Metal Oxide Semiconductor Field Effect Transistors...

36
Department of EECS University of California, Berkeley EECS 105 Spring 2017, Module 3 Prof. Ali M. Niknejad Prof. Rikky Muller Metal Oxide Semiconductor Field Effect Transistors (MOSFETs)

Transcript of Metal Oxide Semiconductor Field Effect Transistors...

Page 1: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

Department of EECS University of California, Berkeley

EECS 105 Spring 2017, Module 3

Prof. Ali M. Niknejad Prof. Rikky Muller

Metal Oxide Semiconductor Field

Effect Transistors (MOSFETs)

Page 2: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

2

Announcements

l  Pick up Midterm 1 if you haven’t already! l  Two options: (1) from my office hours, or (2) from

lecture today

University of California, Berkeley

Page 3: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

3

MOSFET Cross Section

l  Add two junctions around MOS capacitor l  The regions forms PN junctions with substrate l  MOSFET is a four terminal device l  The body is usually grounded (or at a DC potential) l  For ICs, the body contact is at surface

University of California, Berkeley

p-type substrate

n+ n+

source drain diffusion regions

L

gate body

p+

Page 4: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

4

MOSFET Layout

l  Planar process: complete structure can be specified by a 2D layout

l  Design engineer can control the transistor width W and L

l  Process engineer controls tox, Na, xj, etc. University of California, Berkeley

p-type substrate

n+ n+

S D G

B

p+

B S D

L

L

W

contact poly gate

jx

G

Page 5: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

5

PMOS & NMOS

l  A MOSFET by any other name is still a MOSFET: –  NMOS, PMOS, nMOS, pMOS –  NFET, PFET –  IGFET –  Other flavors: JFET, MESFET

l  CMOS technology: The ability to fabricate NMOS and PMOS devices simultaneously

University of California, Berkeley

p-type substrate

n+ n+

S D B

p+ L jx

n-type substrate

p+ p+

S D B

n+ L jx

NMOS PMOS

G G

Page 6: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

6

CMOS

l  Complementary MOS (CMOS): Both P and N type devices l  Create a n-type body in a p-type substrate through

compensation. This new region is called a “well”. l  To isolate the PMOS from the NMOS, the well must be

reverse biased (p-n junction) University of California, Berkeley

n+ n+

S D B

p+ L jx

n-type well

p+ p+

S D B

n+ L jx

NMOS PMOS

G G

p-type substrate

Page 7: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

7

Circuit Symbols

l  The symbols with the arrows are typically used in analog applications

l  The body contact is often not shown l  The source/drain can switch depending on how the

device is biased (the device has inherent symmetry) University of California, Berkeley

NMOS PMOS

Page 8: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

8

Circuits!

l  When the inventors of the bipolar transistor first got a working device, the first thing they did was to build an audio amplifier to prove that the transistor was actually working!

University of California, Berkeley

Page 9: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

9

A Simple Circuit: An MOS Amplifier

University of California, Berkeley

DSI

GSV

sv

DR DDV

GS GS sv V v= +

ov

Input signal

Output signal

Supply “Rail”

Page 10: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

10

Plot of Output Waveform (Gain!)

University of California, Berkeley

output

input

mV

Page 11: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

11

Observed Behavior: ID-VGS

l  Current zero for negative gate voltage l  Current in transistor is very low until the gate

voltage crosses the threshold voltage of device (same threshold voltage as MOS capacitor)

l  Current increases rapidly at first and then it finally reaches a point where it simply increases linearly

University of California, Berkeley

GSV

DSI

TV

GSV

DSIDSV

Page 12: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

12

Observed Behavior: ID-VDS

l  For low values of drain voltage, the device is like a resistor l  As the voltage is increases, the resistance behaves non-linearly

and the rate of increase of current slows l  Eventually the current stops growing and remains essentially

constant (current source) University of California, Berkeley

DSV

/DSI k

“constant” current

resistor region

non-linear resistor region

2GSV V=

3GSV V=

4GSV V=

GSV

DSIDSV

Page 13: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

13

Operating Points

l  Which bias voltages you operate the MOSFET at will make a big difference in how it functions.

l  We will explore these regions of operation in this lecture. l  If we operate with a sufficiently high VGS AND a sufficiently

high VDS, we can make a very good small-signal amplifier! University of California, Berkeley

DSI

GSV

sv

DR DDV

GS GS sv V v= +

ov

Input signal

Output signal

Supply “Rail”

Page 14: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

14

Small Signal vs. Large Signal

l  We observe IDS vs. VGS to be quadratic for VGS > VT

l  Large changes in vGS result in quadratic changes at the output l  However, for small changes in vGS (denoted as vgs) will

produce linear changes at the output! l  We can show this using Taylor series expansion:

University of California, Berkeley

VGS

DSI

TV

GSV

DSIDSV

iDS = k(vGS −VT )2;vGS =VGS + vgs

TS : iDS (vGS ) VGS = k(VGS −VT )2 + 2k(VGS −VT )vgs + kvgs

2

Page 15: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

15

Simple Small Signal Model for MOSFET

l  This is a simplified, 3-terminal small-signal model for a MOSFET

l  In later lectures we will develop a more complete model l  gm = transconductance

–  defined as dids/dvgs, units [Ohms]-1

l  ro = output resistance –  defined as [dids/dvds]-1, units Ohms

University of California, Berkeley

NMOS

Page 16: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

16

Small Signal Gain Example

University of California, Berkeley

DSI

GSV

sv

DR DDV

GS GS sv V v= +

ov

Input signal

Output signal

Supply “Rail”

l  Steps to analyze small signal amplifiers: l  1. Calculate bias points using DC sources

–  As you will see in later lecture, you will use these bias points to determine the MOSFET region of operation as well as to calculate small-signal parameters

l  2. Turn off DC sources l  3. Plug in the small-signal model for a MOSFET

Page 17: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

17

Small Signal Gain Example

University of California, Berkeley

l  4. Calculate the gain (vout/vin) of the circuit

Page 18: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

Department of EECS University of California, Berkeley

EECS 105 Spring 2017

MOSFET Large Signal Models and

Regions of Operation

Page 19: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

19

Cut-off, VGS < VT

l  This structure should look familiar! It is an MOS capacitor with two n+ diffusion regions on each side.

l  When VGS < VT, the device is either in accumulation or in depletion.

l  Since there are no (or few) inversion charges at the surface, therefore no current will flow regardless of the value of VDS. University of California, Berkeley

p-type

n+ n+ p+

Depletion Region

VGS <VT

100mVDSV ≈G

D S

NMOS

x

y

Page 20: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

20

“Linear” Region Current

l  If the gate is biased above threshold, the surface is inverted l  This inverted region forms a channel of inversion charges

(in this case electrons) that connects the drain and source – inversion charges originate from n+ diffusion

l  If a drain-source voltage (VDS) is applied positive, electrons will flow from source to drain

l  Note: electrons flow S à D, current flows D à S University of California, Berkeley

p-type

n+ n+ p+

Inversion layer “channel”

VGS >VT

100mVDSV ≈G

D S

NMOS

x

y

Page 21: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

21

MOSFET “Linear” Region

l  The current in this channel is given by

l  The charge proportional to the voltage applied across the oxide over threshold

l  If the channel is uniform density, only drift current flows

University of California, Berkeley

DS y NI Wv Q= −

( )N ox GS TnQ C V V= −

( )DS y ox GS TnI Wv C V V= − −

y n yv Eµ= − DSy

VEL

= −

GS TnV V>( )DS n ox GS Tn DSWI C V V VLµ= − 100mVDSV ≈

Page 22: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

22

MOSFET: Variable Resistor

l  Notice that in the linear region, the current is proportional to the voltage

l  Can define a voltage-dependent resistor

l  This is a nice variable resistor, electronically tunable!

University of California, Berkeley

( )DS n ox GS Tn DSWI C V V VLµ= −

1 ( )( )

DSeq GS

DS n ox GS Tn

V L LR R VI C V V W Wµ

⎛ ⎞= = =⎜ ⎟− ⎝ ⎠W

Page 23: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

23

Finding ID = f (VGS, VDS) l  Approximate inversion charge QN(y): drain

voltage is higher than the source à less charge at drain end of channel

University of California, Berkeley

p-type

n+ n+ p+

GS TnV V>

DSVG

D S

NMOS

GS TnV V−

y=L y=0

Page 24: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

24

Inversion Charge at Source/Drain

University of California, Berkeley

)()0()( LyQyQyQ NNN =+=≈

)()0( TnGSoxN VVCyQ −−== == )( LyQN)( TnGDox VVC −−

DSGSGD VVV −=

Page 25: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

25

Average Inversion Charge

l  Charge at drain end is lower since the vertical field is lower at that point

University of California, Berkeley

( ) ( )( )2

ox GS T ox GD TN

C V V C V VQ y − + −≈ −

Source End Drain End

( ) ( )( )2

ox GS T ox GS SD TN

C V V C V V VQ y − + − −≈ −

(2 2 )( ) ( )2 2

ox GS T ox SD DSN ox GS T

C V V C V VQ y C V V− −≈ − = − − −

Page 26: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

26

Drift Velocity and Drain Current

University of California, Berkeley

Use mobility to find velocity v

( ) ( ) ( / ) n DSn n

Vv y E y V yL

µµ µ= − ≈ − −Δ Δ =

Substituting:

( )2

DS DSD N ox GS T

V VI WvQ W C V VL

µ= − ≈ − −

ID =WLµCox (VGS −VT −

VDS2)VDS

Family of Inverted Parabolas

Page 27: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

27

Square-Law Characteristics

University of California, Berkeley

Boundary: what is ID,SAT?

TRIODE REGION TRIODE REGION

Page 28: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

28

The Saturation Region

University of California, Berkeley

When VDS > VGS – VTn, there isn’t any inversion charge at the drain … what happens?

Why do curves flatten out?

SATURATION REGION

Page 29: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

29

Why does current saturate?

l  The charge at drain end goes to zero once VGD < VT

l  We say that the drain end is “pinched off” –  If you pinch a hose, water flow stops ! –  But then how does current flow?

University of California, Berkeley

Page 30: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

30

Pinch Off

l  Excess field beyond Edsat drops across tiny region between drain and channel

–  Huge field means that electrons flow at very high velocity across the “high field” region.

–  They are injected from source end and are collected at the drain end

l  Increasing the drain voltage does not increase current (appreciably) because the current is limited by the supply of electrons from channel side

University of California, Berkeley

Page 31: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

31

Square-Law Current in Saturation

University of California, Berkeley

Current stays at maximum (where VDS = VGS – VTn = VDS,SAT)

( )2DS

D ox GS T DSVWI C V V V

Lµ= − −

, ( )( )2

GS TDS sat ox GS T GS T

V VWI C V V V VLµ

−= − − −

2, ( )

2ox

DS sat GS TCWI V V

= −

Page 32: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

32

Actual Saturation Current l  Measurement: ID increases slightly with increasing VDS: l  The physics is complicated, but a simple way to see this is that

the channel is getting shorter as the drain voltage depletes away more electrons from the drain end

l  We model this with an additional linear factor:

University of California, Berkeley

2, ( ) (1 )

2ox

DS sat GS T DSCWI V V V

λ= − +

Page 33: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

33

Channel Length Modulation l  When vDS = vGS-VT, the channel pinches off near the drain. With

further increase in vDS, the pinch-off point moves toward the source, effectively reducing the channel length from L to L-ΔL.

University of California, Berkeley

ID =12µnCox

WL −ΔL

VGS −VT( )2

The continual increase of ID with VDS is modeled by

ID =12µnCox

WLVGS −Vtn( )2 1+λVDS( )

Page 34: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

34

Summary: Regions of Operation

l  Cut-off: VGS < VT –  IDS = 0 –  Note: this is an approximation we will make in EE105, in later

courses you will learn about sub-threshold conduction

l  Linear: VGS > VT, VDS << VGS – VT

l  Triode: VGS > VT, VDS < VGS – VT

l  Saturation: VGS > VT, VDS > VGS – VT

University of California, Berkeley

2, ( ) (1 )

2ox

DS sat GS T DSCWI V V V

λ= − +

IDS =WLµnCox (VGS −VT −

VDS2)VDS

IDS =WLµnCox (VGS −VT )VDS

Page 35: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

35

PMOS Device

l  So far, we’ve derived all of our equations for an NMOS device

l  PMOS devices work exactly the same way, but with an n-type body and a channel made of positive charges (holes)

l  The direction of the voltages and currents are inverted, for example:

University of California, Berkeley

ISD,sat =WLµCox2(VSG −VTp )

2(1+λVSD )

Page 36: Metal Oxide Semiconductor Field Effect Transistors ...rfic.eecs.berkeley.edu/105/pdf/module3-2_Annotated.pdf · EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller 3 MOSFET

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

36

Next Lecture

l  In the next lecture we will learn how to analyze small-signal amplifiers, including

–  Computation of bias points –  How to derive and compute small signal model

parameters (gm, ro) –  How to calculate small signal gain

University of California, Berkeley