MExxxElectromagnetic NDE - ase.uc.edu

42
Electromagnetic NDE Peter B. Nagy Research Centre for NDE Imperial College London 2009

Transcript of MExxxElectromagnetic NDE - ase.uc.edu

Page 1: MExxxElectromagnetic NDE - ase.uc.edu

Electromagnetic NDE

Peter B. Nagy

Research Centre for NDE

Imperial College London

2009

Page 2: MExxxElectromagnetic NDE - ase.uc.edu

Aims and Goals

Aims

1 The main aim of this course is to familiarize the students with Electromagnetic (EM) Nondestructive Evaluation (NDE) and to integrate the obtained specialized knowledge into their broader understanding of NDE principles.

2 To enable the students to judge the applicability, advantages, disadvantages, and technical limitations of EM techniques when faced with NDE challenges.

Objectives

At the end of the course, students should be able to understand the:1 fundamental physical principles of EM NDE methods2 operation of basic EM NDE techniques3 functions of simple EM NDE instruments4 main applications of EM NDE

Page 3: MExxxElectromagnetic NDE - ase.uc.edu

Syllabus

1 Fundamentals of electromagnetism. Maxwell's equations. Electromagnetic wave propagation in dielectrics and conductors. Eddy current and skin effect.

2 Electric circuit theory. Impedance measurements, bridge techniques. Impedance diagrams. Test coil impedance functions. Field distributions.

3 Eddy current NDE techniques. Instrumentation. Applications; conductivity, permeability, and thickness measurement, flaw detection.

4 Magnetic measurements. Materials characterization, permeability, remanence, coercivity, Barkhausen noise. Flaw detection, flux leakage testing.

5 Alternating current field measurement. Alternating and direct current potential drop techniques.

6 Microwave techniques. Dielectric measurements. Thermoelectric measurements.

7 Electromagnetic generation and detection of ultrasonic waves, electromagnetic acoustic transducers (EMATs).

Page 4: MExxxElectromagnetic NDE - ase.uc.edu

1 Electromagnetism

1.1 Fundamentals

1.2 Electric Circuits

1.3 Maxwell's Equations

1.4 Electromagnetic Wave Propagation

Page 5: MExxxElectromagnetic NDE - ase.uc.edu

1.1 Fundamentals of Electromagnetism

Page 6: MExxxElectromagnetic NDE - ase.uc.edu

Electrostatic Force, Coulomb's Law

x

z

y

r

Q2

Q1

Fe

Fe

Fe Coulomb force

Q1, Q2 electric charges ( ne, e 1.602 10-19 As)

er unit vector directed from the source to the target

r distance between the charges

ε permittivity (ε0 ≈ 8.85 10-12 As/Vm) 1 2

e 24 xQ dQ xd

rr

F e

2 , 2dQ q dA dA d

1e 3

02xQ q x d

r

eF

2 22 2

, d r rr xdr r x

1e 22

x

r x

Q q x drr

eF

1e 2

xQ q

eF

x

dQ2

Q1

Fe

ρ

r

infinite wall of uniform charge

density q

independent of x

1 2e 24 r

Q Qr

F e

Page 7: MExxxElectromagnetic NDE - ase.uc.edu

Electric Field, Plane Electrodes

Qt

Fe

x

z

y

e 2t xQ q

eF

infinite wall of uniform charge density q

2 xq

E e

E+Q -Q

A

QqA

charged parallel plane electrodes Q

xq

E e

e tQF E

Page 8: MExxxElectromagnetic NDE - ase.uc.edu

e tQF E

Electric Field, Point Sources

e 24s t

rQ Q

r

F e

24s

rQ

r

E e

monopole

+Qs

+Qs

-Qs

1 32sQ dE

r

2 34sQ dE

r

+Qs

-Qs

d

E1

E2

E1

dipole

Page 9: MExxxElectromagnetic NDE - ase.uc.edu

Electric Field of Dipole

z z R RE E E e e

3/ 2 3/ 22 2 2 2

/ 2 / 24 ( / 2) ( / 2)

sz

Q z d z dEz d R z d R

23 3cos 1

4s

zQ dE

r

3/ 2 3/ 22 2 2 24 ( / 2) ( / 2)

sR

Q R REz d R z d R

33 sin 28

sR

Q dEr

2 2 2r z R cosz r sinR r

R

z

+Qs

-Qs

d

θ

rr+

r

PEz

ER

E

Page 10: MExxxElectromagnetic NDE - ase.uc.edu

Electric Dipole in an Electric Field

+Q

-Q

pe

Fe

E EEE e

e dQ Qd p d e

e e Q T d F d E

e QF E

pe electric dipole moment

Q electric charge

d distance vector

E electric field

Fe Coulomb force

Te twisting moment or torque

Fee e T p E

Page 11: MExxxElectromagnetic NDE - ase.uc.edu

Electric Flux and Gauss’ Law

q charge (volume) density

D electric flux density (displacement)

E electric field (strength, intensity)

ε permittivity

electric flux

Qenc enclosed charge

closed surface S

D

dS

Qenc

Sd D S

D E

d d D S

Sd dSS e

encV

q dV Q

q D

Page 12: MExxxElectromagnetic NDE - ase.uc.edu

Electric Potential

W work done by moving the charge

Fe Coulomb force

ℓ path length

E electric field

Q charge

U electric potential energy of the charge

V potential of the electric field

E

QFe

d

A

BB A ABU U U W

edW F d

BAB

AW Q Ed

U V Q

BB A

AV V V Ed

Page 13: MExxxElectromagnetic NDE - ase.uc.edu

Capacitance

+Q

-Q

E

C capacitance

V voltage difference

Q stored charge

Q CV

+

-

S+ -

SV V V Ed

QCV

E

+Q

-Q

A

-Q

E

+Q

d

QDA

ACDE

V E

Page 14: MExxxElectromagnetic NDE - ase.uc.edu

Current, Current Density, and Conductivity

I currentQ transferred charget timeJ current densityA cross section arean number density of free electrons

vd mean drift velocity

e charge of protonm mass of electronτ collision timeΛ free pathv thermal velocityk Boltzmann’s constantT absolute temperatureσ conductivity

dQIdt

dI d J A

I dJ A

dne J v

ddQ ne d dt v A

dm e v E

v

21 32 2

mv kT

E

dA

2nem

J E E

Page 15: MExxxElectromagnetic NDE - ase.uc.edu

Resistivity, Resistance, and Ohm’s Law

V voltage

I current

R resistance

P power

σ conductivity

ρ resistivity

L length

A cross section area

I

+_V

A

d

0 0

L Ld dRA A

i i

i

LRA

1

LRA

+

-

S+ -

SV V V Ed

0 0

L LJ dV d I I RA

VRI

dU dQP V V Idt dt

Page 16: MExxxElectromagnetic NDE - ase.uc.edu

Magnetic Field

BQ

Fm

dv

e QF E

m Q F v B

( )Q F E v B

F Lorenz forcev velocityB magnetic flux densityQ charge

+I -I

B

pm magnetic dipole moment

(no magnetic monopole)N number of turnsI currentA encircled vector area

m N Ip A

pm

Page 17: MExxxElectromagnetic NDE - ase.uc.edu

Magnetic Dipole in a Magnetic Field

m Q F v B

pm magnetic dipole moment

Q charge

v velocity

R radius vector

B magnetic flux density

Fm magnetic force

Tm twisting moment or torque

m N Ip A

+I

-Ipm

Fm

B

Fm

2m 2 r v

Qv RR

p e e

2A RQN I

2 Rv

m12

Q p R v

m m12

T R F

22

m m m0

1 1cos2 2

T R F d R F

m m T p B

Page 18: MExxxElectromagnetic NDE - ase.uc.edu

Magnetic Field Due to Currents

2 34 4s s

rQ Q

r r

E e rCoulomb Law:

D E

B H

Biot-Savart Law: 2 34 4rI d Id

r r

H e e r

d

d

I

dℓ r

HH magnetic field

μ magnetic permeability

24 rI d

r

H e e

Page 19: MExxxElectromagnetic NDE - ase.uc.edu

Ampère’s Law

24 rI dd

r

H e e

encS

d QD SGauss’ Law:

infinite straight wire

2 2 2 3/ 244 ( )I d R I R dd

rr R

H e e

2 2 3/ 202 2( )

I R d IHRR

2H ds H R I

d

I

dℓ

R

Hrℓ

s

2IH

R

Biot-Savart Law:

Ampère’s Law:

Ampère’s Law: encd IH s

H J

Page 20: MExxxElectromagnetic NDE - ase.uc.edu

N I

Є dV Ndt

Induction, Faraday’s Law, Inductance

E induced electric field

B magnetic flux density

t time

Є induced electromotive force

s boundary element of the loop

Φ magnetic flux

S surface area of the loop

I N

V

μ magnetic permeability

N number of turns

I current

Λ geometrical constant

L (self-) inductanceI LN

2L N

Sd B S

Є ddt

t

BE

dIV Ldt

B

Є d E s

ЄS

dt

B S

Page 21: MExxxElectromagnetic NDE - ase.uc.edu

Electric Boundary ConditionsFaraday's law:

t

BE

Gauss' law:

q D

xt

medium I

medium II

DI

boundary

DII

DII,t

DII,n

DI,n

DI,t

xn

xt

medium I

medium II

EI

EIIEI,t EII,n

EI,n

EII,t

xn

I,n II,nD D

I I,n II II,nE E

I,t II,tE E

I I,n II II,ntan tanE E I II

I II

tan tan

tangential component of the electric field E is continuousnormal component of the electric flux density D is continuous

Page 22: MExxxElectromagnetic NDE - ase.uc.edu

Magnetic Boundary ConditionsAmpère's law:

t

DH J

Gauss' law:

0 B

xt

medium I

medium II

BI

boundary

BII

BII,t

BII,n

BI,n

BI,t

xn

xt

medium I

medium II

HI

HII

HII,t

HII,n

HI,n

HI,t

xn

I,n II,nB B

I I,n II II,nH H

I,t II,tH H

I I,n II II,ntan tanH H I II

I II

tan tan

tangential component of the magnetic field H is continuousnormal component of the magnetic flux density B is

continuous

Page 23: MExxxElectromagnetic NDE - ase.uc.edu

1.2 Electric Circuits

Page 24: MExxxElectromagnetic NDE - ase.uc.edu

Є

Electric Circuits, Kirchhoff’s Laws

Є electromotive force

Vi potential drop on ith element

Kirchhoff’s junction rule (current law):

Kirchhoff’s loop rule (voltage law):

0iV

0E dI

+_

1R 2R

4R

3R1V 2V

4V3V0V

0iI

encS

Q d D S

Ii current flowing into a junction from the ith branch

+_Є

1I 2I

4I

1R 2R

4R

3R

Page 25: MExxxElectromagnetic NDE - ase.uc.edu

Circuit Analysis

Loop Currents:

Kirchhoff’s Laws:

+_Є

1I 2I

4I

1R 2R

3R1V 2V

3V0V

+_Є

1I 2I

4I

1R 2R

4R

3R1i 2i

4R

4V1 2 4

1 2 40V V V

R R R

1 4 0 0V V V

2 3 4 0V V V

32

2 30VV

R R

1 1 1 2 4 0( ) 0i R i i R V

2 2 2 3 1 2 4( ) 0i R i R i i R

Page 26: MExxxElectromagnetic NDE - ase.uc.edu

DC Impedance Matching

2g

2g g, where

(1 )

V RP

R R

22 V

P I V I RR

g g

g gand

V V RI V

R R R R

2g

3g

1(1 )

VdPd R

2g

max gg

when4V

P R RR

_ VgV

gR

R+

P IVW QV

Page 27: MExxxElectromagnetic NDE - ase.uc.edu

AC ImpedanceI

VdIV Ldt

I

V1V I dtC

I

V V R I

VZ i LI

VZ RI

1VZI i C

0

0ZiVZ R i X Z e

I

0 2 20

VZ R XI

-1arg( ) - tanZ V IXZR

( )0 0( ) Ii t i tI t I e I e

( )0 0( ) Vi t i tV t V e V e

ReI I

ReV V

0 0 IiI I e

0 0 ViV V e

Page 28: MExxxElectromagnetic NDE - ase.uc.edu

AC Power

ReI I ( )0 0( ) Ii t i tI t I e I e 0( ) cos( )II t I t

ReV V ( )0 0( ) Vi t i tV t V e V e 0( ) cos( )VV t V t

* *0 0

1 1( ) ( )2 2

P I t V t I V ( ) ( )P I t V t ReP P

( )0 0

12

I ViP I V e 0 01 cos( )2 I VP I V

real notation complex notation correspondence

cos( ) cos cos sin sin

cos( ) cos cos sin sin

1 1cos( ) cos( ) cos cos2 2

cos sinie i

reminder:

Page 29: MExxxElectromagnetic NDE - ase.uc.edu

AC Impedance Matching

VgV

gZ

Z

ReP P

2 *g*

*g g

1 Re Re2 2 ( )( )

V ZP I VZ Z Z Z

*g g g,Z Z R R X X

2g

maxg8

VP

R

2g

2Re2 4

g g

g

V R i XP

R

Page 30: MExxxElectromagnetic NDE - ase.uc.edu

1.3 Maxwell's Equations

Page 31: MExxxElectromagnetic NDE - ase.uc.edu

Vector Operations

0

limSS S

AA e dℓCurl of a vector:

0lim yS x z

V

dAA A

V x y z

A SA

Divergence of a vector:

x y zx y z

e e eGradient of a scalar:

2 2 22

2 2 2x y z

Laplacian of a scalar:

2 2 2 2x x y y z zA A A A e e eLaplacian of a vector:

2( ) ( ) A A AVector identity:

x y zx y z

e e eNabla operator:

2 2 22

2 2 2x y z

Laplacian operator:

y yx xz zx y z

A AA AA Ay z z x x y

A e e ea

Page 32: MExxxElectromagnetic NDE - ase.uc.edu

Maxwell's Equations

Ampère's law:

Faraday's law:

Gauss' law:

Gauss' law:

t

DH J

t

BE

q D

0 B

Field Equations:

conductivity J E

permittivity D E

permeability

B H

Constitutive Equations:

(ε0 ≈ 8.85 10-12 As/Vm)

(µ0 ≈ 4π 10-7 Vs/Am)0 r

0 r

Page 33: MExxxElectromagnetic NDE - ase.uc.edu

1.4 Electromagnetic Wave Propagation

Page 34: MExxxElectromagnetic NDE - ase.uc.edu

Electromagnetic Wave Equation

Maxwell's equations:

( )it

DH J E

it

BE H

0 E

0 H

( ) ( )i i H H

( ) ( )i i E E

2( ) ( ) A A A

2 ( )i i E E

2 ( )i i H H

2 ( )k i i

2 2( )k E 0

2 2( )k H 0

( )0

i t k xy y yE E e E e e

( )0

i t k xz z zH H e H e e

Example plane wave solution:

Wave equations:

Harmonic time-dependence: 0 0andi t i te e E E H H

Page 35: MExxxElectromagnetic NDE - ase.uc.edu

Wave Propagation versus Diffusion

Propagating wave in free space:

/ ( / )0

x i t xyE e e E e

/ ( / )0

x i t xzH e e H e

Diffusive wave in conductors:

kc

0 0

1c

1 ik i

1f

( / )0

i t x cyE e E e

( / )0

i t x czH e H e

2 ( )k i i

δ standard penetration depth

c wave speed

k wave number

Propagating wave in dielectrics:

d0 0 r

1c r

d

cnc

n refractive index

Page 36: MExxxElectromagnetic NDE - ase.uc.edu

Intrinsic Wave Impedance( )

0i t k x

y y yE E e E e e ( )0

i t k xz z zH H e H e e

( )it

DH J E

( )0

z i t k xy y

H i k H ex

H e e

( )k i i

Propagating wave in free space:0

00

377

Propagating wave in dielectrics:0 0

0 r n

Diffusive wave in conductors:1i i

0

0

E iH i

Page 37: MExxxElectromagnetic NDE - ase.uc.edu

PolarizationPlane waves propagating in the x-direction:

( ) ( )0 0

i t k x i t k xy y z z y y z zE E E e E e E e e e e

( ) ( )0 0

i t k x i t k xz z y y z z y yH H H e H e H e e e e

0 00

0 0

y z

z y

E EH H

0 0 0 0y zi iy y z zE E e E E e

y

z

y

z

y

z

Ey

EzE

0º (or 180º)y z

linear polarization elliptical polarization

90º (or 270º)y z

circular polarization

E E

Page 38: MExxxElectromagnetic NDE - ase.uc.edu

Reflection at Normal Incidence

x

y

incident

reflected transmitted

I( )i i0

i t k xyE e E e

Ii0 ( )i

Ii t k x

zE e

H e

I( )r r0

i t k xyE e E e

Ir0 ( )r

Ii t k x

zE e

H e

II( )t t0

i t k xyE e E e

IIt0 ( )t

IIi t k x

zE e

H e

I medium II medium

Boundary conditions:

( 0 ) ( 0 )y yE x E x i0 r0 t0E E E

( 0 ) ( 0 )z zH x H x i0 r0 t0H H H

i0 r0 t0

I I II

E E E

r0 II I

i0 II I

ERE

t0 II

i0 II I

2ETE

Page 39: MExxxElectromagnetic NDE - ase.uc.edu

Reflection from Conductors

x

y

incident

reflected transmitted“diffuse” wave

I dielectric II conductor

1 0f

0II I

in

II I

II I1R

negligible penetration

almost perfect reflection with phase reversal

Page 40: MExxxElectromagnetic NDE - ase.uc.edu

Axial Skin Effect

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3Normalized Depth, x / δ

Nor

mal

ized

Dep

th P

rofil

e, F

magnitude real part

0 ( ) i tyE F x e E e

0 ( ) i tzH F x e H e

δ standard penetration depth

/ /( ) x i xF x e e

1f

x

y

propagating wave diffuse wave

dielectric (air) conductor

Page 41: MExxxElectromagnetic NDE - ase.uc.edu

Transverse Skin Effect

0 0( )zE E J k r

1f

2k i 1 ik

012 ( )

k IEa J k a

Jn nth-order Bessel function

of the first kind

02 1

( )( )2 ( )z

k a J k rIJ rJ k aa

z

r

current density

conductor rod

current, I 2a

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1Normalized Radius, r/a

Nor

mal

ized

Cur

rent

Den

sity

, J/J

DC

a/δ = 1a/δ = 3a/δ = 10

magnitude, DC 2IJa

Page 42: MExxxElectromagnetic NDE - ase.uc.edu

Transverse Skin Effect

z

r

current density

conductor rod

current, I 2a

0.1

1

10

100

0.01 0.1 1 10 100

Normalized Radius, a/δ

Nor

mal

ized

Res

ista

nce,

R/R

0

R

0R R

VZ R i XI

0 2RA a

0

1

( )( )2 ( )

JGJ

0 ( )Z R G k a

/lim (1 )

2a

aG i

/lim

2aR

a