Methods of Thermal Analysis€¦ · Fire is the general analysator of matter. ... manner as can be...

53
Methods of Thermal Analysis Michael Feist Berlin Humboldt University, Institute of Chemistry 1. Conventional Thermal Analysis 2. Simultaneous Thermal Analysis 3. Hyphenated techniques in Thermal Analysis (EGA) 4. PulseTA ® and catalysis 5. Determination of other thermal properties

Transcript of Methods of Thermal Analysis€¦ · Fire is the general analysator of matter. ... manner as can be...

  • Methods of Thermal Analysis

    Michael Feist

    Berlin Humboldt University, Institute of Chemistry

    1. Conventional Thermal Analysis

    2. Simultaneous Thermal Analysis

    3. Hyphenated techniques in Thermal Analysis (EGA)

    4. PulseTA® and catalysis

    5. Determination of other thermal properties

  • 1. Conventional Thermal Analysis

    History

    Cooling curves

    The phase rule

    Measuring principles of DTA and DSC

    Information content

    Sample carriers

  • Aristoteles (384-322 B.C.)

    Fire is the general analysator of matter.

    Robert Boyle „The Sceptical Chemist“ (1661):

    No, it is not, because it is destructive.

    _________________________________________________

    Thermal analysis: T = f(t)

    ∆T = f(t or T)Following the change of a physical property of asubstance subjected to a controlled heating programdepending on time or temperature.

  • Joseph Black (1728-1799)

    Latent heat

    Antoine L. Lavoisier (1743-1794)

    Mass balance of chemical reactions

    Henri-Louis LeChatelier (1850-1936)

    Pt - PtRh10 thermocouple for measuring T (1887)

    William C. Roberts-Austen (1843-1902)

    Differential measuring setup with inert reference (1899)

    Josiah Willard Gibbs (1839-1903)

    The phase rule F = K - P +1 (for p=const)

  • In many cases, the temperature-depending change of properties characterize a substance in the same unequivocal manner as can be done by its formula or its structure.

    K. Heide (1982)

    The subject investigated: A phase or a phase mixture

    Changing temperature changes the phase state which yields

    Information about purity

    state diagrams

    material constants

  • ThermogravimetryTG

    Mass

    DifferentialScanning Calorimetry

    DSC

    DifferentialThermal Analysis

    DTA

    TemperatureHeat flow

    Thermosonimetry

    Thermooptical AnalysisTOA

    ThermomechanicalAnalysis

    TMA

    ThermodilatometryTD

    Other parameterse.g. length

    Thermal Analysis

  • Classical thermal analysis -

    Heating and cooling curves of one-component systems

    T T

    t t

    m.p.

    melting solidification

    F=1

    F=0

    F=1

    second phase appears

    F = K - P + 2 - E E = 1 for p=const

    F = K - P + 1

  • Differential measuring setup - Generation of the DTA signal

    Asymmetricsignal shape

  • The information contained in the DTA signal

    h = u + pvdh = du + pdv + vdp

    du = dq - pdvdq = du + pdv

    dh = dq + vdpvdp = 0

    dh = dqP

  • DTA sample holders

    Pt or Al2O3crucibles (baker)

    Metal block with symmetric holes

    Pt or Al2O3 crucibles with „crucible shoes“ as thermocouples

    Rapidly ∆T=0 :High resolution

    „Slower“ :High sensitivity

    Minimal sample mass

  • Heating of the environment(oven) - sample and measuring system follow passively; Sample and refence areconnected via a gold band which sets ∆T=0

    Variable heat flow from separate heaters to maintain ∆T=0

    Difference in heating power is the measuring signal

    Differential Scanning Calorimetry

  • 2. Simultaneous Thermal Analysis

    Heating and cooling (CsFeF4 ·2 H2O)

    Repeated heating runs (NaClO4 · H2O)

    Gas changes (Coal)

  • TG

    DTG

    DTA

    2mg

    0,4mg/min

    4µV

    T

    -10,76 %

    81107

    597

    606659

    676

    687

    636

    638 595

    594

    100 300 500 700 700 600T / °C

    heating cooling

    CsFeF4 · 2 H2O

  • 301

    54

    55150

    308

    307

    303

    303305144

    4,33%

    7,91%

    TG

    DTA

    DTA

    TG

    n(H2O)

    1

    0,5

    0

    1st + 2nd heatingin N2

    1st coolingin N2

    2 hrs isothermallyin moist air

    T

    endo

    T

    TG

    NaClO4 · H2O

    T / °C

  • TG-Analysis of coal with changing atmosphere

    One TA run -

    Four parameterscharacterizinga natural product

    Ottaway (1981)

  • S

    SS

    O OO

    O

    O

    O

    O NN+

    N–

    N+N

    –N

    NN+

    N– hν, ∆

    - 3 N2

    S

    SS

    O OO

    O

    O

    O

    O N

    N

    N

    Explosive decompositionof a Tris-azide at 130°C15 mg sample

    C24H15S3O7N9 25,55% N

  • 3. Hyphenated Techniques in Thermal Analysis (EGA)

    Gas flow in thermobalances

    Pressure reduction and unfalsified gas transfer

    Coupling systems in TA-MS

    Examples

  • Speed and Flow ⇒ delay in detection ?

    Flow profile ⇒ laminar, turbulent ?Distribution of evolved gases inpurge gas stream

    Flow direction ⇒ influence of convectionControlled convection in verticalTG systems (chimney effect)

    Temperature gradients

    Position of transfer line connection

    Gas flow in thermobalances -The influence of transport conditions

  • Pressure reduction

    103 mbar → 10-5 mbar

    Condensation and secondary reactionsUnfalsified gas transferDifferent viscosity - Demixing

    Attribution to a chemical processPyrolysis or Evaporation ?

    Fragmentation in MS or sample behavior ?

    Three main problems for TA-MS coupling devices

  • OrificeValve

    Throttle

    Pump

    Capillary

    AdapterMS

    Capillary Coupled System 2400°C

  • MS analysator

    Overflow

    Orifice 2

    Orifice 1

    Cooling Trap Orifice Coupling System

    1500°C

  • MS analysator

    Orifice 2 Skimmer

    Orifice 1

    Skimmer Coupling System

    Overflow

    1500°C

  • NETZSCHSTA 409 C Skimmer®

  • Amorphous ZrO2 · n H2O → ZrO2 (tetragonal)

    -40

    -20

    0

    20

    40

    DTA /uV

    75

    80

    85

    90

    95

    100

    TG /%

    100 200 300 400 500 600 700Temperature /°C

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    7.0

    8.0

    Ionenstrom *10-9 /Am18 H2O

    m44 CO2

    m17 OH

    TG

    DTG

    DTA

    -4.89

    -8.77-0.97

    426

    ↑ Exo

    Dehydratation,Dehydroxylation

    Squeezing out of residualH2O and CO2 moleculesduring the crystallization

  • 0

    0.2

    0.4

    0.6

    0.8

    1.0

    Ionenstrom *10 -9 /A

    50 100 150 200 250Temperatur /°C

    60.0

    65.0

    70.0

    75.0

    80.0

    85.0

    90.0

    95.0

    100.0

    TG /%

    m18

    m28

    Santos D2O Bohne(in Ar / 20%O2)

    m44

    m19

    TG

    196 °C

    196 °C

    214 °C

    Simulation of the roasting of coffee beans

    Corundum platecrucible, Pt netArgon / 20% O2

    m/z 18 (H2O+) m/z 28 (CO+, N2+)

    m/z 19 (HDO+) m/z 44 (CO2+, ... )

    m/z 20 (D2O+, Ar++)

  • m/z 28 (12CO+, 14N2+)

    m/z 29 (13CO+, 14N15N+)

    i28 : i29 = 16 : 1

    65

    70

    75

    80

    85

    90

    95

    100

    TG /%

    50 100 150 200 250Temperatur /°C

    0

    1.0

    2.0

    3.0

    4.0

    5.0

    [4]Ionenstrom *10 -10 /A

    m28

    m29 (x10)

    Santos D2O Bohne(in Ar / 20%O2)

    m44TG

    196 °C

    215 °C

    • No discrimination between CO and N2• Bean bursts due to water pressure

    • Decarboxylation at higher temperature

  • m/z 68 (C3H4N2+, ... )

    m/z 80 (C6H4N2+, ... )

    m/z 109 (coff)

    m/z 194 (coffM+)

    • MAILLARD products together with CO2• Three roasting stages

    • Coffeine partially evaporates

    0

    0.5

    1.0

    1.5

    Ionenstrom *10 -12 /A

    50 100 150 200 250Temperatur /°C

    60.0

    65.0

    70.0

    75.0

    80.0

    85.0

    90.0

    95.0

    100.0

    TG /%

    Santos D2O Bohne(in Ar / 20%O2)

    m80

    m68

    m109

    m194

    TG

    196 °C

    214 °C

  • 4. Pulse Thermal Analysis® and Catalysis

    Quantitative evaluation of MS or FT-IR signals

    Taylor made redox catalysts

    Applications

  • Maciejewski et al. (1997)

    PulseTA® with aNETZSCHSTA 409 C Skimmer®

    Injection of known voluminaof one or two gases

    Quantitative evaluation ofMS and FT-IR signals

    Appropriate m/z⇒ chemical composition

    TG ⇒ sorption phenomena

  • Calibration of MS signals for PulseTA® Maciejewski et al. (1997)

    1. On line

    2 NaHCO3 → Na2CO3 + CO2 + H2O

    2 PdO → Pd + O2

    2. Off line

    Injectionof a known gas volume into the purge gas

    SeparateTA run of a suitable calibration substance

  • Taylor made catalysts with PulseTA® (1)

    Maciejewski et al. (1997)

    Reduction of CuO

    by H2 pulses at 450°C

    Oxidation of Pd/ZrO2by O2 pulses at 100°C

  • Taylor made catalysts with PulseTA® (2)

    Maciejewski et al. (1997)

    Reduction of PdO/ZrO2by CH4 pulses

    and its subsequent

    re-oxidation

    by O2 pulses at 500°C

  • Mass change of H-ZSM-5 zeolite after pulses of 1 ml NH3 at 200°C

    Chemisorption and Physisorption studied by PulseTA®

    Eigenmann et al. (2000)

  • The HTB structure of β-CrF3 (hexagonal tungsten bronze)

    De Pape et al. (1987)

    • (CrF6) octahedra

    • Hexagonal channels

    • Hosting of small molecules

    (NH4)3CrF6β-CrF3 · n NH3

    β-CrF3 Menz & Bentrup (1992)

    β-CrF3 · m H2O · n NH3

  • PulseTA Calibration of m19with NaHF2 · n H2O

    m/z 20 HF+ H218O+ Ar++

    m/z 19 F+

    NaHF2 · n H2O → NaF + HF + n H2O

    (1) Determination of mH2O by PTA after calibration of m/z 18 with NaHCO3

    (2) Calculation of mHF using the residue mass

    msample = mNaF + mHF + mH2O (3) Calibration factor:

    = 1,21mg

    0,236 10 As6⋅ − = 5,127 ⋅ 106 mg/As

    F HF( ) = mHF calA cal

    ( )( )m19

    100 200 300 400

    0,0

    0,5

    1,00,12 H2O

    =0,149 mgA sAm18=0,188 10

    -6

    A sAm19=0,236 10-6

    I.C.

    10-9 [

    A ]

    T [ °C]

    70

    80

    90

    100

    in N2

    NaF + HF + 0,12H2O

    Ton112

    endo

    .0,12 H2ONaHF2

    30,07%

    DTA

    TG

    ∆m/m

    [%]

    m20m19

    m18

  • 100 200 300 400 500 600 700

    0

    1

    2

    3

    I.C. [

    10 -9

    A]

    T [ °C]

    92

    94

    96

    98

    100

    0,05 H2O .

    DTG

    endo

    599

    Te 593

    . 0,06 NH3β-CrF3

    0,27mg

    1,25mg

    0.40mgDTA

    TG

    ∆m/m

    [%]

    1,22mg

    0,10mg0,21mg

    151917

    18

    5x

    in Ar • Water release in threetemperature ranges

    • Slight endothermal shiftdue to pyrohydrolysis

    • β-CrF3 structure collapsesat 593°C ⇒ NH3 loss

    • Major part of NH3 lost onlybetween 589 and 604°C

    Quantitative descriptionof all details of the thermalbehavior of a fluoride beingsensitive to hydrolysis

  • 1. Transformation of unwanted CFC's

    Chlorofluorocarbon (CFC) ⇒ Hydrofluorocarbon (HFC)

    Substitution of refrigerants Recycling of refrigerators

    __________________________________________________

    Hydrodechlorination Removal of Cl from C-Clby use of H2 Replacing Cl with H

    Dehydrochlorination Elimination of HCl

  • 1,1 Dichlorotetrafluoroethane , CF3-CCl2F (CFC-114a)

    Nomenclature: 1 1 4 aC-1 H+1 F (Cl = rest)

  • The HTB structure of β-AlF3 (hexagonal tungsten bronze)

    De Pape et al. (1987)

    • (AlF6) octahedra

    • Hexagonal channels

    • Strong LEWIS acid sites

    • Hosting of small molecules

  • Catalytic hydrodechlorination of CFC-114a -

    via stepwise or carbene mechanism

    CF3-CCl2F + n H2

    CF3-CH2FHFC-134a

    CF3-CH3HFC-143a

    CF3-CHClFHCFC-124

    CF3-CF:

    - 2 HCl

    - HCl- HF

    - HCl

  • CF3-CCl2F R114a

    CF3-CHClF R124

    CF3-CH2F R134a

    CF3-CH3 R143a

    Fragment

    31 (52) 31 (49) 31 (18) 31 (12) CF+

    - - 33 (100) 33 (8) CH2F+

    - - 34 (100) 34 (8) CHDF+

    35 (18) 35 (8) 35 (100) 35 (8) CD2F+ , 35Cl+

    - 51 (52) 51 (20) 51 (3) CHF2+

    - 52 (52) 52 (20) - CDF2+

    - - - 65 (40) CH3CF2+

    - 67 (100) - 67 (40) CHClF+, CHD2CF2+

    68 (8) 68 (100) - - CDClF+ , C37ClF+

    69 (40) 69 (27) 69 (72) 69 (100) CF3+

    83 (5) - 83 (65) 83 (2) CF3CH2+

    85 (57) 85 (1) 85 (65) - CF3CD2+ , CClF2+

    101 (80) 101 (40) 101 (1) - CCl2F+ , CF3CHF+

    - 102 (40) 102 (1) - CF3CDF+, CF3CH2F+

    135 (100) - - - CF3CClF+

    Discrimination

    of HFC‘s

    via

    characteristic

    mass numbers

    Why D2 used ?

  • Why D2 used ? (2)

    to distinguish the main reaction (DCl) from side reactions (HCl)

    m/z 39 (D37Cl+)

    (1) Reaction of the freon with Al-OH groupsCF3-CCl2F + 4 OH- → CO2 + CO + 4 F- + 2 HCl + H2O

    (2) Reaction of D2 with neighboured surfacial Al-OH groups

    D• … HO D• … DO Pd Al → Pd Al + H D

    Side reactions :

  • Main steps of a PulseTA experimentcharacterizing a Pd/β-AlF3 catalyst

    1. Thermal pretreatment in N2 at 300°C

    2. Cooling down to 25°C

    3. CFC pulse at 25°CMS : m/z in SIM modeTG : Chemi- / Physisorption ?

    4. D2 pulse at 25°CTG: Chemisorption: activated D...D

    5. Heating in N2 with 10K/min up to 270°C withPulses of CFC and/or D2

    MS : Products ?

  • 0 20 40 60 80

    Ion

    curr

    ent /

    A

    m102 (x5)

    m18

    m33 (x1000)

    Time / min

    92

    94

    96

    98

    100

    T

    TG

    m101

    0

    100

    200

    300

    ∆m/%

    1E-9

    T/°C

    m34 (x1000)

    m39 (x1000)

    ß-AlF3/Pd + R114a 5E-11

    • Freon pulses only

    • m101 (CCl2F+) = CFC-114a

    • No educt consumption

    • No product formation

    • Temporary buoyancy effects (freon density)

    • No adsorption

  • • Freon and D2 pulsedsimultaneously

    • First educt pulse:chemisorption of D2

    • Physisorption of productsat higher T

    • Water as byproduct

    0 20 40 60 80

    E-10

    T/°C

    Time / min

    Ion

    curr

    ent /

    A

    ß-AlF3/Pd + R114a / D2

    m102 (x5)

    m33 (x10)

    m34

    92

    94

    96

    98

    100

    E-9

    TG0,24%

    ∆m/%

    (x10)m18

    m101

    0

    100

    200

    300

    m39 (x0.5)

  • 0 20 40 60 80

    ß-AlF3/Pd + R114a / D2

    Time / min

    Ion

    curr

    ent /

    A

    E-11m68(x0.1)

    m65(x0.5)

    92

    94

    96

    98

    100

    T/°C∆m/%

    m20(x0.1)

    m4

    TG

    0

    100

    200

    300

    T

    0.06mg

    5E-10

    0 20 40 60 800 20 40 60 80

    m52(x0.5)

    0 20 40 60 80

    • m4 (D2+): educt consumption

    • m20 (HF+): byproduct

    • m65 (CH3CF+): formation ofhydrogenated products

    • m52 (CDF2+): bothHCFC-124 and HFC-134a

    ⇓m102 (CF3CDF+, CF3CH2F+)remains const and low

  • Catalytic hydrodechlorination of CFC-114a -

    via stepwise or carbene mechanism

    CF3-CCl2F + n H2

    CF3-CH2FHFC-134a

    CF3-CH3HFC-143a

    CF3-CHClFHCFC-124

    CF3-CF:

    - 2 HCl

    - HCl- HF

    - HCl

  • 0 20 40 60 80

    R143a

    Time / min

    ß-AlF3/Pd + R134a / D2

    DFm21

    m65

    92

    96

    100

    2E-9

    0.06mg

    R134am33

    TG

    0

    100

    200

    300

    400T/°C

    5E-12

    ∆m/%

    0 20 40 60 80

    Pulsing the intermediateHFC-134a

    • m33 (CH2F+): no consumptn.

    • m21 (DF+): no reaction

    • m65 (CH3CF+): no formationof HFC-143a

    ⇓No direct transformationof HFC-134a into 143a -

    Confirms the carbene mechanism.

  • 5. Other thermal properties

    Heat capacity

    Thermal diffusivity

  • 3 step procedure fordetermination of Cpby DSC :Heat flow rate of1. Empty crucibles2. Calibr. substance R3. Sample S

    Höhne, Hemminger, Flammersheim (1996)

    β⋅−=−==∆ )(d

    dd

    d- RSRRSSRSSR CCtTC

    tTCΦΦΦ

    β - average heating rate(different heating ratesof sample and reference)

  • Thermal diffusivity - The Laser Flash Method (1)

    ρλ

    pctT =

    ∂∂

    q = - λ grad THeat flow

    Thermal diffusivity

    T = T(x,y,z)λ - thermal conductivity

    cp - heat capacityρ - density

    Temperatureresponse

    Sample diskLaser flash

    T = f(t)

  • Thermal diffusivity - The Laser Flash Method (2)

    The t1/2 method

    2/1

    21388.0

    tda ⋅=

  • Thermal diffusivity - The Laser Flash Method (3)