MFA Examples

download MFA Examples

of 17

Transcript of MFA Examples

  • 8/13/2019 MFA Examples

    1/17

    1

    MFASome further examples

    Lactic acid bacteriaExample 5.6 Important example!

    Lactic acid bacteria are often grown on complex

    media rich in amino acids, which provide the carbon

    skeleton for biomass synthesis.The catabolic

    pathways can therefore be analyzed decoupled from

    the anabolic pathways.

    There is virtually no drain of precursors in the EMP

    pathway, which therefore can be regarded as a linear

    pathway.

  • 8/13/2019 MFA Examples

    2/17

    2

    Lactic acid bacteria

    Glucose

    NADH

    Pyruvate

    CO2

    ATP

    Lactate

    Acet yl-

    CoA

    FormateNADH

    Acetyl-P

    Acetate

    Acetaldehyde

    Ethanol

    NADH

    ATP

    NADH

    NADH

    v1v2

    v4

    v3

    v5 v6

    In general we know that

    6

    5

    4

    3

    2

    1

    200111

    111100

    001111

    100000

    010000

    001000

    000100

    000010

    000005.0

    0

    0

    0

    v

    v

    v

    v

    v

    v

    r

    r

    r

    r

    r

    r

    NADH

    AcCoA

    PYR

    e

    a

    f

    c

    l

    g

    But we cannot solve the problem using rf, ra and re as measured rates

    T r

  • 8/13/2019 MFA Examples

    3/17

    3

    (Or in C-moles)

    6

    5

    4

    3

    2

    1

    1003333.03333.03333.0116667.06667.000

    001111

    003333.0000

    100000

    010000

    0003333.000

    000010

    000001

    00

    0

    v

    v

    v

    v

    v

    v

    r

    r

    r

    r

    r

    r

    NADHAcCoA

    PYR

    f

    e

    a

    c

    l

    g

    T r

    6

    5

    4

    3

    2

    1

    200111

    111100

    001111

    100000

    010000001000

    000100

    000010

    000005.0

    0

    0

    0

    v

    v

    v

    v

    v

    v

    r

    rr

    r

    r

    r

    NADH

    AcCoA

    PYR

    e

    a

    f

    c

    l

    g

    Assume instead that glucose,lactate and formate are measured

    Move rows

  • 8/13/2019 MFA Examples

    4/17

    4

    The new matrix T becomes

    6

    5

    4

    3

    2

    1

    200111111100

    001111

    001000

    000010

    000005.0

    000100

    100000

    010000

    00

    0

    v

    v

    v

    v

    v

    v

    r

    r

    r

    r

    r

    r

    NADHAcCoA

    PYR

    f

    l

    g

    c

    e

    a

    flg

    f

    f

    flg

    l

    g

    f

    l

    g

    rrr

    r

    r

    rrr

    r

    r

    r

    r

    r

    v

    v

    v

    v

    v

    v

    5.02

    5.0

    2

    2

    0

    0

    0

    200111

    111100

    001111

    001000

    000010

    000005.01

    6

    5

    4

    3

    2

    1

    Interestingly, the rate of formation of acetate (5) and formate (4)are stoichiometrically directly coupled. Therefore, one cannot

    include both of these rates as measured rates, since they are not

    independent. (Try it!)

    Solving for the fluxes one gets

  • 8/13/2019 MFA Examples

    5/17

  • 8/13/2019 MFA Examples

    6/17

    6

    A net surplus of NADH results from synthesis of amino acids

    E. Albers, Ph.D. thesis, 2000

    NADH formation (mmol NADH/mol glucose)

    without GOGAT activity with GOGAT activity

    Type of cultivation Type of cultivation

    Source of NADH batch chemostatD=0.1 h

    -1chemostatD=0.4 h

    -1batch chemostat

    D=0.1 h-1

    chemostatD=0.4 h

    -1

    Amino acids

    a

    192-228 172-201 221-257 94-228 81-201 105-257Nucleic acids 8-12 9-12 15-21 5-12 5-12 9-21

    Organic acids 28-40 26-37 50-83 28-40 26-37 50-83

    Total est imated

    NADH formation

    228-280 207-249 287-362 127-280 112-249 164-362

    Experimental

    glycerol formation

    (various refs)

    210 172 217 210 172 217

    There are also other sources of net NADH formation, but protein

    synthesis is the most important

    E. Albers, Ph.D. thesis, 2000

  • 8/13/2019 MFA Examples

    7/17

    7

    Glycerol formation in yeast

    DHAP G-3-P Glycerol

    NAD+NADH

    Regeneration of NAD+ is accomplished by glycerol formation

    Stoichiometry

    03/13/2:5

    03/13/1O:4

    03/13/13/2:3

    03/13/1:2

    042.215.012.012.1:1

    25.023/4

    382

    25.033/4

    3/42

    212.06.074.12

    COOCHOCH

    ATPNADH-O-CHCH

    CONADHOCHOCH

    ATPNADHOCHOCH

    ATPNADHCONOCHOCH

    /

  • 8/13/2019 MFA Examples

    8/17

    8

    The stoichiometric matrix

    -1.12 1 0 0 0.12 0 0.15 -2.42 0

    -1 0 0 0 0 0 0.333 0.333 1

    0 0 0 0.667 0.333 0 -0.333 0 -1

    -1 0 0 0 0 1 -0.333 -0.333 0

    0 0 0.667 0 0.333 0 0 0 -1

    =

    s x acet eth CO2 glyc NADH ATP pyr

    -1.12 -1 0 -1 0

    1 0 0 0 0

    0 0 0 0 0.667

    0 0 0.667 0 0

    0.12 0 0.333 0 0.333

    0 0 0 1 0

    0.15 0.333 -0.333 -0.333 0

    -2.42 0.333 0 -0.333 0

    0 1 -1 0 -1

    T =

    T2

    T1

  • 8/13/2019 MFA Examples

    9/17

    9

    0.3937 -0.1311 0 -0.3937 0.1311

    2.8611 0.047244 0 0.14187 0.95276

    3.0385 -1.0118 -3.003 -0.035469 1.0118

    0 1 0 0 0

    -0.177341.0591 3.003 0.17734 -1.0591

    T2-1 =

    glycc

    glyc

    glycc

    glycc

    glycc

    rr

    r

    rr

    rr

    rr

    0591.11773.0

    0118.10385.3

    0472.08611.2

    13.03937.0

    02

    02

    02

    02

    5

    4

    3

    2

    1

    mc rTTTr1

    211

    What about calculated net formation rates?

    Fluxes

  • 8/13/2019 MFA Examples

    10/17

    10

    -1.1200 -1.0000 0 -1.0000 0

    1.0000 0 0 0 0

    0 0 0 0 0.6670

    0 0 0.6670 0 0

    T1 =

    -3.3021 -0.9004 0 0.2991 -1.0996

    0.3937 -0.1311 0 -0.3937 0.1311

    -0.1183 0.7064 2.0030 0.1183 -0.7064

    2.0267 -0.6749 -2.0030 -0.0237 0.6749

    T1* T2-1 =

    glycc

    glycc

    glycc

    glycc

    e

    a

    x

    s

    rr

    rr

    rrrr

    r

    r

    rr

    6749.00267.2

    7064.01183.0

    13.03937.09004.03.3021-

    02

    02

    02

    02

    Perhaps difficult to see but re is in fact proportional to rx

    The stoichiometric matrix - rearranged

    =

    s xacet eth CO2 glyc NADH ATPpyr

    0 0 0.12 0 -1.12 1 0.15 -2.42 0

    0 0 0 0 -1 0 0.333 0.333 10 0.667 0.333 0 0 0 -0.333 0 -1

    0 0 0 1 -1 0 -0.333 -0.333 0

    0.667 0 0.333 0 0 0 0 0 -1

    rcalc rmeas 0

  • 8/13/2019 MFA Examples

    11/17

    11

    T=

    T2

    0 0 0 0 0.667

    0 0 0.667 0 0

    0.12 0 0.333 0 0.333

    0 0 0 1 0

    -1.12 -1 0 -1 0

    1 0 0 0 0

    0.15 0.333 -0.333 -0.333 0

    -2.42 0.333 0 -0.333 00 1 -1 0 -1

    T2-1 =

    0 1 0 0 0

    -0.5 3.0736 0 1.5015 0

    0 7.7177 -3.003 3.003 0

    -0.5 -4.1936 0 -1.5015 0

    -0.5 -4.6441 3.003 -1.5015 -1

    xs

    xs

    x

    xs

    x

    rr

    rr

    r

    rr

    r

    6441.45.0

    1936.45.0

    7177.7

    0736.35.0

    5

    4

    3

    2

    1

  • 8/13/2019 MFA Examples

    12/17

    12

    -0.3335 -3.0976 2.0030 -1.0015 -0.6670

    0.0000 5.1477 -2.0030 2.0030 0.0000

    -0.1665 1.1435 0 0.5000 -0.3330

    -0.5000 -4.1936 0.0000 -1.5015 -0.0000

    T1 * T2-1 =

    xs

    xs

    x

    xs

    glyc

    c

    e

    a

    rr

    rr

    r

    rr

    r

    r

    r

    r

    1936.40.5-

    1435.10.1665-

    147.5

    0976.30.333-

    Now it is easy to see that re is proportional to rx

    Assume no acetaldehyde excretion

    xs rr5.0

    6441.405

    Given this assumption all yield coefficients can be calculated!

    108.0288.9

    x

    x

    s

    xsx

    r

    r

    r

    rY

    554.0288.9

    147.5

    x

    x

    s

    ese

    r

    r

    r

    rY

    290.0288.9

    )1435.1288.91665.0(

    x

    x

    s

    csc

    r

    r

    r

    rY

    C-mol/C-mol

    048.0...sgY

    C-mol/C-mol

    C-mol/C-mol

    C-mol/C-mol

  • 8/13/2019 MFA Examples

    13/17

    13

    Lactic acid bacteria (revisited)

    Glucose

    NADH

    Pyruvate

    CO2

    ATP

    Lactate

    Acet yl-

    CoA

    FormateNADH

    Acet yl-P

    Acetate

    Acet aldehy de

    Ethanol

    NADH

    ATP

    NADH

    NADH

    v1v2

    v4

    v3

    v5 v6

    Biomass

    ATP

    ATP

    CO2 + NADHSink for ATP (or ratherthe reason for ATP

    synthesis)

    7

    0 0 0 0 0 0 1

    0 1 0 0 0 0 0

    0 0 0 0.3333 0 0 01 -1 -1 -1 0 0 0

    0 0 0.6667 0.6667 -1 -1 0

    0.3333 -0.3333 0.3333 0 0 -1 0.1

    0.3333 0 0 0 0.5 0 -2

    T2 =

  • 8/13/2019 MFA Examples

    14/17

    14

    6.1500 0.0000 -1.5000 0.5000 1.5000 -1.5000 3.0000

    0 1.0000 0 0 0 0 0

    6.1500 -1.0000 -4.5000 -0.5000 1.5000 -1.5000 3.0000

    -0.0000 0.0000 3.0000 -0.0000 -0.0000 0.0000 -0.0000

    -0.1000 -0.0000 1.0000 -0.3333 -1.0000 1.0000 0.0000

    4.2000 -0.6667 -2.0000 0.0000 1.0000 -2.0000 2.0000

    1.0000 0 0 0 0 0 0

    T2-1 =

    1,3-propanediolProblem 5.5

    Terephtalic acid and 1,3-propanediol (3G) can form the

    polyester Sorona

    (If you exchange 3G for ethylene glycol you get PET!)

    1,3-propanediol can be produced by recombinant E. coli

    (a process developed by Du Pont/Genencor)

  • 8/13/2019 MFA Examples

    15/17

    15

    Glycerol utilization by Klebsiella

    DHAP G-3-P Glycerol

    NAD+NADH

    Pyruvate

    Acet yl-CoA

    Acetyl-P Acetaldehyde

    Ethanol

    Formic acid

    CO2

    + H2

    Acet ic acid

    ADPATP

    Lactic acid

    NADHNAD+

    NADHNAD+

    (1)(3)

    (4) (6)

    (5) NADHNAD+

    (7)

    Biomass

    3G

    NADNADHATP

    2 ATP+NADH

    Undesired consumption ofNADH

    Stoichiometry1. Anaerobic fermentation

    2. Product formation

    3. Biomass formation

    - CH8/3O + 2/3 CH2O (=HAc) + 1/3(H2+CO2(or HCOOH)) + 2/3 NADH +2/3 ATP = 0- CH8/3O + CH8/3O2/3 1/3 NADH =0

    - 1.1 CH8/3O + X + 0.1 CO2+ 0.467 NADH 2.42 ATP =0

  • 8/13/2019 MFA Examples

    16/17

    16

    mc rTTTr1

    211

    0 0 1.0000

    0.6667 -0.3333 0.4670

    0.6667 0 -2.4200

    T2=

    -1.0000 -1.0000 -1.1000

    0.6667 0 0

    0.3333 0 0

    0 0 0.1000

    0 1.0000 0

    T1=

    -13.3910 3.0000 -4.5000

    2.4200 0 1.0000

    1.2100 0 0.50000.1000 0 0

    8.6610 -3.0000 3.0000

    121TT

    x

    x

    x

    x

    x

    G

    CO

    HCOOH

    HAc

    s

    r

    r

    r

    r

    r

    r

    r

    r

    r

    r

    66.8

    1.0

    21.1

    42.2

    39.13

    3

    2

    647.039.13

    66.833

    x

    x

    s

    G

    Gsr

    r

    r

    rY

    The yield of 3G (under the most favorable fermentation route) is thus obtained as

  • 8/13/2019 MFA Examples

    17/17

    StoichiometryE. coli case

    ATPO

    P

    ONADHv

    ATPNADHCOOCHv

    ATPNADHOCHOCHv

    ATPNADHCOXOCHv

    24

    223

    3

    2

    3

    822

    221

    2

    1

    :

    3

    12:

    3

    1

    3

    2:

    42.21.01.01.1: