Metz HSM 2010 Lecture

download Metz HSM 2010 Lecture

of 30

Transcript of Metz HSM 2010 Lecture

  • 8/8/2019 Metz HSM 2010 Lecture

    1/30

    HSM 2010

    Metz, December 8-10, 2010

    Modelling of high strain rate behaviour of

    metals accounting for micro-shear banding

    Ryszard B. PCHERSKI

    Institute of Fundamental Technological Research

    Polish Academy of Sciences, Warsaw, Poland

  • 8/8/2019 Metz HSM 2010 Lecture

    2/30

    Outline

    1. Shear banding:

    - one of the mechanisms of plastic flow in metallic

    materials (also in the case of HSM processes, e.g.:

    A. Molinari, C. Musquar and G. Sutter, [2002], P. Chevrier et al.)

    - the dominant mechanism of plastic deformation ofufg, nano-metals and glassy metals.

    2. Constitutive relations.

    3. Identification of the viscoplasticity model forufg and nano-crystalline Fe.

    4. Effects of strength differential and Lode angle

    5. Concluding remarks.

  • 8/8/2019 Metz HSM 2010 Lecture

    3/30

    Observations of shear banding - ufg Fe

    d = 980 nm d = 268 nm

    quasistatic high-strain rate deformations

    Change in deformation mode of ultrafine grained consolidated iron under

    uniaxial compression: (a) uniform low-rate deformation with d = 980 nm; (b)

    non-uniform low-rate deformation with d = 268 nm and (c) non-uniform high-rate

    deformation with d = 268 nm (Jia, Ramesh and Ma [2003]) .

    d = 980 nm d = 268 nm

    crystallographic slip shear banding

    d = 268 nm

  • 8/8/2019 Metz HSM 2010 Lecture

    4/30

    Experimental results of Jia, Ramesh and Ma,Acta Materialia, 51 (2003)

    Deformation of nano - and ufg metals

    SBf - shear bandingcontribution

    function

    Z. Nowak, P. Perzyna

    R.B. Pecherski,Archives of Metallurgy and

    Materials 52, 2007 freepdf available on the Journal

    website.

    Typical stress-strain curves

    obtained for the consolidated

    iron under quasi-static and

    high-strain-rate uni-axial

    compression.

  • 8/8/2019 Metz HSM 2010 Lecture

    5/30

    Trace of

    the cluster

    of MSB

    CSB

    [Dziado, 1993]

    (courtesy of profesor Andrzej Korbel)

    Multiscale hierarchy of shear bands in

    polycrystalline metals

    Micro-shear band - longand very thin (ca. 0.1 )sheet-like region ofconcentrated andintensive plastic shearcrossing grain boundarieswithout deviation

    Particular MSB operatesonly once and develops

    fully in very short time

    m

  • 8/8/2019 Metz HSM 2010 Lecture

    6/30

    Literature

    1. R.B. Pcherski, Modelling of large plasticdeformations based on the mechanism of micro-shearbanding. Physical foundations and theoreticaldescription, Arch. Mech. (1992).

    2. R.B. Pcherski, Macroscopic measure of the rate ofdeformation produced by micro-shear banding, Arch.Mech. (1997).

    3. R.B. Pcherski, Macroscopic effects of micro-shear

    banding in plasticity of metals, Acta Mechanica (1998)

  • 8/8/2019 Metz HSM 2010 Lecture

    7/30

    Multiscale hierarchy of shear bands

    in polycrystalline metals

    Schematic illustrationof multi-level hierarchy

    of micro-shear bands:

    a) polycrystalline RVE

    with the increasingzone of shear banding,

    b) cluster of active

    micro-shear bands,

    c) a single micro-shear

    band (comp. of CSB)

    R.B. Pcherski, Macroscopic measure of the rate of deformationproduced by micro-shear banding, Arch. Mech. [1997]

  • 8/8/2019 Metz HSM 2010 Lecture

    8/30

    Macroscopic measure of the rate of deformationaccounting for shear banding

    R.B. Pcherski, Arch. Mech. 49, (1997)

    , 2

    p p p

    S SB

    p

    S

    SB

    p

    SB

    p pSB SB

    SB

    rateof plastic deformation by slip

    rate of plastic deformation by shear banding

    d d d shear strain ra

    d f instantaneous shear banding contribution

    d

    te

    D D D

    D

    D

    D D

    (1 )

    S SB

    SB s

    f

    f

    SBSBf

    0

  • 8/8/2019 Metz HSM 2010 Lecture

    9/30

  • 8/8/2019 Metz HSM 2010 Lecture

    10/30

    Account for the change of deformation path (Lode angle )

    K. Kowalczyk Gajewska, R.B. Pcherski (2005)

    ( ( ))1

    oMS

    ffa b

    e

    p

    p

    pp

    D

    Ddet

    2

    36)cos(

    ))cos(1()(

  • 8/8/2019 Metz HSM 2010 Lecture

    11/30

    V SBSB

    Vf

    V

    RepresentativeVolume Element

    traversed by shear

    bands

    V

    VSB

    VsViscoplastic flow law

    accounting for shear

    banding in application for

    ufg metals(Z. Nowak, P. Perzyna, R.B.

    Pecherski, Arch. Metall.

    Materials, 2007)

    S SB

    s SBV V V

    SBSBf

    Volume fraction

    of shear banding

    Inst. contr.

    of shear

    banding

  • 8/8/2019 Metz HSM 2010 Lecture

    12/30

    ,

    , ( ),

    (1 )

    yield stren

    (

    gth at sh

    (1 )(

    ea

    1 ) ,

    r

    ) 01

    s SB

    s s s SB SB SB SB SB

    V SB s SB V SB SB V SB

    V

    s S S SBB B

    P P P

    P k V P k V V P k V

    Vk k f f k f f

    k k

    k

    f

    V

    for kf

    Balance of plastic deformation power in RVE

    assumption - no hardening

    0

  • 8/8/2019 Metz HSM 2010 Lecture

    13/30

    Viscoplastic flow law accounting for shear banding

    12

    0

    2 2

    0

    2

    (1 )(1 )

    (1 ) , 0

  • 8/8/2019 Metz HSM 2010 Lecture

    14/30

    Viscoplasticity model accounting

    for SDE

    1

    2 2 2

    ,

    ( )

    1 3( 1) 9( 1) 4

    2

    p

    G G

    T

    Y

    m m e

    G G

    G F

    F

    D

    =

    G

  • 8/8/2019 Metz HSM 2010 Lecture

    15/30

    Identification procedure:

    if d > 300 nm ( , , , )

    if d < 300 nm ( , , , )

    cal

    eq

    0SB

    f 0 2n 3 1

    3 0x10vp s

    0 08D

    0 1SBf 0B 5 0a 0 0 95SBf

    0( ) ( )( ) 1 ( )

    vpvp n

    caleq A d B d d

    D

    0

    0

    0

    121 exp( ( ) )

    1 ( ) 1( )1 exp( ( ) )

    SB vpvp

    cal SB

    vpeq

    f

    a b dfA d

    da b d

    D

  • 8/8/2019 Metz HSM 2010 Lecture

    16/30

    Grain diameter

    d

    A(d) [MPa]

    A*

    (d) [MPa]

    b (d) B(d)[ MPa ]

    80 nm 1205.0 98.28 0.0

    138 nm 1120.0 94.95 0.0

    268 nm 710.0 28.59 0.0

    980 nm 106.78 ---- 602.25

    20m 100.28 ---- 269.41

    Identified parametersDynamic compression

  • 8/8/2019 Metz HSM 2010 Lecture

    17/30

  • 8/8/2019 Metz HSM 2010 Lecture

    18/30

    S ( )

  • 8/8/2019 Metz HSM 2010 Lecture

    19/30

    2 22 2

    0 0

    ' '23

    39 3 0

    3

    13

    0 1

    ,

    ,

    :

    T C T C

    C T T C Y Y Y Y

    e m Y Y m Y Y

    m etr

    f m v cr + =

    W. BURZYSKI (1900-1970) Study on Material Effort Hypotheses,1928 , PhD Thesis (in Pol.)

    Ueber die Anstrengungshypothesen, Schweiz. Bauzeitung,1929.

    Theoretical foundations of the hypotheses of material effort,

    Engineering Transactions, 56, No. 3, 269305, 2008 the English translation of the paper published in Polish

    in Czasopismo Techniczne, 47, 1929, 1-41, Lww.

    A new, well founded physically, energy-based criterion was proposed:

    f

    v

    - density of elastic energy of distortion

    - density of elastic energy of volume change

    2 23

    Y Y

    T C

    Y Y Y

    Huber Mises Hencky

    condition

    1

    0

    Beltrami

    Huber

  • 8/8/2019 Metz HSM 2010 Lecture

    20/30

    3 T CY Y Y

    The depiction of particular cases ofBurzyski yield condition inthe pressure - equivalent stress coordinates

    (W. Burzyski [1928], M. yczkowski [1999]).

    3 T CY Y Y

    23 T CY Y Y

    ,e m ,e m

    Paraboloid limit surfaces according to Burzyski criterion

  • 8/8/2019 Metz HSM 2010 Lecture

    21/30

    Paraboloid limit surfaces according to Burzyski criterion(T. Fr, Z. Kowalewski, R. B. Pcherski, A. Rusinek

    Engineering Transactions [2010])

    75%Cr - 25% Al2O3 composite 6061+2Zr+20Al2O3 composite

    3

  • 8/8/2019 Metz HSM 2010 Lecture

    22/30

    Comparison of the formulations proposed by

    F. Schleicher [1926] and W. Burzyski [1928]

    According to W.B.

    According to F.S. Poisson ratio

  • 8/8/2019 Metz HSM 2010 Lecture

    23/30

    Yield condition accounting for SDE and Lode angle(R.B. Pcherski, P. Szeptyski, M. Nowak [2010])

    W. Burzyski [1928](cf. English translation in

    Engineering Transactions, 2010

    available on internet)

    f

    v

    - density of elastic energy of distortion

    - density of elastic energy of volume change

  • 8/8/2019 Metz HSM 2010 Lecture

    24/30

    Huber-Mises-Hencky cylinder

    Burzynski-Drucker-Prager cone

    Burzynski-Torreparaboloid

    ellipse

    m

    e

    YC

    T

    Y3

    C

    Y3

    YT

    The Burzyski yield condition and its particular cases:

    ellipsoid, paraboloid, cone and cylinder.

    SDE

    SDE Strength Differential EffectC

    Y

    T

    Y

    k

  • 8/8/2019 Metz HSM 2010 Lecture

    25/30

    Examples of yield surfaces accounting to the

    effect of Lode angle

  • 8/8/2019 Metz HSM 2010 Lecture

    26/30

    Examples how to account for Lode angle

    Raniecki&Mrz [2009]

  • 8/8/2019 Metz HSM 2010 Lecture

    27/30

  • 8/8/2019 Metz HSM 2010 Lecture

    28/30

    Our identification for INCONEL 718

    Empirical relaton:

    Energy-based criterion

  • 8/8/2019 Metz HSM 2010 Lecture

    29/30

    Concluding remarks1. The plasticity flow law accounting for shear

    banding was applied for modelling evolution oftexture and metal forming processes (K. Kowalczyk-Gajewska, Z. Mrz, R.B. Pcherski [2005], [2007], [2009]).

    2. Viscoplasticity constitutive relations were

    developed for modelling the behaviour of ufg andnc-metals (Z. Nowak, P. Perzyna, R.B. Pcherski [2007])

    3. The effect ofLode angle was described in the

    shear banding contribution in the rate ofdeformation accounting for the influence of the

    change of deformation path and also in the

    formulation of yield criterion.

  • 8/8/2019 Metz HSM 2010 Lecture

    30/30

    Thank you for your attention