Metal Oxide Nanowires: Synthesis, Characterization and...

47
Jia Grace Lu Dept. of Chemical Engineering and Materials Science & Dept. of Electrical Engineering and Computer Science University of California, Irvine Metal Oxide Metal Oxide Nanowires Nanowires : Synthesis, : Synthesis, Characterization and Device Applications Characterization and Device Applications

Transcript of Metal Oxide Nanowires: Synthesis, Characterization and...

  • Jia Grace Lu

    Dept. of Chemical Engineering and Materials Science &

    Dept. of Electrical Engineering and Computer Science

    University of California, Irvine

    Metal Oxide Metal Oxide NanowiresNanowires: Synthesis, : Synthesis, Characterization and Device Applications Characterization and Device Applications

  • (courtesy ZL Wang)

    Challenges and ProspectChallenges and Prospect

    # of Tr

    ansisto

    rs/Chip

    4Kb64Kb

    1Mb

    16Mb

    256Mb

    10

    100

    1000

    10000

    1970 1980 1990 2000 2010 2020Year

    1.E+04

    1.E+06

    1.E+08

    1.E+10

    1.E+12Minimum Dimension (nm)

  • ““ThereThere’’s Plenty of Room at the Bottoms Plenty of Room at the Bottom””-- Richard Feynman, 1959Richard Feynman, 1959

    Vision: Vision: To synthesize To synthesize nanoscalenanoscale building blocks with building blocks with precisely controlled size and composition, and precisely controlled size and composition, and assemble them into larger structures with unique assemble them into larger structures with unique properties and functions.properties and functions.

    ““ThereThere’’s Plenty of Room at the Bottoms Plenty of Room at the Bottom””

  • Characterization Characterization (Electron (Electron Microscopy, SPM, Microscopy, SPM, LowLow--T, HighT, High--B)B)

    Nano Materials Nano Materials ((nanotubenanotube, , nanowiresnanowires, , ultra thin filmsultra thin films) & & Device Fabrication Device Fabrication

    Nano Device Nano Device Application (FET,Application (FET,Sensor, Sensor, SET SET ……))

    Source DranNanowire

    SiO2

    Ni/Au Ni/Au

    Gate

    Science and Engineering in the Science and Engineering in the nanonano--WorldWorld

  • Semiconductor NanomaterialsQuasiQuasi--oneone--dimensional semiconductor nanostructures: dimensional semiconductor nanostructures:

    Q1D physical properties Q1D physical properties High aspect ratioHigh aspect ratioConductivity control (Conductivity control (pp--type/ type/ nn--type)type)BandgapBandgap engineeringengineering

    Electronic and photonic device applicationsElectronic and photonic device applicationsField effect transistors Schottky-barrier rectifiersLED & LasersSensorsSensorsSingle electron transistors Memory cells Logic gates

  • NanoNano MaterialsMaterials

    15o

    Ga2O3 Fe2O3B

    Ag-TCNQ ZnOGaN

  • MotivationMotivation

    Device applications:Device applications:Transparent electronicsTransparent electronicsUV light emitter and UV light emitter and detectordetectorChemical sensorsChemical sensorsElectroElectro--mechanical mechanical devicesdevices

    Lower power consumptionLower power consumptionHigher sensitivityHigher sensitivityBetter gate modulationBetter gate modulationFaster response timeFaster response timeTunable band gapTunable band gap

    NanowiresZnO

    conducting channel

    λD

  • Synthesis and Characterization Synthesis and Characterization of of NanowiresNanowires

    CVD synthesisCVD synthesisElectrical transportElectrical transportScanning surface potential microscopyScanning surface potential microscopyChemicalChemical sensing propertysensing propertyOptical propertyOptical property

  • Single Crystal Single Crystal NanowiresNanowires : Vapor: Vapor--LiquidLiquid--Solid MechanismSolid Mechanism

    O2Catalyst

    Zn O2

    Catalyst: Au Alloy Supersaturation Crystal growth

  • Single Crystal Single Crystal NanowiresNanowires

    • VLS growth mechanism

    • SEM image of nanowires, with diameter ranging from ~20 to 100 nm

    • High resolution TEM shows ZnO nanowires are single crystal. The distance between neighboring lattice planes is 0.52 nm, andgrowth direction is along [001] -- c axis

    Chang et al., Chem of Materials (2004)

    Ar+O2

    Zincpowder

    Quartzvial

    Open endof vial Nano-

    Crystals collecting substrate

    20 30 40 50 60 70 80 90

    0

    1000

    2000

    3000

    (200

    )(2

    01)

    (203

    )

    (202

    )

    (112

    )

    (103

    )(110

    )

    (102

    )

    (100

    )(0

    02)

    ZnO Nanostructures JCPDS 89-0510

    Inte

    nsity

    (a.u

    .)

    (101

    )

    C axis

    HRTEM done in Japan

  • Out

    b1

    b2

    b3

    b4

    b5

    Control of Nanostructure MorphologyControl of Nanostructure Morphology

    Furnace

    QuartzTube

    B A ZnC

    O2 Gas Flow

    Quartz Vial

  • Si wafer

    - Si wafer

    - Resist: PMMA

    - E-beam lithography

    - Catalyst deposition

    Control of PositionControl of Position

  • - Si wafer

    - Resist: PMMA

    - Catalyst deposition

    - Ebeam lithography

    Si wafer- Liftoff:

    remove PMMA

    - CVD growth

    Control of PositionControl of Position

  • Home-made anodic alumina membrane (AAM), 5 micron thick.

    Al2O3 substrate

    Al2O3 substrate

    Al2O3 substrate

    AAOtemplate

    BottomelectrodeAdhesion

    layer

    Short Snnanorod

    ZnOnanowires

    • Vertical aligned ZnO nanowires array has promising potentials for nanoelectronics/optoelectronics.

    • Anodic alumina membrane is an ideal template to integrate vertical aligned nanowires.

    Schematic of nanowire synthesis process

    400 nm

    Control of Alignment Control of Alignment

  • Vg

    Source Drain

    Back Gate

    SiO2

    P++Si

    Vds

    NW

    Furnace

    QuartzTube

    B A ZnC

    O2 Gas Flow

    Quartz Vial

    Control of Electric PropertiesControl of Electric Properties

    -2 -1 0 1 2-3

    -2

    -1

    0

    1

    2

    3

    I ds (µ

    A)

    Vds (V)

    Chip B Chip C

    Higher Conductivity

    -20 -10 0 10 20

    0

    50

    100

    150

    200

    Vg,t(C)I ds

    (nA

    )

    Vg (V)

    Chip B Chip C

    -20 -10 0 10 20

    0

    50

    100

    150

    200

    I ds (

    nA)

    Vg (V)

    Chip B Chip C

    g,tV (B)

  • SiO2/p++ Si

    Define alignment marks using ebeam lithography and metal deposition

    Disperse NWs on substrateand locate the coordinates

    1st resist layer: MMA/MAA2nd resist layer: PMMA

    e-e-

    Ebeam writing

    Developing

    Metal depositionLiftoff

    Electrode Contact using Ebeam-lithography

  • Electrode Contact using Photolithography

    SiO2/p++ Si

    Disperse NWs

    Spin coat resist

    Cover the resist with a mask

    UV

    UV Exposure

    DevelopingMetal depositionLiftoff

  • Band Diagram of Electrode ContactBand Diagram of Electrode Contact

    Ohmic contactSchottky junction

    EF-ZnOEF - Ni

    Before contact

    Ec

    Ev

    Ni ZnO

    After contact

    Work function (Φ) of materials:

    ΦTi = 4.3 eV

    ΦNi = 5.2 eV

    ΦZnO = 4.3 eV

    EZnO = 3.4 eV

    ΦNi > > ΦZnO > ΦTi

    Ti ZnO

    φBEF - Ni

  • Source DrainNanowire

    SiO2

    p++ Si

    Vg

    Vds

    Gate

    NanowireNanowire Field Effect Transistor Field Effect Transistor

    e

    V

    LCn gt⋅−=

    )/2ln(/2/ 0 rhLC πεε≈

    ))/2ln(/2/()/( 0 rhLVdVdI dsg πεεµ =

    r: NW radius; L: NW channel length; h: gate oxide thickness;

    Vgt: gate threshold voltage; dI/dVg: transconductance.

    Capacitance per unit length:

    Carrier concentration per unit length:

    Mobility:

  • I-V curves under different gate voltages

    (b)

    -10 -5 0 5 10 15

    0

    8

    16

    24

    32

    I (nA

    )

    Vg (V)

    Vds=100mV Vds=75mV Vds=50mV Vds=25mV

    Vgt=-8.37V

    Transconductance at different source-drain biases

    Electrical Transport PropertiesElectrical Transport Properties

    • Three-terminal electrical measurements show n-type behavior.

    • Carrier concentration ne ~ 107 cm-1; and mobility µe~ 80 cm2/V•s

    -4 -2 0 2 4

    -1600

    -1200

    -800

    -400

    0

    400

    Vds (V)

    I (nA

    )

    Vg=6 V Vg=4 V Vg=2 V Vg=0 V Vg=-2 V Vg=-4 V Vg=-6 V

    Z. Fan et al., APL (2004)

  • High Performance High Performance ZnOZnO NW FETNW FET

    -10 -5 0 5 10

    -200

    -100

    0

    100

    200

    Ids

    (nA

    )

    Vds (mV)

    Vg=-20V Vg=-16V Vg=-12V Vg= -8V Vg= -4V Vg= 0V

    -30 -20 -10 0 10 20 30

    0

    100

    200

    300

    Ids

    (nA

    )

    Vg (V)

    2mV 4mV 6mV 8mV10mV

    ZnO nanowires show significant enhancement in mobility after surface passivation.

    Q1D concentration ~ 9 x 107 cm-1 ; 3D concentration ~1.16 x 1018 cm3

    Q1D carrier mobility ~ 1200 cm2/Vs

  • ThermionicThermionic EmissionEmission

    -1.0 -0.5 0.0 0.5 1.0-800

    -600

    -400

    -200

    0

    200

    400

    600

    I (nA

    )

    Vds (V)

    290 K 333 K 373 K 428 K 473 K

    Con

    duct

    ance

    (nS

    )

    1000/T2.0 2.4 2.8 3.2 3.6

    103

    210

    110

    010

    (c)

    • Electric current was observed to increase monotonically with temperature.

    • An effective energy barrier height of 0.3 eV is estimated from the thermionic emission model: I ~ exp(-φb/kT).

  • Top view of ZnO nanowire array embedded in AAM.

    •Chemical vapor deposition is used to grow ZnO nanowires array.

    •Electrical transport through individual nanowires is characterized with conductive AFM probes.

    Vertical Nanowire Array

    I-V characteristic of an individual vertical ZnO nanowire in AAM.

  • Scanning Surface Potential MicroscopyScanning Surface Potential Microscopy

    Source Drain

    Back gate

    Vac

    VdsSiO2

    ~

    Vtip

    sampletipdc VVV −=

    acdc VVdzdC

    F ⋅=

    • The uniformity of nanowire and the property of electrode contact was studied using scanning surface potential microscopy by probing local electric potential distribution.

    • Conductive AFM tip is biased with a DC signal and an AC signal. AC signal is used to drive tip resonant vibration and DC signal can be controlled by feedback loop to trace the surface potential on sample.

  • Surface Potential and Tip GatingSurface Potential and Tip Gating

    Topography and surface potential image of a ZnO nanowire FET.

    Cross section analysis of surface potential image gives the potential drop on device: VAB = 0.26 V; VBC = 0.30 V; VCD = 0.89 V

    Source

    Drain

    Scanning direction

    Vds

    Vg

    -1.0 -0.5 0.0 0.5 1.00

    1

    2

    3

    4

    5

    Ids

    (nA

    )

    Time (s)

  • Back gating Back gating vsvs tip gatingtip gating

    Source DrainNanowire

    Back gateVg

    Vds

    SiO2

    Source Drain

    Back gate

    Vg

    Vds

    SiO2

    -10 -5 0 5 10-1200

    -1000

    -800

    -600

    -400

    -200

    0

    200

    Vds (V)

    I (nA

    )

    Vbg=-20 VVbg=-10 VVbg=0 VVbg=10 VVbg=20 V

    -10 -5 0 5 10-500

    -400

    -300

    -200

    -100

    0

    I (nA

    )

    Vds (V)

    Vtg=-20VVtg=-10VVtg=0VVtg=10VVtg=20V

    • Electrical transport results are obtained for both AFM tip gating and Si back gating.

    • It is observed that negative tip gating has significant local depletion effect on FET and increases the height of effective barrier for electron conduction. However, positive tip gating does not strongly enhance the conductance of NW.

  • Back gating Back gating vsvs tip gatingtip gating

    • Gate potential affect conductance of NW by band bending.

    • Si Back gate potential affects the entire FET, but AFM tip gate potential only affects the local region and creates an energy barrier at negative Vg.

    Back gating Tip gating

    EFDrai n SourceNW

    (d)

    φbs EF

    φbd

    Von

    Drai n SourceNWEF

    Von

    Drai n Source

    φbt

    NW

    φ bs

    Ecnegat i ve Vg

    posi t i ve VgEF

  • Chemical SensingChemical Sensing

    Adsorbed molecules(H2,O2,NO2,NH3,CO, C2H5OH,…)

    Nanowire

    Current transport

    Electrons

    0 50 100 150 200 250 3000.0

    0.2

    0.4

    0.6

    ∆G/G

    0

    NW radius (nm)

    O2

    Source Drain

    Gate

    Nanowi r e channel

    Depletion region

    increases with reduced nanowire radius.

    S = ∆G/GoSensitivity:

    -6 -4 -2 0 2 4 6-6

    -4

    -2

    0

    2

    4

    Vds (V)

    I (µ

    A)

    0ppm 10ppm 20ppm

    -10 -5 0 5 10 150.00.51.01.52.02.53.0

    I (µA

    )

    Vg (V)

    0 ppm 10 ppm 20 ppm

    Vds= 5 V

    NO2

  • NONO22 OxidingOxiding SensingSensing

    • Response time is defined as time when conductance drops 1/e from maximum.

    • Response time decreases with increasing concentration.

    0 100 200 300 400

    0

    200

    400

    600

    800

    1000 Start of NO2

    1 ppm

    20 ppm10 ppm

    5 ppmCur

    rent

    (nA

    )

    Time (s)

    2 ppm

    0 5 10 15 200

    10

    20

    30

    40

    Res

    pons

    e tim

    e (s

    )

    NO2 concentration (ppm)

    T=A×N -0.6

  • Gate Tunable SensitivityGate Tunable Sensitivity

    -8 -4 0 4 80.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Vg (V)δG

    /G0

    Sensitivity to5 ppm NO 2

    bVa

    Sg +

    -6 -4 -2 0 2 4 6

    -0.4

    -0.2

    0.0

    0.2

    0 ppm0.2 ppm0.4 ppm0.6 ppm

    Vg = -5 V

    I (µA

    )

    Vds (V)

    Chemical Sensing properties of nanowire FET largely depend on gate potential.

    Gate adjusts the position of the Fermi level of the channel, affect the surface processes.

    à Gate voltage tunes the detection range.

    Z. Fan and J. G. Lu, APL ( 2005).Z. Fan, et al, APL (2004).

    -6 -4 -2 0 2 4 6

    -8

    -4

    0

    4

    8

    Vds (V)I (

    µA)

    0 ppm10 ppm20 ppm30 ppmVg = 30 V

    -6 -4 -2 0 2 4 6

    -1.2

    -0.8

    -0.4

    0.0

    0.4

    Vg= 0 V

    0ppm1ppm2 ppm5 ppm10 ppm20 ppm

    I (µA

    )

    Vds (V)

    NO2

  • Electrically Refreshable SensingElectrically Refreshable Sensing

    0 200 400 600 800 1000 1200

    200

    400

    600

    800

    1000

    1200

    1400

    T = 300 K

    I (n

    A)

    Time (s)

    10 ppmNO2

    T = 453 K

    Vg= 0 V

    Vg= -60 V

    -200 0 200 400 600 800 1000 1200 1400 1600-150

    0

    150

    300

    450

    600 10 ppmNO2

    I (nA

    )

    Time (s)

    T = 300 K

    At room temperature, chemisorbed molecules are quite difficult to be desorbed.

    Thermal desorption and ultra-violet illumination are conventional ways to refresh nanowire.

    For oxidizing gas, a strong negative gate field greatly facilitates desorption and is capable to quickly refresh nanowire sensor.

    Z. Fan and J. G. Lu, APL (2005).

  • DistinguishabilityDistinguishability

    0 20 40 60 80 1000

    20

    40

    60

    80

    100

    2.5 ppm NO2,k=0.12

    I (nA

    )

    Time (s)

    5 ppm NO2,k=0.10

    10 ppm NO2,k=0.16

    10 ppmNO2

    recoveryregion

    Vg =-20 V Vg =0 V

    800 850 900 950 1000 1050

    -40

    0

    40

    80

    120

    160

    I (nA

    )

    Time (s)

    0 20 40 60 800

    20

    40

    60

    80

    2% NH3,k=0.23

    1% NH3, k=0.25

    0.5% NH3 , k=0.27

    I (nA

    )

    Time (s)

    Temporal response of NO2 and NH3 to a negative gate voltage pulse demonstrates a potential distinguishable sensing.

  • Gate Refresh Voltage

    • Different activation energy for NO2 and NH3adsorption.

    • Distinguishable gate refresh voltage.

    VgSiO2

    p ++ Si

    S D

    Vds

  • Reducing Sensing PropertiesReducing Sensing Properties

    0 1000 2000 3000 4000 5000-20

    0

    20

    40

    60

    80

    100

    0.5%CO on

    0.5%CO on

    0.5%CO on

    0.5%CO off

    I (nA

    )

    Time (s)

    T= 500K

    20% O2 in

    0.5%CO on

    0.5%CO off

    0.5%CO off

    0 400 800 1200 160035

    40

    45

    50

    55

    1% NH3off1% NH3off0.5% NH3off

    1% NH3 on1% NH3on

    I (nA

    )

    Time (s)

    0.5% NH3 on

    T=500K

    Exposure nanowire to CO at 500K in O2 ambient increase nanowire conductance by reaction:

    −− +→+ eCOOCO 2

    Exposure nanowire to NH3 at 500K in Ar ambient increase nanowire conductance also, but by electron direct transferring from NH3 to nanowire.

    Ef

    EcEf

    500 K300 KEv

    Ec

    Ev

    µNH3 µNH3

  • Optical Property of Optical Property of ZnOZnO

    Photoluminescence and photoconductivity spectrum of single ZnO nanowire

    Z. Fan, et al., APL (2004).

    200 400 600 800 1000

    0

    40

    80

    120

    160

    Cur

    rent

    (nA

    )

    Input optical wavelength (nm)

    Vds= 0.2 V

    200 400 600 800

    100

    200

    300

    400

    500

    600

    700

    Wavelength (nm)

    PL

    inte

    nsity

    (a. u

    .)

    0 50 100 150 200

    4

    8

    12

    16

    20

    24

    28

    0 20 40 60 80

    0

    20

    40

    60

    80

    Turn on laser

    Cur

    rent

    (nA

    )

    (min)

    Turn off laser

    Cur

    rent

    (nA

    )

    Time (s)

    Vacuum

    Air

    Due to the adsorption of oxygen:Due to the adsorption of oxygen:OO22 + + ee ?? OO22--

    Td ~ 8 s in airTd > 1 hr in vacuum(Td is defined as the time for current drop from Imaxto Imax/e)

  • PhotoconductivityPhotoconductivity

    -2 -1 0 1 2 3-20

    0

    20

    40

    60

    80

    100

    120

    140

    160

    -4 0 4 8 12

    0

    10

    20

    30

    Cur

    rent

    (nA

    )

    Gate Voltage (V)

    Cur

    rent

    (nA

    )

    Drain voltage (V)

    Without 633nm illumination

    With 633 nmillumination

    Without 633nm illumination

    With 633nm illumination

    • Light illumination results in an increase in nanowire carrier concentration and conductance, and a slight decrease in mobility.

    • Power law dependence of photocurrent to the input optical power is due to the finite number of impurity states.

    (b)75

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

    0

    15

    30

    45

    60

    Cur

    rent

    (nA

    )

    Laser power (mW)

    Vds= 2 V

    I=A×P0.43

  • PhotoluminescencePhotoluminescence

    Blue-shift as diameter decreases

    Diameter dependence

    340 360 380 400 420-2000

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    18000

    20000

    22000

    24000

    26000

    392nm

    383nm

    Inte

    nsity

    / a.

    u.

    Wavelength/ nm

    Dia(100-200nm) Dia(20-100nm) Dia(6-20nm)

    381nm

    Temperature dependence

    LT PL spectroscopy indicate the nanowiresare of high crystal quality.

    (data taken at Göttingen University)

    2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

    300 K

    200 K

    100 K

    12 K

    Inte

    nsity

    / a.

    u.energy / eV

  • Polarization Dependent Polarization Dependent PhotodetectionPhotodetectionLight

    NW

    E||

    E?

    • Nanowire conductance is minimized when the incident field is polarized perpendicular to the long axis.

    • Such anisotropy has potential application for polarization dependent photodetector and optical gated switch.

    Z. Fan et al., APL (2004)

    30 60 90 120 150 180 210

    600

    800

    1000

    1200

    1400

    1600

    365 nm UV

    Vds

    = 2 V

    Vds

    = 5 V

    Polarization Angle (degree)

    Cur

    rent

    (n

    A)

    E

    E

    broadband light

    Nanowire diameter

  • Summary on Summary on ZnOZnO NanowireNanowire

    Single crystal ZnO nanowires are synthesized and configured as field effect transistors. Electrical transport studies show ZnO nanowires are n-type semiconductor.

    Scanning surface potential microscopy demonstrates that electrical property of the nanowire is uniform.

    Chemical sensing results indicate the future application of ZnO FET as a self-contained, gate tuned, and gate refreshable chemical sensor.

    Optical studies show its potential applications in nanoscale optoelectronics.

  • Gallium OxideGallium Oxide

    nn Ceramic metal oxide Ceramic metal oxide nn n n --type semiconducting at high type semiconducting at high

    temperature temperature nn wide bandgap ~ 4.9eVwide bandgap ~ 4.9eVnn Carrier concentration ~ 10Carrier concentration ~ 101313 cmcm--33 at at

    10001000°°CC(M. Fleischer and (M. Fleischer and H.MeixnerH.Meixner, , J. J. ApplAppl. Phys.,. Phys., 74, 300, 1993)74, 300, 1993)

    nn BaseBase--centered monoclinic structurecentered monoclinic structurenn a =12.23 a =12.23 ÅÅ, b =3.04 , b =3.04 ÅÅ, c =5.8 , c =5.8 ÅÅ

    nn Potential Applications:Potential Applications:nn High temperature gas sensorHigh temperature gas sensornn Optoelectronics deviceOptoelectronics device

  • Electron MicroscopyElectron Microscopy

    nn Dimension:Dimension: length~10length~10--3030µµm, m, diameter~20diameter~20--200nm200nm

    nn VLS (VaporVLS (Vapor--LiquidLiquid--Solid) catalytic growth Solid) catalytic growth mechanismmechanism

    nn BaseBase--Centered Monoclinic crystalline structureCentered Monoclinic crystalline structurenn Several growth direction can be observed:Several growth direction can be observed:

    A.A. [111] spacing ~0.25nm[111] spacing ~0.25nmB.B. [001] spacing ~0.55nm[001] spacing ~0.55nmOthers [200], [Others [200], [--130] 130] ……

    Au

    A

    15o

    B

    P. Chang et al., APL (2006)

  • XRD & PL CharacterizationsXRD & PL Characterizations

    30 40 50 60 70 80

    0

    1000

    (510

    )(-11

    1)

    (403

    ,512

    ,-71

    2)

    (600

    ,-31

    2,11

    2)

    (-31

    1,-4

    02,2

    02)(0

    02,-

    202)

    (111

    )

    (-40

    1,40

    0)

    Ga2O3 nanowires

    JCPDS 43-1012

    Inte

    nsi

    ty (a

    .u.)

    2θ (degree)

    • CuKα (λ=1.54 Å) source• As grown nanowire sample matches the β-Ga2O3diffraction pattern• Single phase• The strongest peak is (111)

    300 350 400 450 500 550

    0

    30000

    60000

    Inte

    nsi

    ty (a

    .u.)

    Wavelength (nm)

    100K 150K 200K 250K 300K

    414nm

    • Blue-Green broad emission is contributed by Gallium-oxygen vacancy pair (acceptor-donor) formed trapped excitons

    (T. Harwing, et al., J. Solid State Chem., 24, 255, 1978)(Vasil’tasiv et al., Ukr. Fiz. Zh., 33, 1320, 1988)

    νh++′→+ •oGaox

    ox

    Gao V )V ,V (V )V ,V (

  • nn Intrinsic:Intrinsic:It shows very low conductance (insulating, high It shows very low conductance (insulating, high resistance~10resistance~101616ΩΩ) at room temperature ) at room temperature

    nn nn--type doping:type doping: SbSb5+5+, W, W6+6+, , etcetcnn pp--type doping:type doping:

    Zn atoms can be acceptorsZn atoms can be acceptorsnn Ionic crystal radii size:Ionic crystal radii size:

    ZnZn2+ 2+ : 0.074nm, Ga: 0.074nm, Ga3+ 3+ : 0.062nm : 0.062nm (R. D. Shannon, (R. D. Shannon, ActaActa CrystallographicaCrystallographica, A32, 751, (1976), A32, 751, (1976)

    ooGa O2V 'Zn22ZnO ++=••

    nn Setup (diffusion doping):Setup (diffusion doping):Pure Zn powder in Pure Zn powder in ArAr inert ambient, inert ambient, 450? for 15 minutes

    Extrinsic DopingExtrinsic Doping

  • Transport Properties (ITransport Properties (I--V)V)

    -20 -10 0 10 20

    -10

    0

    10

    20

    30

    Cu

    rren

    t (p

    A)

    Bias Voltage Vds (Volt)

    Vg= 30V Vg= 0V Vg=-30V

    • Improved transport properties - up to 3 order increase in magnitude

    • p-type semiconducting behavior - from gate voltage dependence

    Vds

    VgSiO 2

    p ++ Si

    )/2ln(2(th)V 0g

    rhep

    πεε×=

    ds0V2)/2ln(

    VI

    πεεµ

    rhLdd

    gh ×=

    Carrier concentration

    Carrier mobility

    (R.Martel et al., Appl. Phys. Lett. , 73, 2447, 1998)

  • Transport Properties (ITransport Properties (I--Vg)Vg)

    -80 -60 -40 -20 0

    0

    2

    4

    6

    8

    Cu

    rren

    t (n

    A)

    Gate Voltage Vg (Volt)

    dI/dVg= -0.988x10-9 A/V

    Vg(th)= -74.7 V

    ex. h = 200nm, r = 60nm, L = 2.12µm, ε = 3.9 (permittivity of SiO2)

    p = 5.3×108 cm-1 (4.6×1018 cm-3) µh = 3.5×10-2 cm2/Vs

    Vg

    Source Drain

    Back Gate

    Vds

    NW

    Transconductance dI/dVg = -0.988×10-9 A/V

    Threshold VoltageVg(th) = -74.7 V

  • -40 -20 0 20 40

    100

    200

    300

    400

    Vds = 2.0 V

    I (pA

    )

    Vg (V)

    •(b)

    As-grown Fe2O3 nanobelts are configured as field-effect transistors showing n-type behavior.

    For the p-type Zn doping, the nonlinear I-V arises from the Schottky contact formation due to nanobelt Fermi level shifts as a result of doping.

    -6 -4 -2 0 2 4 6

    -900

    -600

    -300

    0

    300

    600

    900

    I (pA

    )

    Vds

    Vg = 10 VVg = 0 VVg = -10 V

    EFEc

    Ni Fe2O3

    φφ

    NiFe2O3

    Vacuum

    p-type Zn doping

    EF EVNiFe2O3

    φNi

    VacuumφFe2O3

    Ec

    -6 -4 -2 0 2 4 6 8

    -80

    -40

    0

    40

    80

    -120 -80 -40 0 4045505560657075

    I (nA

    )

    Vg (V)

    Vds=5VI (nA

    )

    Vds (V)

    Vg=-100 VVg=-50 VVg=0 VVg=100 V

    Z. Fan et al., APL (2005)

    Extrinsic Doping Extrinsic Doping -- FeFe22OO33 NanobeltsNanobelts

  • ““Small wonders, endless frontiersSmall wonders, endless frontiers””“…nanotechnology will be central to the next epoch of the information age, and will be as revolutionary as science and technology at the micron scale have been since theearly ’70s.” –– John Armstrong, 1991John Armstrong, 1991

    Vo

    Vi1 VcVi2

    Vcc

    AAO template

    Bottomelectrodes

    Top electrodes

    Nanowires

    SiO2p ++ Si

    S D

    Vg Vds