M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010...

83
MAS 2010, Bordeaux Sep. 2010 ethodes spectrales stochastiques et r´ eduction de mod` ele pour la quantification et la propagation d’incertitudes Anthony Nouy GeM (Institut de Recherche en G´ enie Civil et M´ ecanique) CNRS / Ecole Centrale Nantes / Universit´ e de Nantes Introduction Polynomial chaos Identification Propagation Separated representations 1

Transcript of M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010...

Page 1: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

MAS 2010, Bordeaux Sep. 2010

Methodes spectrales stochastiques et reduction de modele pour laquantification et la propagation d’incertitudes

Anthony Nouy

GeM (Institut de Recherche en Genie Civil et Mecanique)CNRS / Ecole Centrale Nantes / Universite de Nantes

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 1

Page 2: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Uncertainty quantification and propagation

Uncertainty quantification has become an essential path in prediction science

More realistic predictionsconfidence on predictions, robust design

Analyze the impact of input uncertaintyvariance, sensitivity, hierarchization, reliability and risk

Comprehension and selection of models

When considering a physical model M with output u

1 Quantification of input uncertainty. Modeling step using available information.Define a probability space (Θ,B,P) and consider the model as random:

θ ∈ Θ 7→ M(θ)

2 Propagation of uncertainty. Characterization of random output u(θ)

M(θ) −→ u(θ)

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 2

Page 3: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Spectral stochastic methods for uncertainty quantification I

Spectral stochastic methods, initiated by the works of Ghanem and Spanos (1991), canbe seen as a functional approach to probability for prediction of the solution of stochasticmodels. Closely related to Wiener’s Polynomial Chaos and its generalizations(Fourier-type representations of random variables)

Main ideas:

Uncertainties represented by a finite number of “simple” random variables ξ definedon a probability space (Θ,B,P).Functional representation of any σ(ξ)-measurable random variable η(θ)

η(θ) = η(ξ(θ))

Random parameters ξ : Θ → Ξ are new coordinates of the model defining thestochastic dimensions.

Classical approximation theory for approximation of functionals

η(y) ≈∑

α

ηαψα(y), y ∈ Ξ

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 3

Page 4: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Spectral stochastic methods for uncertainty quantification II

Quantification/Discretization ofinput uncertainty

θ ∈ Θ −→ ξ(θ) ∈ Ξ

Propagation of uncertaintythrough a model

ξ −→ M(ξ) −→ u(ξ)

Interests

A general framework for both quantification and propagation of uncertainty

Information is preserved (not only samples or statistics...)

Explicit expression of random quantities in terms of random variables ξ with “simplemeasure” Pξ. Cheap post-processing via classical integration

E(f (η(θ))) = E(f (η(ξ(θ)))) =

Ξ

f (η(y))dPξ(y)

Other parametric analyses: sensitivity, optimization, inverse problems

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 4

Page 5: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Spectral stochastic methods for uncertainty quantification III

Some questions

1 Discretization of uncertainties ?

2 Choice of expansion basis ?

3 Definition and computation of an approximation ?

4 Introduction of extra dimensions dramatically increases the computationalcomplexity. Can we circumvent the curse of dimensionality ?

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 5

Page 6: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Outline

1 Introduction

2 Polynomial chaos and generalizationsPolynomial ChaosGeneralized Chaos

3 Probabilistic modeling and identification

4 Propagation of uncertaintiesPrincipleAlternative definitions of chaos expansionsStochastic partial differential equations

5 Separated representations and Model reductionTensor product structure of stochastic problemsSeparated representationsProper Generalized DecompositionApplication to a stochastic PDE

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 6

Page 7: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Outline

1 Introduction

2 Polynomial chaos and generalizationsPolynomial ChaosGeneralized Chaos

3 Probabilistic modeling and identification

4 Propagation of uncertaintiesPrincipleAlternative definitions of chaos expansionsStochastic partial differential equations

5 Separated representations and Model reductionTensor product structure of stochastic problemsSeparated representationsProper Generalized DecompositionApplication to a stochastic PDE

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 7

Page 8: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Stochastic analysis

An important question in stochastic analysis: how to represent square integrablefunctionals of a Brownian motion

Expansion with multiple Wiener integrals

Stochastic Ito integrals

Polynomial Chaos expansions

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 7

Page 9: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

A Cameron-Martin Theorem I

Let Wt(θ), t ∈ (0,T ), be a brownian motion defined on probability space (Θ,B,P), andlet αk(t)k∈N∗ be a complete orthonormal system in L2(0,T ). Let

ξk(θ) =

∫ T

0

αk (t)dWt(θ), k = 1, ...,∞

ξ = ξkk∈N∗ forms a countable set of independent Gaussian random variables.

Let hii∈N ⊂ L2(R) be the set of normalized Hermite polynomials and let introduce

Hα(ξ) =

∞∏

k=1

hαk(ξk)

with α a multi-index in

I = α = (αk)k∈N∗ ;αk ∈ N, |α| =∞∑

k=1

αk <∞

The Hα are multidimensional Hermite polynomials in Gaussian random variables ξ.

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 8

Page 10: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

A Cameron-Martin Theorem II

Theorem (Cameron-Martin (1947))

The set Hα(ξ)α∈I forms a complete orthogonal system in L2(Θ,BWT ,P), with

BWT = σ(Wt ; 0 ≤ t ≤ T ). In other terms, any random variable η ∈ L2(Θ,BW

T ,P) can beexpressed

η =∑

α∈IηαHα(ξ), (⋆)

with ηα = E(ηHα(ξ)) and where the series expansion (⋆) converges in L2(Θ,BWT ,P).

(⋆) is a polynomial chaos expansion (Wiener Chaos expansion) of a second orderfunctional of the brownian motion. Wiener Chaos

Summary

1 Discretization of the Brownian motion, “replaced” by a countable set of randomvariables ξ.

2 Second order functionals of the Brownian motion expressed in terms of ξ.

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 9

Page 11: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Outline

1 Introduction

2 Polynomial chaos and generalizationsPolynomial ChaosGeneralized Chaos

3 Probabilistic modeling and identification

4 Propagation of uncertaintiesPrincipleAlternative definitions of chaos expansionsStochastic partial differential equations

5 Separated representations and Model reductionTensor product structure of stochastic problemsSeparated representationsProper Generalized DecompositionApplication to a stochastic PDE

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 10

Page 12: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Polynomial Chaos and Generalizations I

Given a set of random variable ξ on (Θ,B,P), with arbitrary measure Pξ, we define aHilbertian basis ψ(ξ)α∈I of L2(Θ, σ(ξ),P). For η ∈ L2(Θ, σ(ξ),P),

η =∑

α∈Iηαψα(ξ)

is called a generalized chaos decomposition of η.

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 10

Page 13: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Polynomial Chaos and Generalizations II

Generalizations of chaos expansions

Infinite dimensional case

Gaussian measure [Wiener 38]

Poisson, Levy processes [Ito 56]

Tensor algebras over Hilbert spaces [Segal 56]

Polynomial spaces in random variables with arbitrary measure [Ernst 10]

Finite dimensional case (more classical approximation theory)

L2(Θ, σ(ξ),P) ≃ L2(Ξ,BΞ,Pξ)

Orthogonal polynomials in independent random variables [Ghanem 91, Xiu 02]

“Modified polynomials” for dependent variables with arbitrary measure [Soize 04]

Piecewise polynomials [Deb 01, Wan 05], wavelets [Le Maitre 04]

Enriched approximation (discontinuities, ...) [Ghosh 08, AN 09]

Polynomials Non Smooth Tensorization

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 11

Page 14: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Outline

1 Introduction

2 Polynomial chaos and generalizationsPolynomial ChaosGeneralized Chaos

3 Probabilistic modeling and identification

4 Propagation of uncertaintiesPrincipleAlternative definitions of chaos expansionsStochastic partial differential equations

5 Separated representations and Model reductionTensor product structure of stochastic problemsSeparated representationsProper Generalized DecompositionApplication to a stochastic PDE

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 12

Page 15: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Probabilistic modeling using chaos representations I

Two types of uncertainties can be distinguished

aleatory uncertainty: random and not reducible.

epistemic uncertainty: lack of knowledge (information), modeling error

Chaos expansions provide a general framework for uncertainty representation andidentification.

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 13

Page 16: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Probabilistic modeling using chaos representations II

In practice, uncertainty are characterized by random parameters X (θ), which have to beexpressed in terms of basic random variables

X (θ) = X (ξ(θ))

Uncertainty quantification from data using chaos expansions Details

Chaos expansion of X in terms of a set of random variables ξ = (ξ1, . . . , ξm)

X ≈∑

α∈IP

aαψα(ξ)

Inference techniques to identify the set of parameters A = aαα∈IPfrom data set

X = X (i)Qi=1 [Desceliers 2006, Soize 2010]

Epistemic uncertainty modeling with further chaos expansion of coefficients

aα(θ) ≈∑

α′ aα,α′ψα′(ξ′(θ)) [Arnst 2010, Soize 2010]

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 14

Page 17: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Outline

1 Introduction

2 Polynomial chaos and generalizationsPolynomial ChaosGeneralized Chaos

3 Probabilistic modeling and identification

4 Propagation of uncertaintiesPrincipleAlternative definitions of chaos expansionsStochastic partial differential equations

5 Separated representations and Model reductionTensor product structure of stochastic problemsSeparated representationsProper Generalized DecompositionApplication to a stochastic PDE

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 15

Page 18: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Spectral stochastic methods for uncertainty propagation I

After uncertainty modeling and discretization, the model M is considered as a randomparameterized model M(ξ). Random output is seen as a functional

u : y ∈ Ξ → u(y) ∈ V

and for most models

u ∈ L2(Ξ,BΞ,Pξ;V) =

u : Ξ → V ; E(‖u(ξ)‖2V)

≃ V ⊗ L2(Ξ,BΞ,Pξ)

Propagation of uncertainty

Construction of an approximation space

SP = spanψαPα=1 ⊂ S := L2(Ξ,BΞ,Pξ)

Polynomial basis [Ghanem 91, Xiu 02], piecewise polynomials [Deb 01, Le Maitre

04, Wan 05], enriched spectral basis [Ghosh 08, AN 09], generalized chaos basis

[Soize 04], ...

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 16

Page 19: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Spectral stochastic methods for uncertainty propagation II

Definition and computation of an approximate functional representation

u =∑

α uα ⊗ ψα ∈ VN ⊗ SP

Direct simulations(L2 Projection, Interpolation, Regression) Link

uα =∑

k

ωαk u(yk)

where (ωαk , yk ) ∈ R×Ξ and the u(yk) are solution of deterministic problems:

M(yk) −→ u(yk) ∈ VN

Galerkin projections

Approximation based on stochastic-weak formulations. In general, equivalentto the solution of a set of P coupled deterministic problems:

M(uα1 , . . . , uαP) −→ uα1 , . . . , uαP

∈ VN × . . .× VN

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 17

Page 20: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Galerkin projections I

Most models in computational science can be synthetized into an operator equation

u(ξ) ∈ V, A(u(ξ); ξ) = b(ξ)

which admits a weak solution

u ∈ L2(Ξ,BΞ,Pξ;V) := V ⊗ S

A stochastic-weak solution can be defined by

< ψ,A(u) >=< ψ, b > ∀ψ ∈ S

where for ψ,ϕ ∈ S , < ψ,ϕ >= E(ψ(ξ)ϕ(ξ)).

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 18

Page 21: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Galerkin projections II

Galerkin approximation

Approximate solution u =∑

α∈IPuα ⊗ ψα ∈ V ⊗ SP is defined by

< ψ,A(u) >=< ψ, b > ∀ψ ∈ SP (∗)

System of coupled deterministic equations defining the coefficients uαα∈IP∈ (V)P

Pros:Nice mathematical framework, a priori and a posteriori error estimates, stability,efficiency

Cons:Requires a (sometimes minor) modification of existing deterministic solutiontechniques. Complexity of system (∗).

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 19

Page 22: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Galerkin projections III

Galerkin system of equationsAfter deterministic approximation (finite elements, finite differences, ...), the Galerkinsystem of equations is

u ∈ RN ⊗ SP , < ψ,A(u) >=< ψ, b > ∀ψ ∈ SP (1)

For linear problems (or linearized nonlinear problems), Galerkin approximationu(ξ) =

α∈IPuαψα(ξ) ∈ R

N ⊗ SP has its coefficients determined by the system ofequations:

β∈IP

E(Aψαψβ)uβ = E(bψα), ∀α ∈ IP

System of size N × P

Aα1α1 Aα1α2 . . . Aα1αP

Aα2α1

. . ....

.... . .

...AαPα1 . . . . . . AαPαP

uα1

uα2

...uαP

=

bα1

bα2

...bαP

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 20

Page 23: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Galerkin projections IV

Two levels of sparsity

Eventual sparsity of each block (inherited from sparsity of A(ξ))

Block-sparsity (inherited from properties of functions ψα)

Illustration of block sparsity: approximation of a Hermite Polynomial Chaos with degreep = 6 in dimension m = 5

block (α, β) : Aαβ = E(Aψαψβ), with A(ξ) =∑

|γ|6pA

Aγψγ(ξ)

pA = 1 pA = 3 pA = 5

If A(ξ) is highly nonlinear in ξ, not so sparse !!!

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 21

Page 24: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Stochastic Partial Differential Equation I

Model problem: stationary diffusion equation

−∇ · (κ(x)∇u(x)) = f (x) for x ∈ Ω, u(x) = 0 for x ∈ ∂Ω

with conductivity κ and source f .

Model stochastic problem

−∇ · (κ(x , θ)∇u(x , θ)) = f (x , θ) for x ∈ Ω, u(x) = 0 for x ∈ ∂Ω

where κ and f are stochastic fields defined on a probability space (Θ,B,P).

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 22

Page 25: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Stochastic Partial Differential Equation II

Space Weak formulation. A space-weak solution u is considered as a random variablewith values in V ⊂ H1(Ω), and should verify

u(θ) ∈ V, a(u(θ), v ; θ) = b(v ; θ), ∀v ∈ V

with

a(u, v ; θ) =

Ω

κ(x , θ)∇u · ∇v dx , b(v ; θ) =

Ω

f (x , θ)v dx

Space-Stochastic Weak formulation. A weak solution u is searched in

L2(Θ,B,P;V) ≃ V ⊗ L2(Θ,B,P)

such that

u ∈ V ⊗ S , A(u, v) = L(v), ∀v ∈ V ⊗ S

with

A(u, v) = E(a(u(θ), v(θ); θ)), L(v) = E(b(v(θ); θ))

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 23

Page 26: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Mathematical and numerical analysis I

Classical functional analysis applies [Babuska 2005, Matthies 2005, Frauenfelder 2005].Well-posedness in the sense of Hadamard (existence, uniqueness, continuousdependence on data) if f ∈ L2

P(Θ; L2(Ω)) and

0 < κ0 ≤ κ(x , θ) ≤ κ1 <∞

See [Soize 2006] for weaker ellipticity conditions. See [Holden 1996] for functionalanalysis in generalized random variables spaces (distribution) for “non-smooth” data.

Approximations may be achieved by Galerkin methods

uN,P ∈ VN ⊗ SP , A(uNP, vN,P ) = L(vN,P ), ∀vN,P ∈ VN ⊗ SP

Convergence is ensured by Cea’s lemma. If A is a symmetric continuous andcoercive bilinear form, it defines a norm ‖ · ‖A and uN,P is the best approximation ofthe exact solution u with respect to this norm

uN,P = arg minv∈VN⊗SP

‖u − v‖A

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 24

Page 27: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Mathematical and numerical analysis II

SP should represent functions of a finite number of random variables (forcomputational purpose). Requires a discretization of stochastic fields,

κ(x , θ) ≈ κ(m)(x , θ) = κ(x , ξ1(θ), . . . , ξm(θ))

e.g. using

Finite dimensional Polynomial Chaos expansion Karhunen-Loeve expansion Go

κ(x , θ) = µκ(x) +

m∑

i=1

wi (x)ηi (θ)

and eventual further chaos expansion

ηi (θ) =∑

α∈Imp

ηi,αψα(ξkmk=1)

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 25

Page 28: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Mathematical and numerical analysis III

Galerkin methods are stable if no variational crime is committedThe exact random field κ(x , θ) can be expanded in terms of independent randomvariables ξi∞i=1

κ(x , θ) =∑

γ∈Iκγ(x)ψγ(ξi(θ)∞i=1)

where spanψγγ∈I = L2(Θ, σ(ξi∞i=1),P) := S∞. Initial bilinear form A

u, v ∈ V ⊗ S∞, A(u, v) = E(a(u, v ; θ)) = E(

Ω

κ(x , θ)∇u · ∇v dx)

We introduce a finite dimensional space spanψα(ξ)α∈Imp= Sm

p ⊂ S∞, withξ = ξimi=1 (m-dimensional chaos with degree p).

u, v ∈ V ⊗ Smp , A(u, v) =

α,β∈Imp

γ∈Im2p

E(ψγψαψβ)

Ω

κγ(x)∇uα · ∇vα dx

since (ψαψβ) ∈ Sm2p ⊥ spanψα;α ∈ I\Im

2p.• No variational crime if we replace κ(x , θ) by κ(m,2p)(x , θ) =

γ∈Im2pκγψγ(ξ(θ))

• Galerkin problem is well-posed, while direct methods are not necessarily

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 26

Page 29: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Complementary topics

Improvement of solvers (preconditioners, parallelization, ...)

[Ghanem 1999, Pellissetti 2000, Matthies 2005, Keese 2005, Powell 2007]

Random Geometry

−∇ · (κ(x)∇u(x)) = f (x) for x ∈ Ω(θ), u(x) = 0 for x ∈ ∂Ω(θ)

• Fictitious domain [Canuto 2007]

• Random Mapping [Tartakovsky 2006, Xiu 2006]

• Level-set and Extended Finite Element [AN 07, AN 08]

Error estimation, Adaptive approximation

[Wan 2005, Frauenfelder 2005, Ladeveze 2006, Mathelin 2007]

Model reduction

• Stochastic Reduced Basis [Nair 2001, Sachdeva 2006] ≈ Krylov iterative solvers.

• Approximate spectral decompositions [Matthies 2005, Doostan 2007]

• Generalized Spectral Decomposition [AN 07, AN 08]

• High dimensional separated representations [Doostan 09, AN 10]

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 27

Page 30: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Outline

1 Introduction

2 Polynomial chaos and generalizationsPolynomial ChaosGeneralized Chaos

3 Probabilistic modeling and identification

4 Propagation of uncertaintiesPrincipleAlternative definitions of chaos expansionsStochastic partial differential equations

5 Separated representations and Model reductionTensor product structure of stochastic problemsSeparated representationsProper Generalized DecompositionApplication to a stochastic PDE

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 28

Page 31: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Tensor product structure of stochastic problems

Stochastic (parameterized) PDEs

−∇x(κ(x , ξ)∇xu(x , ξ)) = f (x , ξ), x ∈ Ω, ξ = (ξ1, . . . , ξs) ∈ Ξ

u ∈ H1(Ω)⊗ L2(Ξ,BΞ,Pξ) := V ⊗ S

Tensor product structure of stochastic function space S = L2(Ξ,BΞ,Pξ)

For independent random variables (ξ1, . . . , ξs)

S = L2(Ξ1,BΞ1 ,Pξ1 )⊗ ...⊗ L2(Ξs ,BΞs ,Pξs )

Possibly high stochastic (parametric) dimensionality s ≈ 10, 100, 1000, ...

Many input (random) parameters (source terms, operator’s parameters, bc’s, ...)

Random fields or processes with high spectral (multiscale) content:

κ(x , θ) =s∑

i=1

κi (x)ξi(θ) ≡ κ(x , ξ1(θ), . . . , ξs(θ))

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 29

Page 32: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Limitation of spectral approaches: the curse of dimensionality

Classical construction of approximation spaces SP ⊂ S := S1 ⊗ ...⊗ S s

Full tensor product approximation

SP = S1n ⊗ ...⊗ S s

n dim(SP) = ns (exponential increase with s)

Sparse tensor product approximation

SP =∑

|i|6n

S1i1⊗ ...⊗ S s

isdim(SP) =

(n+s)!n!s! (factorial increase with s)

dim(SP) ≈ 10, 1010, 10100, 101000, ...Simply unreachable with usual representations !!!

Do we need to come back to Monte-Carlo simulations ?

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 30

Page 33: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Dimensionality reduction based on separated representations

Separated representation of v ∈ S1n ⊗ . . .⊗ S s

n

v(ξ) ≈ vZ (ξ) =

Z∑

k=1

αkφ1k(ξ1) ... φ

sk(ξs)

Optimal approximation space for the representation of random variable v

vZ (ξ) =

Z∑

k=1

αkΨk(ξ), Ψk(ξ) = φ1k(ξ1) ... φ

sk(ξs) spanΨkZk=1 = SZ ⊂ SP

dim(SZ ) = Z × n × s (linear increase with the dimension s)

Observation in many applications: for a given precision, the optimal decomposition orderZ may be of several orders of magnitude lower than P

Z ≪ P (typically Z ≈ 10, P ≈ 10100)

How to construct these representations ?

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 31

Page 34: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Tensor product spaces and Separated representations I

Tensor product of Banach spaces

Algebraic tensor product space of Banach spaces

a⊗dk=1Vk = spanw1 ⊗ . . .⊗ wd ;wk ∈ Vk

Tensor product of Banach spaces, endowed with norm ‖ · ‖:

V = ‖.‖⊗dk=1Vk = a ⊗d

k=1 Vk

‖·‖

Example: SPDEs

L2(Ξ;V) = V‖·‖⊗ L2

Pξ(Ξ), ‖v‖2 =

Ξ

‖v(y)‖2VdPξ(y)

L2Pξ(Ξ) = ‖.‖⊗s

k=1L2Pξk

(Ξk), ‖v‖2 =

Ξ1

. . .

Ξs

v(y1, . . . , ys)2dPξ1 (y1) . . . dPξs (ys)

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 32

Page 35: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Tensor product spaces and Separated representations II

Sets of finite rank tensors

Rank-1 tensors R1 = w1 ⊗ . . .⊗ wd : wk ∈ Vk

Rank-m tensors Rm = ∑m

i=1 zi ; zi ∈ R1 = Rm−1 +R1

Separated representation (tensor product approximation)

u ≈ um =∑m

i=1 w1i ⊗ . . .⊗ wd

i ∈ Rm ‖u − um‖ −→m→∞

0

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 33

Page 36: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Construction of separated representations

A posteriori construction: knowing u

V is equipped with a crossnorm ‖ · ‖

d = 2 SVD (Proper Orthogonal Decomposition, Karhunen-Loeve decomposition, ...)

‖u − um‖ = minvm∈Rm

‖u − vm‖

d > 2 Multidimensional versions of SVD

‖u − um‖ = minvm∈Sm⊂Rm

‖u − vm‖

with Sm a subset of Rm with suitable constraints (orthogonality, boundedness, ...)

[Chen 2008, de Silva 2008, Kolda 2009, Uschmajew 2010]

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 34

Page 37: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Construction of separated representations

A posteriori construction: knowing u

V is equipped with a crossnorm ‖ · ‖

d = 2 SVD (Proper Orthogonal Decomposition, Karhunen-Loeve decomposition, ...)

‖u − um‖ = minvm∈Rm

‖u − vm‖

d > 2 Multidimensional versions of SVD

‖u − um‖ = minvm∈Sm⊂Rm

‖u − vm‖

with Sm a subset of Rm with suitable constraints (orthogonality, boundedness, ...)

[Chen 2008, de Silva 2008, Kolda 2009, Uschmajew 2010]

A priori construction: without knowing u but only the problem it solves

Proper Generalized Decomposition

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 34

Page 38: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Proper Generalized Decomposition

Weak form of the problem

u ∈ V , A(u, v) = L(v) ∀v ∈ V

Aim:

Define a separated representation um of u which is computable without knowing ubut only A and L.

Criteria for the definition of separated representations and associated algorithms:

Convergence

Robustness

Ability to capture a low rank approximation if it exists

Low computational costs

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 35

Page 39: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Variational problems associated with convex optimization I

We consider the case where

A(u, v)− L(v) = 〈J ′(u), v〉

where J ′ : V → V ′ is the differential of a convex and Frechet differentiable functionalJ : V → R. Equivalent minimization problem:

J (u) = minv∈V

J (v)

Natural definition of PGD

J (um) = minvm∈Sm⊂Rm

J (vm)

Progressive: knowing um−1 ∈ Rm−1,

Sm = um−1 +R1, J (um) = minz∈R1

J (um−1 + z)

Direct, with a suitable choice of Sm ⊂ Rm (for well-posedness)

Progressive with updates

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 36

Page 40: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Variational problems associated with convex optimization II

Well-posedness and convergence results for progressive constructions

[Le Bris & al 2009, Cances & al 2010, Falco & AN 2010]

Well posedness of this optimization problem is ensured by properties of J (convexityand coercivity) and R1 (weakly closed in V ).

Under quite general assumptions on J (ellipticity, uniform continuity of J ′ onbounded sets), strong convergence of the sequence um can be proved .

Remark :

For d = 2 , generalized spectral decomposition. Dedicated algorithms [AN 2008].

For d > 2 , same (and more) difficulties as for multidimensional SVDs.

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 37

Page 41: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Particular case of linear elliptic problems

If A is a symmetric continuous coercive bilinear form on a Hilbert space (V , ‖ · ‖),

J (v) =1

2A(v , v) − L(v)

A defines a norm ‖ · ‖A : v 7→ A(v , v)1/2, which is equivalent to ‖ · ‖.Progressive PGD

J (um + zm+1) = minz∈R1

J (um + z) ⇔ ‖u − um − zm+1‖2A = minz∈R1

‖u − um − z‖2A

Interpretation as a generalized multidimensional SVD [AN 2007, Falco & AN 2010]

‖u − um‖2A = ‖u‖2A −∑m

i=1 σ2i −→

m→∞0 σm = max

w∈R1;‖w‖A=1(u − um−1,w)A

where σm = ‖zm‖A is interpreted as the dominant singular value of (u − um).

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 38

Page 42: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Possible construction with alternated direction algorithm

In order to compute zm+1 ∈ R1,

minw1∈V1

J (um + w1 ⊗ w2 ⊗ . . .) . . . . . . minwd∈Vd

J (um + . . .⊗ wd−1 ⊗ wd )

For a given z = ⊗dk=1w

k , we introduce the linear subspace Rl1(z) ⊂ R1 ⊂ V defined by

Rl1(z) = w1 ⊗ . . .⊗ Vl ⊗ . . .⊗ wd

Alternated direction algorithm

Starting from an initial guess z (0) ∈ R1, we construct a sequence z (n)n∈N defined by

z (n+1) = f dm . . . f 1m(z (n)) f lm(z) = arg minz∈Rl

1(z)J (um + z)

corresponding to successive Galerkin projections on linear subspaces

z⋄ = f lm(z) ⇔ z⋄ ∈ Rl1(z), A(um + z⋄, z∗) = L(z∗) ∀z∗ ∈ Rl

1(z)

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 39

Page 43: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

The important case d = 2: Generalized Spectral Decomposition

minw1∈V1,w2∈V2

J (um + w1 ⊗ w2)

w1 = f 1m(w2) ⇔ w1 = arg min

w1∈V1

J (um + w1 ⊗ w2)

w2 = f 2m(w1) ⇔ w2 = arg min

w2∈V2

J (um + w1 ⊗ w2)

Equivalent pseudo eigenproblem formulated on w1 ∈ V1

Find the dominant eigenvector w1 of the following pseudo-eigenproblem

w1 = f 1m f 2m(w1) := σm(w1)−1T (w1) T ≡ pseudo correlation operator

with w1 ∈ argminw1∈V1J (um + w1 ⊗ f 2m(w

1)) σm(w1) ≡ dominant singular value

Efficient algorithms inspired from classical eigenproblems [AN CMAME 2007, 2008]

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 40

Page 44: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Alternative definitions for Proper Generalized Decompositions

Alternative formulations for general nonsymmetric problems

Minimal Residual PGD [AN & Ladeveze 2004, Doostan 2009, Ammar 2010, AN &

Falco 2010]

Galerkin PGD [Ladeveze 1980, AN 2007, AN 2008, AN & Le Maitre 2009, Chinesta

2007]

Petrov-Galerkin (MiniMax) PGD [AN 2010]

Norm induced by the operator [Lozinski 2010]

Progressive or Direct construction of rank-m approximations

Purely progressive

Progressive with updates

Direct

A. Nouy (2010). PGD for time dependent PDEs.Computer Methods in Applied Mechanics and Engineering.

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 41

Page 45: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Solution strategy for high dimensional stochastic problems

A 2-level tensor product approximation u ∈ V ⊗ S1 ⊗ . . .⊗ S s

︸ ︷︷ ︸

S1 2D PGD for a quasi optimal deterministic/stochastic separation

u ≈ uM(ξ) =∑M

i=1 wiλi(ξ) W = (wi )Mi=1 ∈ (V)M , Λ = (λi)

Mi=1 ∈ (S)M

Requires the solution of a few deterministic problems (≈ M) and stochasticalgebraic equations (reduced order model at the deterministic level).

2 Multidimensional PGD for solving stochastic algebraic equations

Λ(ξ) ≈ ΛZ (ξ) =∑Z

k=1 φ0kφ

1k(ξ1)...φ

sk (ξs) , φ0

k ∈ RM , φj

k ∈ S jn

Nouy, A. (2010, In press).PGD and separated representations for the numerical solution of high dimensionalstochastic problems.Archives of Computational Methods in Engineering

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 42

Page 46: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Illustration : stationary advection-diffusion-reaction equation

−∇ · (κ∇u) + c · ∇u + γu = δIΩ1(x) on Ω

Random field

κ(x , ξ) = µκ +40∑

i=1

√σiκi (x)ξi , ξi ∈ U(−1, 1)

1

Spatial modes κi (x) Amplitudes σi

0 10 20 30 4010

−3

10−2

10−1

(σi)1/

2

i

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 43

Page 47: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Stochastic approximation

ξ = (ξ1, . . . , ξ40), Ξ = (−1, 1)40 = Ξ1 × ...× Ξ40

SP = P4(Ξ1)⊗ ...⊗ P4(Ξ40)

dim(SP) = 540 ≈ 1028

Finite element mesh

dim(VN) = 4435

Solution u(·,µξ) for mean parameters

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 44

Page 48: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Results... in brief

Deterministic/stochastic separation

u(ξ) ≈ uM(ξ) =

M∑

i=1

wiλi(ξ)

→ VM = spanwiMi=1

Random variables separation

Λ(ξ) := (λi)Mi=1 ≈ ΛZ (ξ) =

Z∑

k=1

φ0k

s∏

j=1

φjk(ξj)

→ SZ = span∏s

j=1 φjk(ξj)Zk=1

For a precision ‖u − uM,Z‖L2 6 10−2

dim(VM) ≈ 15 ≪ 4435 = dim(VN)

dim(SZ ) ≈ 10 ≪ 1028 = dim(SP)

15 classical deterministic problems in order to build VM ⊂ VN

about 1 minute computation on a laptop with matlab

Results

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 45

Page 49: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Conclusions

PGD methods for stochastic problems

Separation of difficulties: deterministic/stochastic separationpartly non intrusive Galerkin stochastic method

Reduced order model constructiona priori construction of quasi-optimal reduced basis

Separation in high-dimensional tensor product spaces :a way to circumvent the curse of dimensionality

Special Issue on Recent advances in PGD.Chinesta, Cueto, Ladeveze & Nouy (Eds).Archives Computational Methods in Engineering, 2010 (In press).

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 46

Page 50: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Open questions and perspectives

Open questions for PGD

Mathematical analysis of the pseudo eigenproblem ?

Optimality for non-symmetric problems ?

Error estimation and Goal-oriented approximations

Open questions for separated representations in stochastic analysis

How to separate dimensions ? Depends on the ”separability” of the solution

Adaptive stochastic dimension: hierarchical tensor product, ...

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 47

Page 51: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

References I

[Nouy 2007, Nouy 2008, Nouy 2009b, Nouy 2009a, Nouy press, Falco mitted]

Babuska, I., Tempone, R., and Zouraris, G. E. (2005).

Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochasticformulation.Computer Methods in Applied Mechanics and Engineering, 194:1251–1294.

Berveiller, M., Sudret, B., and Lemaire, M. (2006).

Stochastic finite element: a non intrusive approach by regression.European Journal of Computational Mechanics, 15:81–92.

Canuto, C. and Kozubek, T. (2007).

A fictitious domain approach to the numerical solution of pdes in stochastic domains.Numerische Mathematik, 107(2):257–293.

Chen, J. and Saad, Y. (2008).

On The Tensor Svd And The Optimal Low Rank Orthogonal Approximation Of Tensors.Siam Journal On Matrix Analysis And Applications, 30(4):1709–1734.

de Silva, V. and Lim, L.-H. (2008).

Tensor rank and ill-posedness of the best low-rank approximation problem.SIAM Journal of Matrix Analysis & Appl., 30(3):1084–1127.

Doostan, A., Ghanem, R., and Red-Horse, J. (2007).

Stochastic model reductions for chaos representations.Computer Methods in Applied Mechanics and Engineering, 196(37-40):3951–3966.

Falco, A. and Nouy, A. (2010, submitted).

A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functionalEckart-Young approach.Journal of Mathematical Analysis and Applications.

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 48

Page 52: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

References II

Frauenfelder, P., Schwab, C., and Todor, R. A. (2005).

Finite elements for elliptic problems with stochastic coefficients.Computer Methods in Applied Mechanics and Engineering, 194(2-5):205–228.

Ghanem, R. (1999).

Ingredients for a general purpose stochastic finite elements implementation.Computer Methods in Applied Mechanics and Engineering, 168:19–34.

Holden, H., Øksendal, B., Ubøe, J., and Zhang, T. (1996).

Stochastic Partial Differential Equations.

Birkhauser.

Keese, A. and Mathhies, H. G. (2005).

Hierarchical parallelisation for the solution of stochastic finite element equations.Computer Methods in Applied Mechanics and Engineering, 83:1033–1047.

Kolda, T. G. and Bader, B. W. (2009).

Tensor decompositions and applications.SIAM Review, 51(3):455–500.

Ladeveze, P. and Florentin, E. (2006).

Verification of stochastic models in uncertain environments using the constitutive relation error method.Computer Methods in Applied Mechanics and Engineering, 196(1-3):225–234.

Mathelin, L. and Maıtre, O. L. (2007).

Dual-based a posteriori error estimate for stochastic finite element methods.Communications in Applied Mathematics and Computational Science, 2(1):83–116.

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 49

Page 53: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

References III

Matthies, H. G. and Keese, A. (2005).

Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations.Computer Methods in Applied Mechanics and Engineering, 194(12-16):1295–1331.

Nair, P. B. (2001).

On the theoretical foundations of stochastic reduced basis methods.AIAA Journal, 2001-1677.

Nouy, A. (2007).

A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations.Computer Methods in Applied Mechanics and Engineering, 196(45-48):4521–4537.

Nouy, A. (2008).

Generalized spectral decomposition method for solving stochastic finite element equations: invariant subspace problem anddedicated algorithms.Computer Methods in Applied Mechanics and Engineering, 197:4718–4736.

Nouy, A. (2009a).

Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations.Archives of Computational Methods in Engineering, 16(3):251–285.

Nouy, A. (2010, In press).

Proper Generalized Decompositions and separated representations for the numerical solution of high dimensional stochasticproblems.Archives of Computational Methods in Engineering.

Nouy, A. and Le Maıtre, O. (2009b).

Generalized spectral decomposition method for stochastic non linear problems.Journal of Computational Physics, 228(1):202–235.

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 50

Page 54: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

References IV

Pellissetti, M. F. and Ghanem, R. G. (2000).

Iterative solution of systems of linear equations arising in the context of stochastic finite elements.Advances in Engineering Software, 31:607–616.

Powell, C. and Elman, H. (2007).

Block-diagonal precondioning for the spectral stochastic finite elements systems.Technical Report TR-4879, University of Maryland, Dept. of Computer Science.

Sachdeva, S. K., Nair, P. B., and Keane, A. J. (2006).

Hybridization of stochastic reduced basis methods with polynomial chaos expansions.Probabilistic Engineering Mechanics, 21(2):182–192.

Tartakovsky, D. M. and Xiu, D. (2006).

Stochastic analysis of transport in tubes with rough walls.Journal of Computational Physics, 217:248–259.

Uschmajew, A. (2010).

Well-posedness of convex maximization problems on stiefel manifolds and orthogonal tensor product approximations.Numerische Mathematik.

Wan, X. and Karniadakis, G. (2005).

An adaptive multi-element generalized polynomial chaos method for stochastic diffential equations.J. Comp. Phys., 209:617–642.

Xiu, D. and Tartakovsky, D. M. (2006).

Numerical methods for differential equations in random domains.SIAM J. Sci. Comput., 28(3):1167–1185.

• Introduction • Polynomial chaos • Identification • Propagation • Separated representations 51

Page 55: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Karhunen-Loeve expansion Return

We consider a random field κ(x , θ), (x , θ) ∈ Ω×Θ, such that

κ ∈ L2(Ω)⊗ L2(Θ,B,P)

with mean and covariance functions

µκ(x) = E(κ(x , θ)), Cκ(x , y) = E ((κ(x , θ)− µκ(x))(κ(y , θ)− µκ(y)))

We introduce the covariance operator

T : w ∈ L2(Ω) 7→∫

Ω

Cκ(x , y)w(y) dy ∈ L2(Ω)

and consider the eigenproblemT (w) = σw

Operator T is compact and classical spectral theory applies

Countable set of eigenvalues σi∞i=1, positive, bounded and with onlyaccumulation point 0.

The set of eigenfunctions wi (x)∞i=1 forms a hilbertian basis of L2(Ω)

KL Chaos Propagation Example 52

Page 56: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Karhunen-Loeve expansion Return

Illustration

L-shaped domain Ω ⊂ (0, 2) × (0, 2). Exponential square covariance function

Cκ(x , y) = exp(−|x − y |22l2

), l = 1/2.

Ω

w1 Mode w2 Mode w3

w4 w10 w20 w30

KL Chaos Propagation Example 53

Page 57: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Karhunen-Loeve expansion Return

Karhunen-Loeve expansion

Random field κ admits the following series expansion

κ(x , θ) = µκ(x) +∞∑

i=1

wi (x)ηi (θ), ηi =< κ− µκ,wi >L2(Ω)

where convergence is in L2(Ω) ⊗ L2(Θ,B,P).

Truncation (Discretization)

κ(x , θ) ≈ κ(m)(x , θ) = µκ(x) +m∑

i=1

wi (x)ηi (θ)

κ(m) is the best approximation of this form in L2(Ω)⊗ L2P(Θ), i.e.

‖κ− κ(m)‖2 = minwi∈L2(Ω),ηi∈L2(Θ)

‖κ− µκ −m∑

i=1

wi ⊗ ηi‖2

KL Chaos Propagation Example 54

Page 58: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Karhunen-Loeve ⇔ Singular Value Decompositon

Let κ ∈ L2(Ω)⊗ L2P(Θ) and let u = κ− µκ ∈ L2(Ω)⊗ L2

P(Θ). We introduce the operator

U : L2(Ω) −→ L2P(Θ)

w 7−→ η(θ) =< u(·, θ),w >L2(Ω)=∫

Ωu(y , θ)w(y)dy

Karhunen-Loeve expansion of u is equivalent to a Singular Value Decomposition ofoperator U.

For w ∈ L2(Ω) and η ∈ L2P(θ)

< η,U(v) >L2P(Θ)=< U∗(η), v >L2(Ω)

with U∗ the adjoint operator of U defined by

U∗ : L2P(Θ) −→ L2(Ω)η 7−→ w(x) =< u(x , ·), η >L2

P(Θ)= E(u(x , θ)η(θ))

and U∗U is the covariance operator of κ:

U∗U(w) =< u, < u,w >L2(Ω)>L2P(Θ)=

Ω

E(u(·, θ)u(y , θ))w(y)dy = T (w)

KL Chaos Propagation Example 55

Page 59: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Wiener Chaos Return I

Let (Θ,B,P) be a probability space. Let ξ = (ξk)k∈N∗ be a set of centered Gaussianrandom variables called basic random variables. σ(ξ) ⊂ B denotes the correspondingσ-algebra.

We consider the set of second order random variables L2(Θ,B,P) which is a Hilbertspace for the inner product

< f , g >L2(Θ,B,P)= E(f (θ)g(θ)) =

Θ

f (θ)g(θ)dP(θ)

Let Pn(Rm) be the set of m-variate polynomial of degree n and let Pn(ξ) be the set of

polynomials of degree n in a finite subset of random variables ξ

Pn(ξ) = p(ξi1 , . . . , ξim); p ∈ Pn(Rm), i1, . . . , im ∈ N

∗,m ∈ N

Pn(ξ) ⊂ L2(Θ, σ(ξ),P) ⊂ L2(Θ,B,P)Pn(ξ) is called the polynomial chaos of degree n.

KL Chaos Propagation Example 56

Page 60: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Wiener Chaos Return II

We then define

Hn(ξ) = Pn(ξ)⊖ Pn−1(ξ)

Hn(ξ) is called the homogeneous chaos of degree n.

Wiener (1938)

L2(Θ, σ(ξ),P) admits the following orthogonal decomposition

L2(Θ, σ(ξ),P) =∞⊕

n=0

Hn

If we denote Πn the orthogonal projector from L2(Θ, σ(ξ),P) onto Hn(ξ), anyη ∈ L2(Θ, σ(ξ),P) admits the mean square convergent orthogonal series expansion

η =

∞∑

n=0

Πnη

KL Chaos Propagation Example 57

Page 61: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Wiener Chaos Return III

For a practical construction of chaos expansion, we introduce the set of normalizedHermite polynomials hii∈N and

Hα(ξ) :=∞∏

k=1

hαk(ξk)

with α a multi-index in I = α = (αk)k∈N∗ ;αk ∈ N, |α| =∑∞k=1 αk <∞. Therefore,

Pn(ξ) = spanHα(ξ);α ∈ In, In = α ∈ I, |α| ≤ n

and

Hn(ξ) = spanHα(ξ);α ∈ Jn, Jn = α ∈ I, |α| = n

KL Chaos Propagation Example 58

Page 62: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Wiener Chaos Return IV

Any second order random variable η ∈ L2(Θ, σ(ξ),P) admits the following mean squareconvergent expansion

η =∑

α∈IηαHα(ξ) =

∞∑

n=0

α∈Jn

ηαHα(ξ)

For computational purpose, approximations may be achieved by

using finite order Polynomial Chaos expansions

η =∑

α∈Ip

ηαHα(ξ) =

p∑

n=0

α∈Jn

ηαHα(ξ)

retaining a finite number of random variables ξ = ξimi=1 and using a finitedimensional polynomial chaos

Pn(ξ) = spanHα(ξ);α ∈ Imn Im

n = α ∈ Nm; |α| ≤ n

KL Chaos Propagation Example 59

Page 63: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Wiener Chaos Return V

First Polynomials of the Chaos expansion

Order 0 : H(0,0,0,...)(ξ) = 1Order 1 : H(1,0,0,...)(ξ) = ξ1, H(0,1,0,...)(ξ) = ξ2, . . .Order 2 : H(1,1,0,...)(ξ) = ξ1ξ2, H(2,0,0,...)(ξ) =

1√2(ξ21 − 1), . . .

. . .

H(1,1)(x1, x2) H(1,3)(x1, x2) H(8,2)(x1, x2)

KL Chaos Propagation Example 60

Page 64: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Outline

6 Karhunen-Loeve expansion

7 Polynomial chaos and generalizationsWiener Chaos

8 PropagationDirect methods

9 Example: advection-reaction-diffusion stochastic problem

KL Chaos Propagation Example 61

Page 65: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

L2 projection Return

Letting ψαPα=1 be an orthonormal basis of SP ⊂ L2(Ξ,BΞ,Pξ), we define

u(ξ) ≈P∑

α=1

uαψα(ξ), uα ∈ VN

with

uα =< u, ψα >L2(Ξ,BΞ,Pξ)= E(u(ξ)ψα(ξ)) =

Ξ

u(y)ψα(y)dPξ(y)

Numerical quadrature

uα ≈Q∑

k=1

u(yk)ψα(yk )ωk

with yk , ωkQk=1 a quadrature rule on Ξ adapted to measure Pξ:

Monte-Carlo or Quasi Monte-Carlo

Gauss quadrature [Le Maitre 01, Reagan 03, ...]

Sparse quadrature [Smolyak 1963, Keese & Matthies 2005]

KL Chaos Propagation Example 61

Page 66: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Interpolation - Collocation Return

Letting ψαPα=1 be an interpolation basis associated with interpolation points yαPα=1.

u(ξ) ≈P∑

α=1

uαψα(ξ),

withuα = u(yk) ∈ VN

Construction of interpolation grids

Tensorized grids [Babuska 2007]

Sparse Grids [Webster 2007, Nobile 2008]

Anisotropic Sparse Grids [Nobile 2008], based on a priori error estimates

KL Chaos Propagation Example 62

Page 67: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Regression Return I

Let J(ξ) = f (u(ξ)) be a quantity of interest, with J : Ξ → R. We seek for anapproximation

J(ξ) ≈∑

α∈IP

Jαψα(ξ)

We define a set of regression points ykQk=1 and associated weights ωk . Then, we solve

minJαα∈IP

Q∑

k=1

ωk(J(yk)−∑

α∈IP

Jαψα(yk ))2

or equivalently a system of equations

α∈IP

(Q∑

k=1

ωkψβ(yk)ψα(yk )

)

Jα =Q∑

k=1

ωkψβ(yk )J(yk), β ∈ IP

Choice of regression points and weights: Pseudorandom samplings, Quasi-random

samplings, Gauss-Quadrature points (full or sparse) [Berveiller 2006].

KL Chaos Propagation Example 63

Page 68: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Regression Return II

Experimental design must be sufficiently rich in order to obtain a well-conditioned systemfor the P coefficients

Q ≫ P

Some ways to reduce P, and therefore Q

Choice of hyperbolic sets of polynomials IP [Blatman 10]

Adaptive chaos representations based on adaptive regression techniques [Blatman

& Sudret 08,09] (adaptive construction of IP)

Remark

If yk , ωkQk=1 constitutes an integration rule on Ξ associated with measure Pξ, then

Q∑

k=1

ωk(J(yk )−∑

α∈IP

Jαψα(yk))2 ≈ E((J(ξ)−

α∈IP

Jαψα(ξ))2) = ‖J−

α∈IP

Jαψα‖2L2(Ξ,BΞ,Pξ)

and regression is equivalent to a projection with a “numerical pseudo-norm”.

KL Chaos Propagation Example 64

Page 69: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Example: Illustration of the decomposition u8 =∑8

i=1 wi (x)λi (ξ)

Spatial modes W = w1(x)...w8(x)

To compute these modes⇒ only 8 deterministic problems

−∇ · (κi∇wi ) + c · ∇wi + γwi = fi

Random variables Λ = λ1(ξ)...λ8(ξ)

Separated representation of randomvariables

Λ(ξ) ≈Z∑

k=1

φ0kφ

1k(ξ1)...φ

40k (ξ40) ∈ SP

KL Chaos Propagation Example 65

Page 70: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Convergence of multidimensional separated representations

Stochastic algebraic equation: problem defined on the reduced space VM ⊗ S ≃ RM ⊗ S

Eξ(Λ(ξ)∗T

A(ξ)Λ(ξ)) = Eξ(Λ(ξ)∗T

b(ξ)) ∀Λ∗ ∈ RM ⊗ S

Λ(ξ) ≈ ΛZ (ξ) =

Z∑

k=1

φ0kΨk(ξ), φ0

k ∈ RM , Ψk(ξ) = φ1

k(ξ1)...φ40k (ξ40) ∈ SP

Convergence with Z for different M‖Λ− ΛZ‖2L2

0 5 10 1510

−6

10−5

10−4

10−3

10−2

10−1

Order Z

L2 err

or

M = 1M = 2M = 3M = 5M = 10M = 15

uM(ξ) ≈Z∑

k=1

(

W · φ0k

)

Ψk(ξ)

For a precision of 10−2: Z ≈ 10

to be compared with P = 1028

KL Chaos Propagation Example 66

Page 71: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Convergence of generalized spectral decomposition

Mean square convergence

‖uM − u‖2L2(Ξ;L2(Ω)) = Eξ(‖uM − u‖2L2(Ω)) ≈1

Ns

Ns∑

n=1

‖uM(ξn)− u(ξn)‖2L2(Ω)

‖uM − u‖2L2 (Ns = 500)

0 5 10 1510

−3

10−2

10−1

Order

L2 e

rror

KL Chaos Propagation Example 67

Page 72: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Convergence properties of generalized spectral decomposition

Samples

Sample of κ(x , ξ)

uref (x , ξ)− u(x ,µξ) u15(x , ξ)− u(x ,µξ)

KL Chaos Propagation Example 68

Page 73: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Convergence properties of generalized spectral decomposition

Samples

Sample of κ(x , ξ)

uref (x , ξ)− u(x ,µξ) u15(x , ξ)− u(x ,µξ)

KL Chaos Propagation Example 68

Page 74: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Convergence properties of generalized spectral decomposition

Samples

Sample of κ(x , ξ)

uref (x , ξ)− u(x ,µξ) u15(x , ξ)− u(x ,µξ)

KL Chaos Propagation Example 68

Page 75: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Convergence properties of generalized spectral decomposition

Samples

Sample of κ(x , ξ)

uref (x , ξ)− u(x ,µξ) u15(x , ξ)− u(x ,µξ)

KL Chaos Propagation Example 68

Page 76: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Convergence properties of generalized spectral decomposition

Uniform convergence

‖uM − u‖L∞(Ξ;L2(Ω)) = supξ∈Ξ

‖uM(ξ)− u(ξ)‖L2(Ω) ≈ supn∈1...Ns

‖uM(ξn)− u(ξn)‖L2(Ω)

‖uM − u‖2L∞ (Ns = 500)

0 5 10 1510

−2

10−1

100

Order

Err

or

KL Chaos Propagation Example 69

Page 77: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Convergence properties of quantities of interest

Probability density function

Quantity of interest

Q(ξ) =

Ω2

u(x , ξ) dx

1

2

QM(ξ) =

Ω2

uM(x , ξ) dx

Probability density function of Q(ξ)

M=1

2.5 3 3.5 4 4.5

x 10−4

0

2000

4000

6000

8000

10000

12000

14000

Monte−CarloOrder 1

M=4

2.5 3 3.5 4 4.5

x 10−4

0

2000

4000

6000

8000

10000

12000

14000

Monte−CarloOrder 4

M=8

2.5 3 3.5 4 4.5

x 10−4

0

2000

4000

6000

8000

10000

12000

14000

Monte−CarloOrder 8

M=15

2.5 3 3.5 4 4.5

x 10−4

0

2000

4000

6000

8000

10000

12000

14000

Monte−CarloOrder 15

KL Chaos Propagation Example 70

Page 78: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Convergence properties of quantities of interest

Probability of events

Quantity of interest

Q(ξ) =

Ω2

u(x , ξ) dx

1

2

QM(ξ) =

Ω2

uM(x , ξ) dx

P(Q > q), q ∈ (3.5, 5.4)

3.4 3.6 3.8 4 4.2 4.4 4.6

x 10−4

10−5

10−4

10−3

10−2

10−1

100

Monte−CarloOrder 1Order 2Order 4Order 8Order 15Order 20

KL Chaos Propagation Example 71

Page 79: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Convergence properties of quantities of interest

Sensitivity analysis

Q(ξ) ≈ QM(ξ) ≈ QM,Z (ξ) =Z∑

k=1

qkΨk(ξ), Ψk(ξ) =40∏

i=1

φik(ξi )

First order Sobol sensitivity index with respect to parameter ξi

Si =Var(E(Q|ξi))

Var(Q)E(Q|ξi) =

Z∑

k=1

αikφ

ik(ξi), αi

k = qk

40∏

j=1j 6=i

E(φik(ξi))

First order sobol sensivity indices Si

M=1

0 10 20 30 40 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Random variable ξi

Sen

sitiv

ity in

dex

M=5

0 10 20 30 40 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Random variable ξi

Sen

sitiv

ity in

dex

M=15

0 10 20 30 40 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Random variable ξi

Sen

sitiv

ity in

dex

KL Chaos Propagation Example 72

Page 80: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Results... in brief

Deterministic/stochastic separation

u(ξ) ≈ uM(ξ) =

M∑

i=1

wiλi(ξ)

→ VM = spanwiMi=1

Random variables separation

Λ(ξ) := (λi)Mi=1 ≈ ΛZ (ξ) =

Z∑

k=1

φ0k

s∏

j=1

φjk(ξj)

→ SZ = span∏s

j=1 φjk(ξj)Zk=1

For a precision ‖u − uM,Z‖L2 6 10−2

dim(VM) ≈ 15 ≪ 4435 = dim(VN)

‖uM − u‖2L2

0 5 10 1510

−3

10−2

10−1

Order

L2 e

rror

ReturnKL Chaos Propagation Example 73

Page 81: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Results... in brief

Deterministic/stochastic separation

u(ξ) ≈ uM(ξ) =

M∑

i=1

wiλi(ξ)

→ VM = spanwiMi=1

Random variables separation

Λ(ξ) := (λi)Mi=1 ≈ ΛZ (ξ) =

Z∑

k=1

φ0k

s∏

j=1

φjk(ξj)

→ SZ = span∏s

j=1 φjk(ξj)Zk=1

For a precision ‖u − uM,Z‖L2 6 10−2

dim(VM) ≈ 15 ≪ 4435 = dim(VN)

dim(SZ ) ≈ 10 ≪ 1028 = dim(SP)

‖Λ − ΛZ‖2L2 for different M

0 5 10 1510

−6

10−5

10−4

10−3

10−2

10−1

Order Z

L2 err

or

M = 1M = 2M = 3M = 5M = 10M = 15

ReturnKL Chaos Propagation Example 73

Page 82: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Results... in brief

Deterministic/stochastic separation

u(ξ) ≈ uM(ξ) =

M∑

i=1

wiλi(ξ)

→ VM = spanwiMi=1

Random variables separation

Λ(ξ) := (λi)Mi=1 ≈ ΛZ (ξ) =

Z∑

k=1

φ0k

s∏

j=1

φjk(ξj)

→ SZ = span∏s

j=1 φjk(ξj)Zk=1

For a precision ‖u − uM,Z‖L2 6 10−2

dim(VM) ≈ 15 ≪ 4435 = dim(VN)

dim(SZ ) ≈ 10 ≪ 1028 = dim(SP)

15 classical deterministic problems inorder to build VM ⊂ VN

First spatial modes w1(x)...w8(x)

Return

KL Chaos Propagation Example 73

Page 83: M´ethodes spectrales stochastiques et r´eduction de … · MAS 2010, Bordeaux Sep. 2010 M´ethodes spectrales stochastiques et r´eduction de mod`ele pour la quantification et

Results... in brief

Deterministic/stochastic separation

u(ξ) ≈ uM(ξ) =

M∑

i=1

wiλi(ξ)

→ VM = spanwiMi=1

Random variables separation

Λ(ξ) := (λi)Mi=1 ≈ ΛZ (ξ) =

Z∑

k=1

φ0k

s∏

j=1

φjk(ξj)

→ SZ = span∏s

j=1 φjk(ξj)Zk=1

For a precision ‖u − uM,Z‖L2 6 10−2

dim(VM) ≈ 15 ≪ 4435 = dim(VN)

dim(SZ ) ≈ 10 ≪ 1028 = dim(SP)

15 classical deterministic problems inorder to build VM ⊂ VN

about 1 minute computation on alaptop with matlab

First spatial modes w1(x)...w8(x)

Return

KL Chaos Propagation Example 73