Methods for Laser Burning Data Preprocessing: Parameterization of Pulses

25
Methods for Laser Burning Data Preprocessing: Parameterization of Pulses Ing. Jana Hájková DSS 8. 4. 2009

description

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses. Ing. Jana Hájková DSS 8. 4. 2009. laser burning project. project description aim: to create a n adjustable system for laser burning simulation – part of the system cooperation - PowerPoint PPT Presentation

Transcript of Methods for Laser Burning Data Preprocessing: Parameterization of Pulses

Page 1: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of

Pulses

Ing. Jana HájkováDSS 8. 4. 2009

Page 2: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 2/25

laser burning project• project description

– aim: to create an adjustable system for laser burning– simulation – part of the system

• cooperation– NTC – laser burning simulation, data explorer, measurement of

burned samples– Lintech – laser samples burning– KMA – automatic pulse detection algorithm development

• possible ways of research– data preprocessing (samples parameterization, pulse

detection)– burning simulation– simulation verification, samples comparison

Page 3: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 3/25

laser burning principle 1/2• laser – electromagnetic radiation• after the radiation strikes the material:

– reflected, absorbed, transmitted– excitation of free electrons (metals) – vibrating in the structure of the material (insulators)– material heating – melting, boiling, vaporization,

plasma

Page 4: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 4/25

laser burning principle 2/2• previous description –laser affects the material

surface continuously• more laser pulses burning

• parameters affecting the burning results:– used material and laser– material roughness– number and position of burned laser pulses– laser motion– laser angle of incidence according to the material surface

Page 5: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 5/25

literature – laser burning• Anisimov, S. I., 1968: Vaporization of metal absorbing laser

radiation. Soviet Physics JETP, Vol. 27, pp. 182.

• Bäuerle, D., 2000: Laser Processing and Chemistry. Berlin Springer Verlag. ISBN: 978-3540668916.

• Bulgakova, N. M., Stoian, R., Rosenfeld, A., Hertel, I. V., Campbell E. E. B., 2007: Fast Electronic Transport and Coulomb Explosion in Materials Irradiated with Ultrashort Laser Pulses. Laser Ablation and its Applications, Springer Berlin / Heidelberg. ISBN: 978-0-387-30452-6.

• Dahotre, N. B., Harimkar, S. P. 2008. Laser Fabrication and Machining of Materials, Springer, New York, USA.

• Steen, W. M., 1991: Laser Material Processing. Springer-Verlag, New York Berlin Heidelberg. ISBN: 0-387-19670-6.

Page 6: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 6/25

laser burning simulation• reasons for the simulation

– real burning of experiments with usage of optimal laser parameters• pulse burning:

– into one place– along a curve– in area

• simulation model design– based on real data

Page 7: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 7/25

input data• samples burned and measured by the confocal

microscope• surface high map

• data set– each sample burned several times– pulses number sequence

(influence of the result on the number of laser pulses)

Page 8: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 8/25

parametric description of a sample• burning affected area

• similar samples exploration– similarity of the pit– irregularity of the transition ring

Page 9: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 9/25

pulse approximation 1/3• approximation of the pit cross-section with a

parabole

• from the top view – elliptical shape of the pulse

• elliptical paraboloid

02

20

2

20* z

byy

axx

hz

Page 10: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 10/25

pulse approximation 2/3• transition ring cross-section approximation –

parabole

• revolving a parabola along the elliptic trajectory – the top half of the parabolic elliptic torus

velmaterialLeringHeightaxringWidth

ringHeighty R

22*

2

velmaterialLeringHeightpkz 21*

22

TdringWidth

ringHeightk

Page 11: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 11/25

pulse approximation 3/3

Page 12: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 12/25

roughness generation• real samples – measured in high detail –

roughness of the material

• heat affected area – irregularities– roughness on the pit bottom– irregular waves around the outer border of the transition ring– local defects on the transition ring

Page 13: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 13/25

Pelin noise function 1/3• wide range of application in the computer graphics

(textures generating, …)• usable for areal noise generation• combination of noise and interpolation functions• 1D

– random points generation– Hermit interpolation H(t) = t 2*(3-2t) – final Perlin noise:

sum of several functions with different frequencies and amplitudes

– octaves (frequency of each function is twice as the frequency of the previous one )

Page 14: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 14/25

Pelin noise function 2/3• 2D

– generation of random matrix– 2D interpolation– different number of summed actaves (2, 4, 6)

– same number of octaves, each following summed with ½ and ¼ amplitude than the previous one

Page 15: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 15/25

Pelin noise function 3/3• amplitudes vector

– [0.25, 0.25, 1, 1, 0.5, 0.5], [0.5, 0.5, 1, 1, 3, 3], [2, 0, 0, 0, 0.5, 0.5]

• surface generation – 3D view– Perlin noise function– ^2

Page 16: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 16/25

Perlin noise function application• pit bottom roughness

• local defect generation

– mask usage

Page 17: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 17/25

waves modulation 1/2• waves representation – polyline

– whole or its part– segmentation (number or representing points)– difference of the points position from the ellipse– width and maximal height of the wave

• several waves application on the smooth surface

Page 18: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 18/25

waves modulation 2/2• plain wave × full wave

– for the whole polyline– into the center – linear decrementation of the surface height

• full wave application on the smooth surface

Page 19: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 19/25

sample surface generation results• 10, 50, 100 laser

pulses burned into steel

real samplegenerated sample

Page 20: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 20/25

literature – sample parameterization• Ebert, S. E., Musgrave, F. K., Peachey, D., Perlin, K., Worley, S.,

2003: Texturing & Modelling, A Procedural Approach, Third edition. Elsevier Science. ISBN: 1-55760-848-6.

• Perlin, K. 1985. An Image Synthetizer, Proceedings of the 12th annual conference on Computer graphics and interactive techniques, ISBN: 0‑89791-166-0. ACM New York, USA, pp. 287-296.

• Perlin, K. 2002. Improving noise, In Proceedings of the 29th annual conference on Computer graphics and interactive techniques, ISBN: 0730‑0301. ACM New York, USA, pp. 681-682.

• Polack, T., 2003: Focus on 3D Terrain Programming. Premier Press, USA. ISBN: 1-59200-028-2.

• Žára, J., Beneš B., Felkl P. 2005. Moderní počítačová grafika, ISBN: 80‑251-0454-0. Computer Press, Brno, Czech Republic.

Page 21: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 21/25

similar samples comparison

50 pulses [μm]

A 144.50 129.50 6.46 2.17 116.00 100.00

B 142.50 131.50 6.24 2.22 234.50 125.00

C 138.00 130.50 5.91 4.17 114.00 104.00

D 131.00 115.50 5.35 3.19 121.50 109.00

E 124.00 123.00 7.06 3.19 120.50 111.00

average 136.00 126.00 6.20 2.99 141.30 109.80

MRE 5% 4% 7% 21% 26% 6%

100 pulses [μm] a b pit depth ring height horizontal ring

widthvertical ring width

A 155,00 170,50 8,71 2,72 112,00 85,00

B 153,50 174,00 9,89 1,96 122,00 75,00

C 160,00 178,00 8,83 1,87 106,50 93,00

D 192,50 152,00 8,42 1,82 67,50 144,00

E 177,00 177,50 9,42 3,45 89,50 106,00

average 167,60 170,40 9,05 2,36 99,50 100,60

MRE 8% 4% 5% 24% 17% 19%

Page 22: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 22/25

trend of parameters in dependence on the number of burned laser pulses

a b h ring height

horiz. ring width

vert. ring width

10 85.38 82.50 3.45 2.30 198.25 171.00

20 79.00 93.40 3.36 2.41 235.10 175.60

30 88.30 86.10 3.27 2.06 244.40 209.60

40 100.50 99.83 3.86 2.50 177.83 149.67

50 130.40 119.00 5.43 3.20 116.00 134.00

60 126.20 135.20 6.28 2.75 132.60 103.00

70 148.13 144.13 8.59 2.81 147.25 92.25

80 159.00 149.40 8.50 1.79 119.50 87.40

90 162.70 163.80 7.49 2.23 95.90 85.00

100 166.80 165.00 9.13 2.37 99.20 88.80

Page 23: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 23/25

0

1

2

3

4

5

6

7

8

9

10

10 20 30 40 50 60 70 80 90 100

pit depth

ring height

0

20

40

60

80

100

120

140

160

180

10 20 30 40 50 60 70 80 90 100

a

b

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

ring horizontal width

ring vertical width

Page 24: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 24/25

future research• sample parameterization automation• methods for automatic pulse detection• burning simulation• methods for samples comparison• system verification

Page 25: Methods for Laser Burning Data Preprocessing: Parameterization  of Pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses 25/25

thank you for your attention

?