morgan GB VI Paul KA Guttery BM (2012)

Internal evolution of miarolitic granitic pegmatites at the Little

Three mine Ramona California USA Can Mineral 50

1025ndash1054

Martins T Lima A Simmons WB Folster AU Noronha F

(2011) Geochemical fractionation of Nb-Ta oxides in Li-bear-

ing pegmatites from the Barroso-Alvao pegmatite field northern

Portugal Can Mineral 49 777ndash791

Monier G Charoy B Cuney M Ohnenstetter D Robert JL

(1987) Evolution spatiale et temporelle de la composition des

micas du granite albitique a topaze-lepidolite de Beauvoir

Geologie De La France 2ndash3 179ndash188

Monier G amp Robert JL (1986) Evolution of the miscibility gap

between muscovite and biotite solid solutions with increasing

lithium content an experimental study in the systems

K2OndashLi2OndashMgOndashAl2O3ndashSiO2ndashH2OndashHF at 600 C 2 kbar

PH2O comparison with natural lithium micas Mineral Mag

50 641ndash651

Morgan GBVI amp London D (1999) Crystallization of the little

three layered pegmatite-aplite dike Ramona District California

Contrib Mineral Petrol 136 310ndash330

984 A M R Neiva

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985

Page 18: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

Cerny P amp Ercit TS (2005) The classification of granitic pegma-

tites revisited Can Mineral 43 2005ndash2026

Cerny P Meintzer RE Andersen AJ (1985) Extreme fractiona-

tion in rare-element granitic pegmatites selected examples of

data and mechanisms Can Mineral 23 381ndash421

Cerny P Goad BE Hawthorne FC Chapmann R (1986)

Fractionation trends of the Nb- and Ta-bearing oxide minerals

in the Greer Lake pegmatite granite and its pegmatite aureole

southeastern Manitoba Am Mineral 71 501ndash517

Cerny P Stanek J Novak M Baadsgaard H Rieder M

Ottolini L Kavalova M Chapman R (1995) Geochemical

and structural evolution of micas in the Rozna amp Dobra Voda

pegmatites Czech Republic Mineral Petrol 55 177ndash201

Cerny P Ercit TS Vanstone PJ (1998) Mineralogy and petrol-

ogy of the Tanco rare-element pegmatite deposit southeastern

Manitoba International Mineralogical Association 17th General

Meeting Toronto Field Guidebook B6

Cerny P Chapman R Ferreira K Smeds SA (2004)

Geochemistry of oxide minerals of Nb Ta Sn and Sb in

the Varutrask granitic pegmatite Sweden The case of an

lsquolsquoanomalousrsquorsquo columbitendashtantalite trend Am Mineral 89

505ndash518

Cerny P Masau M Goad BE Ferreira K (2005) The Greer

Lake leucogranite Manitoba and the origin of lepidolite-sub-

type granitic pegmatites Lithos 80 305ndash321

Cerny P Teertstra DK Chapman R Selway JB Hawthorne

FC Ferreira K Chackowsky LE Wang X-J Meintzer

RE (2012a) Extreme fractionation and deformation of the

leucogranite-pegmatite suite at Red Cross Lake Manitoba

Canada IV Mineralogy Can Mineral 50 1839ndash1875

Cerny P Halden NM Ferreira K Meintzer RE Brisbin WC

Chackowsky LE (2012b) Extreme fractionation and deforma-

tion of the leucogranite-pegmatite suite at Red Cross Lake

Manitoba Canada II Petrology of the leucogranites and peg-

matites Can Mineral 50 1807ndash1822

Dahl PS When DC Feldmann SG (1993) The systematics of

trace-element partitioning between coexisting muscovite and

biotite in metamorphic rocks from the Black Hills South

Dakota USA Geochim Cosmochim Acta 57 2487ndash2505

Dias MB amp Wilson WE (2000) The Alto Ligonha Pegmatites

Mozambique Mineral Record 31 459ndash497

Fleet ME (2003) Rock-Forming Minerals vol 3A Sheet silicates

micas The Geological Society London second edition chap 6

Lithium micas 651ndash690

Foord EE Cerny P Jackson LL Sherman DM Eby RK

(1995) Mineralogical and geochemical evolutions of micas

from miarolitic pegmatites of the anorogenic pikes-Peak

Batholith Colorado Mineral Petrol 55 1ndash26

Foster MD (1960) Interpretation of the composition of lithium

micas US Geol Surv Prof Paper 354-E 115ndash147

Fuhrman ML amp Lindsley DK (1988) Ternary-feldspar modeling

and thermometry Am Mineral 73 201ndash215

Gomes CL Castro P Alves C (1995) Caracterizacao das espi-

nelas zincıferas e do par ganite-nigerite no campo aplito-

pegmatıtico da Serra de Arga-Minho N de Portugal IV

Congresso Nacional de Geologia Resumos Alargados

Universidade do Porto Mem 4 629ndash633

Gordiyenko VV Ilyina AN Timochina LA Badamina EB

Stanek J (1996) Geochemical model of evolution of a pegma-

tite-forming ore-magmatic system of western Moravia Proc

Russ Mineral Soc 125 38ndash48 (in Russian)

Icenhower JP amp London D (1995) An experimental study for

element partitioning between biotite muscovite and coexisting

peraluminous granitic melt at 200 MPa (H2O) Am Mineral 80

1229ndash1251

Jahns RH (1982) Internal evolution of pegmatite bodies in lsquolsquoGranitic

Pegmatites in science and industryrsquorsquo P Cerny ed Mineralogical

Association of Canada Short Course Handbook 8 293ndash327

Jahns RH amp Burnham CW (1969) Experimental studies of

pegmatite genesis I A model for the derivation and crystal-

lization of granitic pegmatites Econ Geol 64 843ndash864

Jolliff BL Papike JJ Shearer CK (1987) Fractionation trends

in mica and tourmaline as indicators of pegmatite internal evo-

lution Bob Ingersoll pegmatite Black Hills South Dakota

USA GeochimCosmochim Acta 51 519ndash534

Kile DE amp Foord EE (1998) Micas from the Pikes Peak bath-

olith and its cogenetic granitic pegmatites Colorado optical

properties composition and correlation with pegmatite evolu-

tion Can Mineral 36 463ndash482

Linnen RL (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic

melts with Li and Li thorn F constraints for mineralization in rare

metal granites and pegmatites Econ Geol 93 1013ndash1025

Linnen RL amp Cuney M (2005) Granite-related rare-element

deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf

mineralization in lsquolsquoRare-element geochemistry and mineral

depositsrsquorsquo RL Linnen amp IM Samson eds Geochemical

Association of Canada Short Course Notes 17 45ndash68

London D (1990) Internal differentiation of rare-element pegmatites

a synthesis of recent research in lsquolsquoOre Bearing Granite Systems

Petrogenesis and Mineralizing Processesrsquorsquo HJ Stein amp JL

Hannah eds Geol Soc America Special Paper 246 35ndash50

mdash (2008) Pegmatites The Canadian Mineralogist Special

Publication 10 347 p

mdash (2009) The origin of primary textures in granitic pegmatites

Can Mineral 47 697ndash724

London D amp Morgan GB VI (2012) The pegmatite puzzle

Elements 8 263ndash268

London D Morgan GB VI Hervig RL (1989) Vapor-under-

saturated experiments in the system macusanite-H2O at 200

MPa and the internal differentiation of granitic pegmatites

Contrib Mineral Petrol 102 1ndash17

London D Morgan GB VI Paul KA Guttery BM (2012)

Internal evolution of miarolitic granitic pegmatites at the Little

Three mine Ramona California USA Can Mineral 50

1025ndash1054

Martins T Lima A Simmons WB Folster AU Noronha F

(2011) Geochemical fractionation of Nb-Ta oxides in Li-bear-

ing pegmatites from the Barroso-Alvao pegmatite field northern

Portugal Can Mineral 49 777ndash791

Monier G Charoy B Cuney M Ohnenstetter D Robert JL

(1987) Evolution spatiale et temporelle de la composition des

micas du granite albitique a topaze-lepidolite de Beauvoir

Geologie De La France 2ndash3 179ndash188

Monier G amp Robert JL (1986) Evolution of the miscibility gap

between muscovite and biotite solid solutions with increasing

lithium content an experimental study in the systems

K2OndashLi2OndashMgOndashAl2O3ndashSiO2ndashH2OndashHF at 600 C 2 kbar

PH2O comparison with natural lithium micas Mineral Mag

50 641ndash651

Morgan GBVI amp London D (1999) Crystallization of the little

three layered pegmatite-aplite dike Ramona District California

Contrib Mineral Petrol 136 310ndash330

984 A M R Neiva

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985

Page 19: Micas, feldspars and columbite tantalite minerals from the ...grupovidere.co.mz/wp-content/uploads/2015/06/Neiva-2014.pdf · A NA M. R. NEIVA * Department of Earth Sciences and Geosciences

eschweizerbart_xxx

Nabelek PI amp Russ-Nabelek C (1992) The generation and crys-

tallization conditions of the Proterozoic Harney Peak

Leucrogranite Black Hills South Dakota USA petrologic and

geochemical constraints Contrib Mineral Petrol 110

173ndash191

Nabelek PI Russ-Nabelek C Haeussler GT (1992) Stable

isotope evidence for the petrogenesis and fluid evolution in

the Proterozoic Harney Peak leucogranite Black Hills

South Dakota Geochim Cosmochim Acta 56 403ndash417

Neiva AMR amp Champness PE (1997) Nigerite and gahnite from

the granitic pegmatite veins of Cabanas Ponte de Lima northern

Portugal N Jb Mineral Mh 9 385ndash409

Neiva AMR Gomes MEP Ramos JMF Silva PB (2008)

Geochemistry of granitic aplite-pegmatite sills and their miner-

als from Arcozelo da Serra area (Gouveia central Portugal)

Eur J Mineral 20 465ndash485

Neiva AMR amp Neiva JMC (2005) Beryl from the granitic

pegmatite at Namivo Alto Ligonha Mozambique N Jb

Mineral Abh 181 173ndash182

Neiva AMR amp Ramos JMF (2010) Geochemistry of granitic

aplite-pegmatite sills and petrogenetic links with granites

Guarda-Belmonte area central Portugal Eur J Mineral 22

837ndash854

Neiva AMR Silva PB Ramos JMF (2012) Geochemistry of

granitic aplite-pegmatite veins and sills and their minerals from the

Sabugal area central Portugal N Jb Mineral Abh 189 49ndash74

Novak M amp Cerny P (1998) Niobium-tantalum oxide minerals

from complex granitic pegmatites in the Moldanubicum Czech

Republic primary versus secondary compositional trends Can

Mineral 36 659ndash672

Pesquera Perez A Torres-Ruiz J Gil PP Velilla N (1999)

Chemistry and genetic implications of tourmaline and Li-F-Cs

micas from the Valdeflores (Caceres Spain) Am Mineral 84

55ndash69

Rieder M Cavazzini G DrsquoYakonov YuS Frank-Kamenetskii

VA Gottardi G Guggenheim S Koval PV Muller G

Neiva AMR Radoslovich EW Robert J-L Sassi FP

Takeda H Weiss Z Wones DR (1999) Nomenclature of the

micas Mineral Mag 63 267ndash279

Roda Robles E Pesquera Perez A Velasco Roldan F Fontan F

(1999) The granitic pegmatites of the Fregeneda area

(Salamanca Spain) characteristics and petrogenesis Mineral

Mag 63 535ndash558

Roda Robles E Pesquera A Gil-Crespo PP Torres-Ruiz J

Fontan F (2005) Origin and internal evolution of the Li-F-

Be-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian

Zone Zamora Spain) Am Mineral 90 1887ndash1899

Roda Robles E Pesquera Perez A Gil PP Torres-Ruiz J de

Parseval P (2006) Mineralogy and geochemistry of micas from

the Pinilla de Fermoselle pegmatite (Zamora Spain) Eur J

Mineral 18 369ndash377

Roda Robles E Keller P Pesquera Perez A Fontan F (2007)

Micas of the muscovite-lepidolite series from Karibib pegma-

tites Namibia Mineral Mag 71 41ndash62

Roda Robles E Pesquera A Gil-Crespo P Torres-Ruiz J

(2012) From granite to highly evolved pegmatite a case study

of the Pinilla de Fermoselle granite-pegmatite system (Zamora

Spain) Lithos 153 192ndash207

Selway JB Novak M Cerny P Hawthorne FC (1999)

Compositional evolution of tourmaline in lepidolite-subtype

pegmatites Eur J Mineral 11 569ndash584

Shearer CK Papike JJ Jolliff B (1992) Petrogenetic links

among granites and pegmatites in the Harney Peak rare-element

granite-pegmatite system Black Hills South Dakota Can

Mineral 30 785ndash809

Soares DR Hartmut B Ferreira ACM da Silva MRR

(2007) Chemical composition of gahnite and degree of peg-

matitic fractionation in the Borborema Pegmatitic Province

northeastern Brazil Anais Da Academ Bras Cien 79

395ndash404

Stewart DB (1978) Petrogenesis of lithium-rich pegmatites Am

Mineral 63 970ndash980

Tischendorff G Gattesmann B Forster H-J Trumbull RB

(1997) On Li-bearing micas estimating Li from electron

microprobe analyses and an improved diagram for graphical

representation Mineral Mag 61 809ndash834

Van Lichtervelde M Linnen RL Salvi S Beziat D (2006)

The role of metagabbro rafts on tantalum mineralization in the

Tanco granitic pegmatite Manitoba Can Mineral 44

625ndash644

Van Lichtervelde M Gregoire M Linnen RL Beziat D Salvi

S (2008) Trace element geochemistry by laser ablation ICP-

MS of micas associated with Ta mineralization in the Tanco

pegmatite Manitoba Canada Contrib Mineral Petrol 155

791ndash806

Vieira R Roda-Robles E Pesquera A Lima A (2011)

Chemical variation and significance of micas from the

Fregeneda-Almendra pegmatitic field (Central-Iberian Zone

Spain and Portugal) Am Mineral 96 637ndash645

Wen S amp Nekvasil H (1994) SOLVCALC an interactive gra-

phics program package for calculating ternary feldspar solvus

and two-feldspar geothermometry Comput Geosci 20

1025ndash1040

Wise MA (1995) Trace element chemistry of lithium-rich micas

from rare-element granitic pegmatites Mineral Petrol 55

203ndash215

Zasedatelev AM (1974) Possible accumulation of lithium in host

rocks of lithium pegmatite veins during old sedimentation pro-

cesses Doklady Acad Sci USSR Earth Sci Ser 218 196ndash198

(in Russian)

mdash (1977) Quantitative of metamorphic generation of rare-metal

pegmatites with lithium mineralization Doklady Acad Sci

USSR Earth Sci Ser 236 219ndash221 (in Russian)

Received 26 January 2013

Modified version received 21 May 2013

Accepted 23 July 2013

Silicate and oxide minerals from a zoned granitic pegmatite 985