methane and digestibility kangaro and sheep.pdf

6
Aust. J. Bioi. Sci., 1976, 29, 209-14 Methane Production and Digestibility Measurements in the Grey Kangaroo and Sheep T. J. Kempton,A R. M. MurrayB and R. A. Leng A A Department of Biochemistry and Nutrition, University of New England, Armidale, N.S.W. 2351. B Department of Tropical Veterinary Science, James Cook University, Townsville, Qld 4811. Abstract Three grey kangaroos and three sheep were given a diet of lucerne chaff and measurements were made of feed intake, digestibility coefficients, methane production rate and volatile fatty acid content of the 'stomach' and caecum for each animal. The kangaroos had lower intakes of digestible dry matter and organic matter than the sheep; this was related to lower intakes of dry matter and lower apparent digestibility coefficients particularly of the crude fibre fraction. Methane production in the sheep (collected in respired air through a mask) was 0·81 Iitre/h; no methane was collected in the respired air from kangaroos. Anal release of methane in sheep and kangaroos indicated that some methane was produced in the hind gut of kangaroos and that all of this methane was lost via the anus. This finding was different to the sheep which apparently excreted 80-90 % of the hind gut methane via the lungs. Thus in both sites of apparent high microbial growth in the gut of kangaroos methane production is negligible or lower than in the same sites in sheep. Possible explanations for the absence of measurable methane production in the kangaroo fore- stomachs are discussed. Introduction The efficiency of utilization of roughage diets by kangaroos has received little attention. Calaby (1958) studied digestion in the quokka Setonix brachyurus (Quoy and Gaimard) and concluded that its digestive efficiency was intermediate between that of the ruminant and non-ruminant herbivore. Foot and Romberg (1965), McIntosh (1966) and Forbes and Tribe (1970) compared digestion in the red kangaroo (Macropus rufus, Desmarest) with sheep, and found the apparent digestibility of lucerne in these kangaroos to be significantly lower. The rate of passage of digesta was faster in the kangaroo compared with sheep, which appeared to result in a lower digestibility of crude fibre in the kangaroo (McIntosh 1966). Moir (1965) has emphasized the 'ruminant-like' digestive system of the kangaroos, and Moir et al. (1956) measured volatile fatty acid (VFA) production in stomach contents in vitro. However, there are no results which indicate the extent of fermentation in the stomach of the intact animal. In ruminal fermentation, hydrogen gas is generated when acetate is produced from pyruvate or when co-enzymes generated in the fermentation pathways are reoxidized (see Baldwin et al. 1970). In ruminants this hydrogen is converted to methane and the rate of production [between 10 and 50 litres/day (see Blaxter 1962)] is stoichiometrically related to the fermentation rate (see Leng and Murray 1972). As part of a comparative study of digestion in herbivores, we set out to use methane production as an index of fermentation in the sheep and kangaroo.

Transcript of methane and digestibility kangaro and sheep.pdf

  • A u s t . J . B i o i . S c i . , 1 9 7 6 , 2 9 , 2 0 9 - 1 4

    M e t h a n e P r o d u c t i o n a n d D i g e s t i b i l i t y M e a s u r e m e n t s

    i n t h e G r e y K a n g a r o o a n d S h e e p

    T . J . K e m p t o n , A R . M . M u r r a y B a n d R . A . L e n g

    A

    A D e p a r t m e n t o f B i o c h e m i s t r y a n d N u t r i t i o n , U n i v e r s i t y o f N e w E n g l a n d ,

    A r m i d a l e , N . S . W . 2 3 5 1 .

    B D e p a r t m e n t o f T r o p i c a l V e t e r i n a r y S c i e n c e , J a m e s C o o k U n i v e r s i t y ,

    T o w n s v i l l e , Q l d 4 8 1 1 .

    A b s t r a c t

    T h r e e g r e y k a n g a r o o s a n d t h r e e s h e e p w e r e g i v e n a d i e t o f l u c e r n e c h a f f a n d m e a s u r e m e n t s w e r e

    m a d e o f f e e d i n t a k e , d i g e s t i b i l i t y c o e f f i c i e n t s , m e t h a n e p r o d u c t i o n r a t e a n d v o l a t i l e f a t t y a c i d c o n t e n t

    o f t h e ' s t o m a c h ' a n d c a e c u m f o r e a c h a n i m a l . T h e k a n g a r o o s h a d l o w e r i n t a k e s o f d i g e s t i b l e d r y

    m a t t e r a n d o r g a n i c m a t t e r t h a n t h e s h e e p ; t h i s w a s r e l a t e d t o l o w e r i n t a k e s o f d r y m a t t e r a n d l o w e r

    a p p a r e n t d i g e s t i b i l i t y c o e f f i c i e n t s p a r t i c u l a r l y o f t h e c r u d e f i b r e f r a c t i o n .

    M e t h a n e p r o d u c t i o n i n t h e s h e e p ( c o l l e c t e d i n r e s p i r e d a i r t h r o u g h a m a s k ) w a s 0 8 1 I i t r e / h ;

    n o m e t h a n e w a s c o l l e c t e d i n t h e r e s p i r e d a i r f r o m k a n g a r o o s . A n a l r e l e a s e o f m e t h a n e i n s h e e p a n d

    k a n g a r o o s i n d i c a t e d t h a t s o m e m e t h a n e w a s p r o d u c e d i n t h e h i n d g u t o f k a n g a r o o s a n d t h a t a l l o f

    t h i s m e t h a n e w a s l o s t v i a t h e a n u s . T h i s f i n d i n g w a s d i f f e r e n t t o t h e s h e e p w h i c h a p p a r e n t l y e x c r e t e d

    8 0 - 9 0 % o f t h e h i n d g u t m e t h a n e v i a t h e l u n g s . T h u s i n b o t h s i t e s o f a p p a r e n t h i g h m i c r o b i a l g r o w t h

    i n t h e g u t o f k a n g a r o o s m e t h a n e p r o d u c t i o n i s n e g l i g i b l e o r l o w e r t h a n i n t h e s a m e s i t e s i n s h e e p .

    P o s s i b l e e x p l a n a t i o n s f o r t h e a b s e n c e o f m e a s u r a b l e m e t h a n e p r o d u c t i o n i n t h e k a n g a r o o f o r e -

    s t o m a c h s a r e d i s c u s s e d .

    I n t r o d u c t i o n

    T h e e f f i c i e n c y o f u t i l i z a t i o n o f r o u g h a g e d i e t s b y k a n g a r o o s h a s r e c e i v e d l i t t l e

    a t t e n t i o n . C a l a b y ( 1 9 5 8 ) s t u d i e d d i g e s t i o n i n t h e q u o k k a S e t o n i x b r a c h y u r u s ( Q u o y

    a n d G a i m a r d ) a n d c o n c l u d e d t h a t i t s d i g e s t i v e e f f i c i e n c y w a s i n t e r m e d i a t e b e t w e e n

    t h a t o f t h e r u m i n a n t a n d n o n - r u m i n a n t h e r b i v o r e . F o o t a n d R o m b e r g ( 1 9 6 5 ) ,

    M c I n t o s h ( 1 9 6 6 ) a n d F o r b e s a n d T r i b e ( 1 9 7 0 ) c o m p a r e d d i g e s t i o n i n t h e r e d k a n g a r o o

    ( M a c r o p u s r u f u s , D e s m a r e s t ) w i t h s h e e p , a n d f o u n d t h e a p p a r e n t d i g e s t i b i l i t y o f

    l u c e r n e i n t h e s e k a n g a r o o s t o b e s i g n i f i c a n t l y l o w e r . T h e r a t e o f p a s s a g e o f d i g e s t a

    w a s f a s t e r i n t h e k a n g a r o o c o m p a r e d w i t h s h e e p , w h i c h a p p e a r e d t o r e s u l t i n a l o w e r

    d i g e s t i b i l i t y o f c r u d e f i b r e i n t h e k a n g a r o o ( M c I n t o s h 1 9 6 6 ) . M o i r ( 1 9 6 5 ) h a s

    e m p h a s i z e d t h e ' r u m i n a n t - l i k e ' d i g e s t i v e s y s t e m o f t h e k a n g a r o o s , a n d M o i r e t a l .

    ( 1 9 5 6 ) m e a s u r e d v o l a t i l e f a t t y a c i d ( V F A ) p r o d u c t i o n i n s t o m a c h c o n t e n t s i n v i t r o .

    H o w e v e r , t h e r e a r e n o r e s u l t s w h i c h i n d i c a t e t h e e x t e n t o f f e r m e n t a t i o n i n t h e s t o m a c h

    o f t h e i n t a c t a n i m a l .

    I n r u m i n a l f e r m e n t a t i o n , h y d r o g e n g a s i s g e n e r a t e d w h e n a c e t a t e i s p r o d u c e d

    f r o m p y r u v a t e o r w h e n c o - e n z y m e s g e n e r a t e d i n t h e f e r m e n t a t i o n p a t h w a y s a r e

    r e o x i d i z e d ( s e e B a l d w i n e t a l . 1 9 7 0 ) . I n r u m i n a n t s t h i s h y d r o g e n i s c o n v e r t e d t o

    m e t h a n e a n d t h e r a t e o f p r o d u c t i o n [ b e t w e e n 1 0 a n d 5 0 l i t r e s / d a y ( s e e B l a x t e r 1 9 6 2 ) ]

    i s s t o i c h i o m e t r i c a l l y r e l a t e d t o t h e f e r m e n t a t i o n r a t e ( s e e L e n g a n d M u r r a y 1 9 7 2 ) .

    A s p a r t o f a c o m p a r a t i v e s t u d y o f d i g e s t i o n i n h e r b i v o r e s , w e s e t o u t t o u s e m e t h a n e

    p r o d u c t i o n a s a n i n d e x o f f e r m e n t a t i o n i n t h e s h e e p a n d k a n g a r o o .

  • 210

    Materials and Methods Animals

    T. J. Kempton, R. M. Murray and R. A. Leng

    Three mature Merino ewes and three mature female eastern grey kangaroos (Macropus giganteus Shaw) were housed individually in metabolism cages. Prior to the experiment all animals were given lucerne chaff ad libitum and trained to accept the experimental procedures. All animals were weighed at the beginning of the experimental period (see Table 2). The lucerne contained 88 % dry matter comprising 36 % crude fibre, 2 6 % nitrogen and 8 5 % ash on a dry matter basis.

    Experimental Methods To facilitate comparisons of the intake and digestibility of lucerne by sheep and kangaroos, all

    animals were given each day 50 g chopped lucerne hay per unit metabolic body size, i.e. body weighto,,,. Water was available at all times.

    The experimental period consisted of a 10-day pre-experimental period and an 8-day digestibility trial. The faeces and feed refusals were collected daily, a 10% subsample taken, bulked and stored at -20D C for analysis. Urine excretions were collected daily in 20 ml of a mercuric chloride-glacial acetic acid mixture (0'1 % w/v). A subs ample of 10% by volume was stored at -20e. Chemical Methods

    The dry matter content of all samples taken each day was determined after heating in a forced air oven at 70C for 48 h. The bulked subsamples were dried and ground through a I-mm screen before being analysed.

    Feed, faeces and feed refusals were analysed for organic matter and crude fibre (Association of Official Agricultural Chemists 1960). The gross energy content of the dry matter of these materials was estimated using a Gallenkamp Autobomb Automatic Adiabatic Bomb Calorimeter (No. DBIIO), and nitrogen content was determined by the semi-micro Kjeldahl method of Clare and Stephenson (1964). The concentration and proportions of VFA in the rumen and caecum of sheep and stomach contents of kangaroos were estimated (see Leng and Leonard 1965) on materials obtained following slaughter of two of the kangaroos and two of the sheep.

    Measurement of Methane Production in Vivo All animals were given t of their daily ration every 3 h for 2 days prior to and during the

    methane production rate measurement. Methane production was measured by fitting a mask over the mouth of the animal I h after feeding and collecting respired and eructated gases for 1 h. A total of three I-h collections with a 2-h interval between collections was made for each animal.

    The gas handling system was essentially the same as that described by Murray et al. (1976). In this system air was drawn across the nose and mouth of the animal at a rate of 50 litres/min and a subsample of 2 litres/min was drawn serially through a freeze-drying unit and a 'Lira' methane analyser (Mine Safety Appliances Co., Pittsburgh, U.S.A.). Methane content in the gases was read directly from a chart recorder attached to the methane analyser which had been previously calibrated with a standard gas mixture.

    The release of methane from the anus was measured using the same principle as used for collection of gases from the mouth. A mask designed to allow the free passage of urine and faeces and yet retain any gases produced was used in place of the face mask. Air was drawn across the anus for a single 3-h period per animal and analysed for methane content as described above.

    Measurement of Methane Production in Vitro Mixed digesta from the rumen of a sheep and the upper stomach of a kangaroo were obtained

    from slaughtered animals. Samples of 100 ml were incubated under nitrogen gas in conical flasks at 39C and shaken 100 times/min for I h. Care was taken to keep the samples under anaerobic conditions at all times. Nitrogen gas was passed through the digesta contents at about 1 ml/min and passed through a CaCl2 drying train and then through the methane analyser.

    Results

    Feed intake and digestibility coefficients for each animal are given in Table 1. The kangaroo had significantly (P < 001) lower digestibility coefficients for all feed components than sheep. Methane production rates for individual animals are given

  • M e t h a n e P r o d u c t i o n i n G r e y K a n g a r o o a n d S h e e p

    2 1 1

    T a b l e 1 . M e a n a p p a r e n t d i g e s t i b i l i t y c o e f f i c i e n t s , n i t r o g e n b a l a n c e a n d i n t a k e o f l u c e r n e c h a f f b y

    k a n g a r o o s a n d s h e e p

    V a l u e s s h o w n a r e m e a n s s . e . T h e s i g n i f i c a n c e o f t h e d i f f e r e n c e b e t w e e n m e a n s i s a l s o s h o w n

    I n t a k e D i g e s t i b i l i t y ( % )

    D r y

    O r g a n i c

    m a t t e r

    m a t t e r

    D r y

    O r g a n i c C r u d e C r u d e

    ( g / d a y )

    ( g W - O ' 7 5 d - ' ) A

    m a t t e r m a t t e r f i b r e

    p r o t e i n

    K a n g a r o o

    4 7 7 4 6

    5 5 1 1 5 6 1 1 3 6 1 8

    7 3 0 1

    S h e e p

    6 4 3

    4 7

    6 2 0 ' 3 6 3 0 ' 3

    4 8 0 7

    7 6 0 ' 4

    p

    * * * * * * * *

    N i t r o g e n b a l a n c e ( g n i t r o g e n w e i g h t - o . ' 5 d a y - ' )

    K a n g a r o o

    S h e e p

    p

    F e e d

    1 3 6 0 0 0 4

    1 ' 3 7 0 ' 0 0 2

    n . s .

    F a e c e s U r i n e

    0 3 7 0 0 0 2

    0 3 4 0 O O 8

    n . S .

    0 9 8 0 0 4 9

    0 ' 8 1 0 ' 0 2 1

    n . s .

    A M e a s u r e d a s g r a m s p e r w e i g h t o '

    7 5

    p e r d a y .

    * * P < 0 0 1 . n . s . , N o t s i g n i f i c a n t .

    E n e r g y

    5 6 0 5

    6 1 0 ' 9

    * *

    B a l a n c e

    0 0 1 0 0 4 8

    0 2 2 0 0 1 4

    * *

    T a b l e 2 . M e t h a n e p r o d u c t i o n m e a s u r e d o v e r a 3 - h p e r i o d i n k a n g a r o o s a n d s h e e p g i v e n a l u c e r n e

    c h a f f d i e t , a n d i n d i v i d u a l a n i m a l w e i g h t s

    A n i m a l

    K a n g a r o o 1

    K a n g a r o o 2

    K a n g a r o o 3

    M e a n

    S h e e p 1

    S h e e p 2

    S h e e p 3

    M e a n

    S i g n i f i c a n c e o f

    m e a n d i f f e r e n c e s

    R e s p i r e d

    m e t h a n e

    ( l / h )

    0

    0

    0

    0 7 9

    0 7 5

    0 8 8

    0 8 1 0 0 3 6

    * *

    A n a l

    m e t h a n e

    ( l / h )

    0 0 2

    0 0 2

    0 0 2

    0 ' 0 2 0 ' 0 0 0

    0 0 1

    0 0 2

    0 0 1

    0 0 1 0 0 1 8

    n . s .

    T o t a l m e t h a n e

    W e i g h t

    p r o d u c t i o n

    ( k g )

    ( % D E I ) A

    0 4 0 1 9 1

    0 3 4

    2 4 1

    0 3 7

    2 2 7

    0 3 7 0 0 1 7

    1 0 ' 6 0

    3 0 0

    9 ' 9 6

    3 2 8

    1 1 ' 0 1

    3 4 0

    1 0 5 2 0 ' 3 0 5

    * *

    A P e r c e n t a g e o f d i g e s t i b l e e n e r g y i n t a k e ( D E I ) ; l 1 i t r e m e t h a n e = 3 9 5 4 k J ( B r o u w e r 1 9 6 5 ) .

    * * P < 0 0 1 . n . s . , N o t s i g n i f i c a n t .

    T a b l e 3 .

    V o l a t i l e f a t t y a c i d c o n c e n t r a t i o n s a n d p r o p o r t i o n s i n s t o m a c h a n d c a e c a l c o n t e u t s f r o m

    s l a u g h t e r e d s h e e p a n d k a n g a r o o s g i v e n l u c e r n e c h a f f

    E a c h v a l u e i s t h e m e a n o f t w o r e s u l t s

    A n i m a l

    T o t a l V F A

    I n d i v i d u a l V F A p r o p o r t i o n s ( m o l / I O O m o l )

    c o n c n ( m M )

    A c e t i c P r o p i o n i c B u t y r i c I s o b u t y r i c V a l e r i e I s o v a l e r i c

    S h e e p

    R u m e n f l u i d

    6 2

    6 8 2 2

    7

    1 3

    0 6

    1 9

    C a e c u m f l u i d

    6 4

    7 9

    1 4

    5

    0 4 0 9 0 6

    K a n g a r o o

    S t o m a c h f l u i d 1 0 0

    7 0 1 7 1 2

    0 2 0 9

    0 2

    C a e c u m f l u i d

    6 8 8 2 1 3

    4

    0 5 0 4 0 3

  • 212 T. J. Kempton, R. M. Murray and R. A. Leng

    in Table 2. No measurable amounts of respired or eructated methane were detected in kangaroos, whereas sheep released methane at an average rate of O 81 litre/h. Kangaroos released methane at a rate of 002 litre/h from the anus which was not significantly (P>0'05) different in quantity to the O'Ollitre/h released an ally by sheep. The methane production in kangaroos represented 04 % of the digestible energy intake (DEI) compared to 10 5 % of DEI in sheep. No detectable production of methane occurred from 100 g of stomach contents of kangaroos whereas from the same quantity of rumen contents of sheep methane was produced at between 20 and 40 ml/h.

    The proportions and concentrations of VF A in the rumen and caecum of sheep and the stomach and caecum of kangaroos are shown in Table 3.

    Discussion

    Ruminants can effectively utilize a large proportion of the cellulose of their diet because of microbial fermentation and a long retention time of feed particles in the rumen. Moir et al. (1956) suggested that because of the kangaroo's 'ruminant-like' digestive tract it could similarly utilize ingested fibre, and consequently most studies on kangaroo digestion have assumed that feed is retained in the forestomach where there is substantial production of VF A and microbial cells.

    The intakes and associated digestibility coefficients presented here for kangaroos and sheep are comparable to those found by Calaby (1958), Foot and Romberg (1965), McIntosh (1966) and Forbes and Tribe (1970). Kangaroos had lower digesti-bility coefficients for all dietary components measured. Even when the effect of the crude fibre fraction was removed during calculation of the organic matter digestibility coefficients, there remained an interspecies difference in 'organic matter' digestibility and therefore the differences were not entirely due to a difference in fibre digestion. Thus the kangaroo does not apparently digest the available dietary components as efficiently as sheep.

    In this study it was found that kangaroos produced insignificant quantities of methane during the period of collection in comparison with sheep. Of the methane produced by the kangaroos, none was apparently produced in the forestomach as indicated by mask collections. The methane analyser used could detect methane at production rates as low as O' 5 ml/h (Murray 1974). Incubation in vitro of digesta from the forestomach of both species showed methane production for the sheep but none from the kangaroo. Although the mask collections were only for a period of 3 h, Murray et al. (1976) have shown that methane production in sheep fed lucerne chaff at hourly intervals is almost constant. The rate of emission of methane from the anus, however, is quite variable and so the values reported here must be considered as being only indicative of relative rates in both species. As sheep excrete a considerable portion (80-90 %) of the methane produced in the hindgut via the lungs (Murray et al. 1976) this would indicate that the overall production of methane in the hindgut of the kangaroo was less than in the sheep. The absence of methane in respired air in the kangaroos may indicate that methane is produced in the large intestine close to the anus and rapidly excreted.

    In these kangaroos the concentration of VF A in mixed stomach contents of slaughtered animals was 85-115 mmol/litre indicating that some fermentation occurred. The extent of fermentation relative to the sheep, however, may not be

  • M e t h a n e P r o d u c t i o n i n G r e y K a n g a r o o a n d S h e e p

    2 1 3

    i n d i c a t e d b y t h e s e c o n c e n t r a t i o n s s i n c e t h e s t o m a c h c o n t e n t s f r o m k a n g a r o o s w e r e

    m u c h d r i e r ( 1 5 - 1 7 % d r y m a t t e r ) t h a n t h o s e i n t h e r u m e n o f s h e e p ( 1 2 - 1 3 % ) o n t h e

    s a m e d i e t .

    A p o s s i b l e e x p l a n a t i o n f o r t h e l a c k o f m e t h a n e p r o d u c t i o n m a y b e t h a t f e r m e n t a t i o n

    o c c u r s i n t h e f u n d u s a r e a o f t h e s t o m a c h w h e r e o x y g e n , t a k e n i n w i t h t h e f e e d , m i g h t

    a c t a s a n e l e c t r o n a c c e p t o r . S i n c e m e t h a n o g e n i c b a c t e r i a a r e o b l i g a t o r y a n a e r o b e s

    ( H u n g a t e 1 9 6 6 ) t h e p r e s e n c e o f o x y g e n w o u l d p r e v e n t t h e i r g r o w t h t h e r e b y i n h i b i t i n g

    m e t h a n e p r o d u c t i o n f r o m h y d r o g e n g e n e r a t e d i n t h e p r o d u c t i o n o f a c e t a t e ( s e e

    L e n g 1 9 7 0 ) . T h e s i m p l e s t r u c t u r e o f t h e k a n g a r o o f o r e s t o m a c h m a y a l l o w e n t r y o f

    o x y g e n a c r o s s t h e w a l l , a n d t h i s w o u l d r e s u l t i n a l o w e r r e d u c i n g p o t e n t i a l i n t h e

    w h o l e o r g a n . A l o w r e d o x p o t e n t i a l i n t h e k a n g a r o o ' s s t o m a c h m a y a l s o e x p l a i n t h e

    l o w d e g r e e o f h y d r o g e n a t i o n o f d i e t a r y u n s a t u r a t e d f a t t y a c i d s i n k a n g a r o o s ( G r i f f i t h s

    e t a l . 1 9 7 2 ) a s i n d i c a t e d b y t h e h i g h c o n t e n t o f t h e s e i n k a n g a r o o ' s m i l k . S u c h a h i g h

    c o n c e n t r a t i o n o f u n s a t u r a t e d f a t t y a c i d s i n m i l k f r o m k a n g a r o o s m a y i n d i c a t e t h a t

    h y d r o g e n a t i o n o f d i e t a r y f a t t y a c i d s i n t h e s t o m a c h i s l o w , w h i c h i n t u r n s u g g e s t s

    l o w h y d r o g e n p r o d u c t i o n a n d a l i m i t e d r a t e o f f e r m e n t a t i o n i n t h e f o r e s t o m a c h o f

    k a n g a r o o s . C o n v e r s e l y , i f a b s o r p t i o n o f V F A w a s s l o w t h e h i g h c o n c e n t r a t i o n s o f

    V F A i n t h e d e e p e r f u n d u s a r e a o r t h e a r e a t e n d i n g t o w a r d s t r u e g a s t r i c f u n c t i o n m a y ,

    t h r o u g h f e e d b a c k m e c h a n i s m s , r e d u c e f e r m e n t a t i o n . T h u s t h e r e l a t i v e l y h i g h l e v e l s

    o f V F A m a y b e d u e t o a l o w f e r m e n t a t i o n r a t e c o u p l e d w i t h a l o w a b s o r p t i o n r a t e .

    F u r t h e r r e s e a r c h i s n e c e s s a r y t o e x p l a i n t h e a b s e n c e o f m e t h a n e i n t h e f o r e s t o m a c h

    o f k a n g a r o o s . S i n c e m e t h a n o g e n i c b a c t e r i a d e f i n i t e l y o c c u r i n t h e h i n d g u t o f t h e

    k a n g a r o o , a n d u n l e s s o x y g e n i s g a i n i n g a c c e s s t o t h e s t o m a c h , t h e l a c k o f m e t h a n e

    p r o d u c t i o n a p p e a r s t o b e d u e l a r g e l y t o a l o w f e r m e n t a t i o n p o t e n t i a l . T h i s i s a l s o

    i n d i c a t e d b y t h e l o w f i b r e d i g e s t i o n i n t h e s e a n i m a l s . U n t i l m o r e p o s i t i v e m e a s u r e m e n t s

    a r e m a d e i n i n t a c t a n i m a l s t h e r e m u s t b e c o n s i d e r a b l e d o u b t a s t o w h e t h e r t h e

    k a n g a r o o i s ' r u m i n a n t - l i k e ' a n d w h e t h e r m e t h a n e p r o d u c t i o n c a n b e u s e d a s a b a s i s

    f o r c o m p a r i s o n b e t w e e n t h e r e l a t i v e e f f i c i e n c i e s o f d i g e s t i o n i n v a r i o u s h e r b i v o r e s .

    A c k n o w l e d g m e n t s

    W e w i s h t o e x p r e s s o u r a p p r e c i a t i o n f o r t h e t e c h n i c a l a s s i s t a n c e o f M i s s e s C y n t h i a

    U n d e r w o o d a n d C l a r e A l l i n g t o n . D r s J . V . N o l a n , B . W . N o r t o n a n d I . D . H u m e

    a r e a l s o t h a n k e d f o r c o n s i d e r a b l e d i s c u s s i o n , p a r t i c u l a r l y o f t e c h n i q u e s .

    R e f e r e n c e s

    A s s o c i a t i o n o f O f f i c i a l A g r i c u l t u r a l C h e m i s t s ( 1 9 6 0 ) . ' O f f i c i a l M e t h o d s o f A n a l y s i s ' . 9 t h E d n .

    ( E d . W . H o r o w i t z . ) ( A s s o c i a t i o n o f O f f i c i a l A g r i c u l t u r a l C h e m i s t s : W a s h i n g t o n . )

    B a l d w i n , R . L . , L u c a s , H . D . , a n d C a b r e r a , R . ( 1 9 7 0 ) . E n e r g e t i c r e l a t i o n s h i p s i n t h e f o r m a t i o n a n d

    u t i l i s a t i o n o f f e r m e n t a t i o n e n d p r o d u c t s . I n ' P h y s i o l o g y o f D i g e s t i o n a n d M e t a b o l i s m i n t h e

    R u m i n a n t ' . ( E d . A . T . P h i l l i p s o n . ) p p . 3 1 9 - 3 4 . ( O r i e l P r e s s : N e w c a s t l e - u p o n - T y n e . )

    B l a x t e r , K . L . ( 1 9 6 2 ) . ' T h e E n e r g y M e t a b o l i s m o f R u m i n a n t s ' . ( H u t c h i n s o n a n d C o . : L o n d o n . )

    B r o u w e r , E . ( 1 9 6 5 ) . R e p o r t o f s u b - c o m m i t t e e o n c o n s t a n t s a n d f a c t o r s . I n ' E n e r g y M e t a b o l i s m ' .

    ( E d . K . L . B l a x t e r . ) P r o c . 3 r d S y m p . h e l d a t T r o o n , S c o t l a n d , 1 9 - 2 2 M a y 1 9 6 4 . E u r o p e a n

    A s s o c i a t i o n f o r A n i m a l P r o d u c t i o n N o . 1 1 . p p . 4 4 1 . ( A c a d e m i c P r e s s : L o n d o n . )

    C a l a b y , J . H . ( 1 9 5 8 ) . S t u d i e s o n m a r s u p i a l n u t r i t i o n . I I . T h e r a t e o f p a s s a g e o f f o o d r e s i d u e s a n d

    d i g e s t i b i l i t y o f c r u d e f i b r e a n d p r o t e i n b y t h e q u o k k a , S e t o n i x b r a c h y u r u s ( Q u o y a n d G a i m a r d ) .

    A u s t . J . B i o i . S c i . 1 1 , 5 7 1 - 8 0 .

    C l a r e , N . T . , a n d S t e p h e n s o n , A . E . ( 1 9 6 4 ) . M e a s u r e m e n t o f f e e d i n t a k e b y g r a z i n g c a t t l e a n d s h e e p .

    X . D e t e r m i n a t i o n o f n i t r o g e n i n f a e c e s a n d f e e d s u s i n g a n a u t o a n a l y s e r . N . Z . J . A g r i c . R e s .

    7 , 1 9 8 .

  • 214 T. J. Kempton, R. M. Murray and R. A. Leng

    Foot, J. Z., and Romberg, B. (1965). The utilization of roughage by sheep and the red kangaroo, Macropus rufus (Desmarest). Aust. J. Agric. Res. 16, 429-35.

    Forbes, D. K., and Tribe, D. E. (1970). The utilization of roughages by sheep and kangaroos. Aust. J. Zool. 18, 247-56.

    Griffiths, M., McIntosh, D. L., and Leckie, R. M. C. (1972). The mammary glands of the red kangaroo, with observations on the fatty acid components of the milk triglycerides. J. Zool. 166,265-75.

    Hungate, R. E. (1966). 'The Rumen and its Microbes'. (Academic Press: New York.) Leng, R. A. (1970). Formation and production of volatile fatty acids in the rumen. In 'Physiology

    of Digestion and Metabolism in the Ruminant'. (Ed. A. T. Phillipson.) pp. 406-21. (Oriel Press: Newcastle-upon-Tyne.)

    Leng, R. A., and Leonard, G. K. (1965). Measurement of the rates of production of acetic, propionic and butyric acids in the rumen of sheep. Br. J. Nutr. 19, 469-83.

    Leng, R. A., and Murray, R. M. (1972). Estimation of the fermentation rate in the rumen of sheep using VFA production, carbon dioxide production and methane production. In 'Tracer Studies on Non-protein Nitrogen for Ruminants II'. pp.21-7. (Int. Atomic Energy Agency, Vienna.)

    McIntosh, D. L. (1966). The digestibility of two roughages and the rates of passage of their residues by the red kangaroo, Megaleia rufa (Desmarest), and the Merino sheep. CSIRO Wildt. Res. 11, 125-35.

    Moir, R. J. (1965). The comparative physiology of ruminant-like animals. In 'Physiology of Digestion in the Ruminant'. (Ed. R. W. Dougherty.) Ch. 1. (Butterworth: Washington.)

    Moir, R. J., Somers. M., and Waring, H. (1956). Studies on marsupial nutrition. I. Ruminant-like digestion in a herbivorous marsupial Setonix brachyurus (Quoy and Gaimard). Aust. J. Bioi. Sci. 9,293-304.

    Murray, R. M. (1974). Nutrition and digestive function of the ruminant Ph.D. Thesis, University of New England, Armidale, Australia.

    Murray, R. M., Bryant, A. M., and Leng, R. A. (1976). Rates of production of methane in the rumen and large intestine of sheep. Br. J. Nutr. 36, 1-14.

    Manuscript received 5 November 1975

    HistoryItem_V1 AddMaskingTape Range: all pages Mask co-ordinates: Horizontal, vertical offset 2.13, 692.52 Width 462.75 Height 5.32 points Origin: bottom left

    1 0 BL Both 1 AllDoc 1

    CurrentAVDoc

    2.1276 692.5231 462.7497 5.319

    QITE_QuiteImposingPlus2 Quite Imposing Plus 2.0d Quite Imposing Plus 2 1

    0 6 5 6

    1

    HistoryList_V1 qi2base