Metallurgy for Engineers · 2008. 1. 11. · GENERAL INFORMATION Course Number INME 4007 Course...

44
Metallurgy for Engineers INME 4007 Pablo G. CaceresValencia B.Sc., Ph.D. U.K

Transcript of Metallurgy for Engineers · 2008. 1. 11. · GENERAL INFORMATION Course Number INME 4007 Course...

  • Metallurgy for EngineersINME 4007 

    Pablo G. Caceres‐Valencia

    B.Sc., Ph.D. U.K

  • GENERAL INFORMATION

    Course Number  INME 4007 

    Course Title Metallurgy for Engineers

    Credit Hours 3 (Lecture:  2hours; Lab.: 2h per week)

    Instructor Dr. Pablo G. Caceres‐Valencia

    Office Luchetti Building L‐212 

    Phone Extension 2358

    Office Hours Mo and Wed 1:00pm to 5:00pm 

    e‐mail [email protected]

    [email protected]

    Web‐site http://academic.uprm.edu/pcaceres

    mailto:[email protected]://academic.uprm.edu/pcaceres/

  • AssessmentThe course will be assessed in the following manner:

    1st Partial Exam  15%

    2nd Partial Exam 15% 

    Final Exam 15%

    Quizzes (5)*  25%

    Class Attendance & Participation 5% (**)

    Laboratory 25%(*) A total of five quizzes will be performed. Some of them will be pop‐quizzes (unannounced).  

    (**) Class Attendance (after the second absence ‐ 1 point will be deducted for each non‐authorized absence). The participation in class will be taken into account.

  • Grades Final Grade Range Final Letter Grade

    100 – 90 A

    89 – 80 B

    79 – 70 C

    69 – 60 D

    59 ‐ 0 F

    AttendanceAttendance and participation in the lectures are mandatory and will be considered in the grading. Students should bring calculators, rulers, pen and pencils to be used during the lectures. Students are expected to keep up with the assigned reading and be prepared for the pop‐quizzes or to answer questions on these readings during lecture. Please refer to the Bulletin of Information for Undergraduate Studies for the Department and Campus Policies.

  • TexbooksW. D. Callister, Materials Science and Engineering: An Introduction(John Wiley Latest edition)

    Donald R. Askeland and Pradeep P. Hule; The Science and Engineering of Materials; (Thomson: Brooks/Cole; Latest Edition)

    William F. Smith; Foundation of Materials Science and Engineering(McGraw Hill, 2004 3th edition)

    I will also post my lecture notes in the web 

    http://academic.uprm.edu/pcaceres

  • ExamsAll exams, excepting the final exam, will be conducted during normal lecture periods in the assigned classrooms on dates specified by the lecturer with at least two weeks in advance. 

    The final exam will be conducted at the time and location scheduled by the University. 

    Students are allow to prepare a 3½ ” x 5½ ” index card, with any notes desired on its front and back, for use during each exam. Each index card must be handed in with the exam for which it is used.

    The only other items allowed for use during the exams are calculators, pencils, pens, and rulers.

    Neatness and order will be taking into consideration in the final exam grade. Up to ten points can be deducted for the lack of neatness and order.

  • TENTATIVES DATES

    Jan/9‐11Introduction

    Jan/14‐18 Phase Diagram

    Jan/21‐25 Phase Diagram

    Jan/28‐Feb/01 Fe Phase Diagram

    Feb/04‐08 Ferrous Alloys

    Feb/11‐15Solidification

    March/3‐7 Crystal Structures

    Mar/24‐28 Strengthening Mechanisms

    April /14‐18 Non‐Ferrous Alloys

    Feb/18‐22 Solidification1st Exam

    Feb/25‐29 Atomic Structure and 

    Bonding

    March/10‐14 Strengthening Mechanisms

    Mar/17‐21–No Class ‐ Holy Week

    April/1‐4Mechanical Properties

    April/7‐11 Mechanical Properties

    Exam 2

    April/22‐25 ‐ Polymers & Composites

    Apr/28‐May02‐ Corrosion

  • OUTCOMES

    After the completion of the course the students should be able to:

    • characterize structure‐property‐performance relationship

    • distinguish the structure of different types of materials

    • specify the microstructure of an alloy from phase diagrams

    • analyze the mechanical properties of materials

    • select materials for various engineering applications

    • describe the mechanical behavior of the materials.

  • Evolution of Engineering Research & Education 

    1910

    1960

    2010

    Sputnik

    Quantum Mechanics

    InformationTechnology

    “Nano‐Bio‐Info”

    Tables, formulae, etc.

    “If it moves, it’s Mechanical,if it doesn’t move, it’s Civil,and If you can’t see it, it’s Electrical”

    The era of science‐basedengineering

    We are entering an era of integrated science &engineering, during whichthe boundaries of the disciplines will grow increasingly indistinct

    Engineering disciplines

    Engineering disciplines

    Sciences

    Engineering

    Science

    ?Taken from Tim Sands, Prof. UC. Berkeley

  • Without materials there is no engineering

  • Chapter Outline• Historical Perspective

    Stone → Bronze → Iron → Advanced materials• What is Materials Science and Engineering ?

    Processing → Structure → Properties → Performance• Classification of Materials

    Metals, Ceramics, Polymers, Semiconductors• Advanced Materials

    Electronic materials, superconductors, etc.• Modern Material's Needs, Material of Future

    Biodegradable materials, Nanomaterials, “Smart”materials

  • Historical Timeline• Beginning of the Material Science ‐ People began to make tools from stone – Start of the Stone Age about two million years ago. Natural materials: stone, wood, clay, skins, etc.• The Stone Age ended about 5000 years ago with introduction of Bronze in the Far East. Bronze is an alloy (a metal made up of more than one element), copper + 

  • Evolution of Materials: A better understanding of structure‐composition‐properties relations has lead to a remarkable progress in properties of materials. 

  • Example is the dramatic progress in the strength to density ratio of materials, that resulted in a wide variety of new products, from dental materials to tennis racquets

  • • Processing

    • Structure

    • Properties

    • Performance

  • What is Materials Science and Engineering ?

    Material science is the investigation of the relationship among processing, structure, properties, and performance of materials.

    Materials Optimization 

    Loop

  • A Multidisciplinary Approach

  • Matter

    Solid Liquid Vapor

    Inorganics Organics

    Metals Ceramics Polymers Composites

  • PropertiesProperties are the way the material responds to the environment and external forces.

    Mechanical properties – response to mechanical forces, strength, etc.

    Electrical and magnetic properties ‐ response electrical and magnetic fields, conductivity, etc.

    Thermal properties are related to transmission of heat and heat capacity.

    Optical properties include to absorption, transmission and scattering of light.

    Chemical stability in contact with the environment – corrosion resistance.

  • We are going to study real, complex solids. PT should be familiaWe are going to study real, complex solids. PT should be familiar !r !

  • Length‐scalesAngstrom = 1Å = 1/10,000,000,000 meter = 10‐10 m

    Nanometer = 10 nm = 1/1,000,000,000 meter = 10‐9 m

    Micrometer = 1µm = 1/1,000,000 meter = 10‐6 m

    Millimeter = 1mm = 1/1,000 meter = 10‐3 m

    Interatomic distance ~ a few Å

    A human hair is ~ 50 µm

    Elongated bumps that make up the data track on CD are ~0.5 µm wide, minimum 0.83 µm long, and 125 nm high

  • DNA~2-1/2 nm diameter

    Natural ThingsNatural Things

    Fly ash~ 10-20 μm

    Human hair~ 60-120 μm wide

    Atoms of siliconspacing ~tenths of nm

    Red blood cellswith white cell

    ~ 2-5 μm

    Ant~ 5 mm

    Dust mite

    200 μm

    ATP synthase

    ~10 nm diameter

    Mic

    row

    orld

    0.1 nm

    1 nanometer (nm)

    0.01 μm10 nm

    0.1 μm100 nm

    1 micrometer (μm)

    0.01 mm10 μm

    0.1 mm100 μm

    1 millimeter (mm)

    1 cm10 mm

    10-2 m

    10-3 m

    10-4 m

    10-5 m

    10-6 m

    10-7 m

    10-8 m

    10-9 m

    10-10 m

    Visib

    le

    Nan

    owor

    ld

    1,000 nanometers =

    Infra

    red

    Ultra

    violet

    Micr

    owav

    eSo

    ft x-

    ray

    1,000,000 nanometers =

    The Scale of Things The Scale of Things ––

    Nanom

    eters and More

    Nanom

    eters and More

  • Manmade Manmade ThingsThingsHead of a pin1-2 mm

    Quantum corral of 48 iron atoms on copper surfacepositioned one at a time with an STM tip

    Corral diameter 14 nm

    Nanotube electrode

    Carbon nanotube ~1.3 nm diameter

    O O

    O

    OO

    O OO O OO OO

    O

    S

    O

    S

    O

    S

    O

    S

    O

    S

    O

    S

    O

    S

    O

    S

    PO

    O

    The Challenge

    Fabricate and combine nanoscale building blocks to make useful devices, e.g., a photosynthetic reaction center with integral semiconductor storage.

    Zone plate x-ray “lens”Outer ring spacing ~35 nm

    MicroElectroMechanical(MEMS) devices10 -100 μm wide

    Red blood cellsPollen grain

    Carbon buckyball ~1 nm diameter

    Self-assembled,Nature-inspired structureMany 10s of nm

    Mic

    row

    orld

    0.1 nm

    1 nanometer (nm)

    0.01 μm10 nm

    0.1 μm100 nm

    1 micrometer (μm)

    0.01 mm10 μm

    0.1 mm100 μm

    1 millimeter (mm)

    1 cm10 mm10

    -2 m

    10-3 m

    10-4 m

    10-5 m

    10-6 m

    10-7 m

    10-8 m

    10-9 m

    10-10 m

    Visib

    le

    Nan

    owor

    ld

    1,000 nanometers =

    Infra

    red

    Ultra

    violet

    Micr

    owav

    eSo

    ft x-

    ray

    1,000,000 nanometers =

    The

    Scal

    e of

    Thi

    ngs

    The

    Scal

    e of

    Thi

    ngs ––

    Nan

    omet

    ers a

    nd M

    ore

    Nan

    omet

    ers a

    nd M

    ore

  • SolidsSolids we are interested in their mechanical properties…

    metalmetal polymerpolymer

    oxideoxide

    polymerpolymer

    CaCa1010(PO(PO44))66OHOH22

  • we are interested in their we are interested in their electronicelectronic propertiesproperties……

  • 'Electronic' properties of solids:….those dominated by the behavior of the electrons

    Electrical conduction: insulating, semiconducting, metallic, superconducting

    Can we understand this huge variation in conductivity ?

  • 'Electronic' properties of solids:….those dominated by the behaviour of the electrons

    Optical properties: absorption, emission, amplification and modification of light

    prism

    SHG

    laser

    window

    mirror

    glass fibre

  • Magnetic properties: paramagnetism, ferromagnetism, antiferromagnetism

    IBM

  • Chemical classification:Chemical classification:

    molecularmolecularionicioniccovalentcovalentmetallicmetallic

    bondingbonding

  • Classification of Functional Materials

  • Metals: Inorganic substances which are composed normally of combinations of "metallic elements“ and may also contain some non metallic elements. Examples iron (Fe), copper (Cu), aluminum (Al), nickel (Ni), titanium (Ti). Non metallic elements such as carbon(C), nitrogen (N) and oxygen (O) may also be contained in metallic materials.Metals usually are good conductors of heat and electricity. Metals have a crystalline structure in which the atoms are arranged in an orderly manner. Also, they are quite strong but malleable and tend to have a lustrous look when polished. Metals and alloys are commonly divided into two classes: ferrous metals and alloys and non ferrous metals and alloys that do not contain iron or only a relatively small amount of iron.

  • Ceramics: They are generally compounds between metallic and nonmetallic elements chemically bonded together and include suchcompounds as oxides, nitrides, and carbides. Ceramic materials can be crystalline, non-crystalline, or mixtures of both.Typically they have high hardness and high-temperature strength but they tend to have mechanical brittleness. They are usually insulating and resistant to high temperatures and harsh environments. Ceramics can be divided into two classes: traditional and advanced. Traditional ceramics include clay products, silicate glass and cement; while advanced ceramics consist of carbides (SiC), pure oxides (Al2O3), nitrides (Si3N4), non-silicate glasses and many others.

  • Plastics: Plastics or polymers are substances containing a large number of structural units joined by the same type of linkage. These substances often form into a chain-like structure and are made of organic compounds based upon carbon and hydrogen. Usually they are low density and are not stable at high temperatures.Polymers in the natural world have been around since the beginning of time. Starch, cellulose, and rubber all possess polymeric properties. Man-made polymers have been studied since 1832. Today, the polymer industry has grown to be larger than the aluminum, copper and steel industries combined. Polymers already have a range of applications that far exceeds that of any other class of material available to man. Current applications extend from adhesives, coatings, foams, and packaging materials to textile and industrial fibers, composites, electronic devices, biomedical devices, optical devices, and precursors for many newly developed high-tech ceramics.

  • Semiconductors (Electronic Materials): Semiconductors are materials which have a conductivity between conductors (generally metals) and nonconductors or insulators (such as most ceramics). Semiconductors can be pure elements, such as silicon or germanium, or compounds such as gallium arsenide or cadmium selenide. In a process called doping, small amounts of impurities are added to pure semiconductors causing large changes in the conductivity of the material. Due to their role in the fabrication of electronic devices, semiconductors are an important part of our lives. Imagine life without electronic devices. The developments in semiconductor technology during the past 50 years have made electronic devicessmaller, faster, and more reliable.

  • Composites:Composites consist of a mixture of two or more materials. Most composite materials consist of a selected filler or reinforcing material and a compatible resin binder to obtain the specific characteristics and properties desired. Usually, the components do not dissolve in each other and can be physically identified by an interface between the components.Fiberglass, a combination of glass and a polymer, is an example.Concrete and plywood are other familiar composites. Many new combinations include ceramic fibers in metal or polymer matrix.

  • What is Concrete? Brain Storming Activity 1: Concrete Survey1. When was concrete first made?

    9000 BC 500 BC 100 AD 1756 1824 2. Circle the possible components of concrete.

    water cement gravel sand air steel rods 3. What is the purpose of cement in concrete? 4. What role does water play in producing concrete? 5. Why does concrete harden? 6. Why does concrete set (harden) slowly? 7. How can you make concrete set: (a) faster (b) slower? 8. Is concrete stronger in compression, tension, or the same in either? 9. How strong can concrete or cement be (in pounds per square inch

    (psi))? 50,000 20,000 5000 2000

    10. How long can concrete last (in years)? 50,000 5000 500 50

  • scores: 8-10 materials science major; 5-7 concrete contractor; 2-4 concrete laborer; 0-1 home owner

    Concrete Survey (Key)1. When was concrete first made?

    9000 BC 500 BC 100 AD 1756 1824 2. Circle the possible components of concrete.

    water cement gravel sand air3. What is the purpose of cement in concrete?

    It acts as a primary binder to join the aggregate into a solid mass.

    4. What role does water play in producing concrete? Water is required for the cement to hydrate and solidify.

    5. Why does concrete harden? The chemical process called cement hydration produces crystals that interlock and bind together.

  • 6. Why does concrete set (harden) slowly? It takes time for the hydrated cement crystals to form

    7. How can you make concrete set: faster? add calcium chloride or “accelerator"slower? add sugar or "set retarder"

    8. Is concrete stronger in compression, tension, or the same in either? It is stronger in compression.

    9. How strong can concrete or cement be (in pounds per square inch (psi))? 50,000 20,000 5000 2000

    10.How long can concrete last (in years)? 50,000 5000 500 50