Metabolite Identification and Characterization - UITSweb2.uconn.edu/rusling/Chandra_Prakash.pdf ·...

download Metabolite Identification and Characterization - UITSweb2.uconn.edu/rusling/Chandra_Prakash.pdf · Metabolite Identification and Characterization Chandra Prakash, Ph. D. Pfizer Global

If you can't read please download the document

Transcript of Metabolite Identification and Characterization - UITSweb2.uconn.edu/rusling/Chandra_Prakash.pdf ·...

  • Metabolite Identification and Characterization

    Chandra Prakash, Ph. D.Pfizer Global Research and Development, Groton, CT

  • Outlines Introduction Metabolism Reactions LC-MS strategies for metabolite identification Triple Stage Quadrupole (TSQ) LC/MS/MS Ion Traps (LCQ and LTQ) QTOF

    Analytical techniques combined with mass spectrometry for characterization of metabolites Derivatization H/D exchange

    LC-NMR

  • Fate of Drugs in Living Organisms

    Affinity

    Receptor Pharmacological Activity

    Biotransformation

    Phase IMetabolites Excreted

    Reactive intermediates Conjugated metabolites

    Phase IIBioactivation

    Adducts ExcretedToxicity/Adverse drug reaction

    Detoxification

    DrugDrug

  • Why Identify Metabolites?

    Most of the drugs are eliminated from the body by metabolism: Detoxification process-This is good.

    The metabolites modulate the efficacy of drugs in the treatment of disease.

    The metabolites may possess pharmacological activity.

    The metabolites may be toxic: Bioactivation- bad. Pharmaceutical industries are mandated by

    regulatory agencies to identify metabolites of NCE. Metabolites may provide new leads.

  • Xenobiotic Metabolism

    Phase I (Activation/Detoxification) Polar reactive groups introduced products most often more polar and less lipophilic more water soluble

    Phase II (Detoxification) Covalent "conjugation" to endogenous substances reactions most often abolish biological activity and

    add to polarity very water soluble

  • Phase I Metabolism

    Hydroxylation- aliphatic, aromatic Epoxidation- aliphatic, aromatic O-, N-, S- Dealkylation Oxidative Deamination N-, S-, P- Oxidation Reduction Hydrolysis Aromatization

  • Phase II Metabolism

    Glycoside Conjugation Glucuronide other sugars

    Sulfate Conjugation Methylation (O-, S-, N-) Acylation Amino acid Conjugation Glutathione Conjugation

  • Knowledge of Basic Organic ChemistryKnowledge of Drug Metabolism and

    Basic Metabolic ReactionsKnowledge of Concepts of Mass

    SpectrometryInterpretation of Mass Spectra for

    Structural ElucidationInterpretation of NMR Spectra for

    Structural Elucidation

    Identifying Metabolites-Prerequisite

  • Identifying Metabolites-Basic Needs

    Need the molecular weight Need product ions to get structure information Need product ion spectrum of the parent drug

    and metabolites Use the nitrogen rule

  • Techniques for the identification of metabolites

    LC-API MS/MSSingle Stage Quadrupole (SSQ) LC/MSTriple Stage Quadrupole (TSQ) LC/MS/MSIon Traps (LCQ and LTQ) QTOF

    Analytical Techniques combined with MSDerivatizationEnzymatic hydrolysisH/D exchange

    LC/NMR

  • LC/MS

    LC Ion Source Mass Analyzer

    Atomospheric Pressure

    Chemical Ionization(APCI)

    Electrospray(ESI)

    Single QuadrupoleTriple QuadrupoleIon Trap (LCQ)Q-TOF

  • General Rules for Choosing Polarity of Ion Detection and pH

    Positive ion Detection Basic samples Decrease pH

    Acetic acid pH (3-5) Formic acid pH (2-3) TFA pH (1-2)

    pH at least 2 units below pKa of samples

  • General Rules for Choosing Polarity of Ion Detection and pH

    Negative ion Detection Acidic samples Increase pH

    Ammonium hydroxide

    pH at least 2 units above pKa of samples

  • Quadrupole

    IonSource

    Q0 Q1 Detector

    IonSource

    Q0 Q1 Q2 Q3Ar

    Detector

    Single stage quadrupole (SSQ)

    Triple stage quadrupole (TSQ)

  • Advantages of a TSQ MS

    Renders selectivity due to mass separation at two stages.

    Helps to rapidly identify metabolites in matrices without purification.

  • MASS SPECTRUM Mass Spectrometers Do Not Measure Mass. It is

    plot of the mass-to-charge ratios (m/z) vs. the % relative intensities of the ions, where base peak is the most abundant ion in the spectrum

    If single charge, z=1 and m/z = m Three types of ions in a mass spectrum;

    Intact molecule one or more chargesMolecular mass

    Fragment ionsStructure information Background ionsfrom non-analyte species

  • Natural Isotopic Abundance of Common Elements

    Element

    Carbon

    Hydrogen

    Oxygen

    Nitrogen

    Chlorine

    Sulfur

    Isotope Mass12C13C1H2H

    16O18O14N15N35Cl37Cl32S33S34S

    %98.91.1

    99.980.0299.80.2

    99.60.4

    75.824.2

    95.30.764.20

  • Mass

    Element Nominal Mass Exact Mass

    C 12 12.0000

    H 1 1.0078

    O 16 15.9949

    N 14 14.0031

    Average Mass

    12.011

    1.00797

    15.9994

    14.003

    Cl 35 34.968935.45

    S 32 31.97232.06

  • Average vs. Exact Mass

    Average mass results from occurrence of isotopes. (See below) This is what we weigh

    Exact mass results from non-integer masses of sub-atomic particles. This is what the Mass Spec sees Deviation of exact from nominal is the

    Mass Defect

  • Examples (C,H,O,N compounds)

    XanomelineC14H23N3OS

    CaffeineC8H10N4O2

    ZiprasidoneC21H21N4OSCl

    Compound Integer Avg. Mass Exact Mass

  • Examples (C,H,O,N compounds)

    XanomelineC14H23N3OS

    CaffeineC8H10N4O2

    ZiprasidoneC21H21N4OSCl

    194.1785 194.0802

    281.4057 281.1556

    412.9197 412.1120

    194

    281

    412

    Compound Integer Avg. Mass Exact Mass

  • Nitrogen Rule

    oddEvenoddOdd number of nitrogens (1, 3, 5)

    EvenoddEvenEven number of nitrogens (0, 2, 4)

    M+ (EI)[M+H]+ or [M-H]-M .W.Compound

    Mass value

    .

    F, W. McLafferty and F. Turecek, Interpretation of Mass Spectra, Fourth Edition (1993)

  • Mass Changes Associated with Phase I Metabolism

    Hydroxylation- aliphatic, aromatic Lose H & add OH = (M+16)

    Epoxidation- aliphatic, aromatic Lose H & add OH = (M+16)

    O-, N-, S- Dealkylation Add H & lose alkyl (R) = (M+1-R)

    N-, S- Oxidation Add O = (M+16)

    Reduction Add 2H = (M+2)

  • Mass Changes Associated with Phase II Metabolism

    Glucuronide Conjugation Lose H & add glucuronic acid (M-1+176) = (M+176)

    Sulfate Conjugation Lose H & add HSO3- (M-1+81) = (M+80)

    Methylation (O-, S-, N-) Lose H & add CH3 (M-1+15) = (M+14)

    N-acetylation Lose H & add CH3CO- (M-1+43) = (M+42)

    Amino acid Conjugation Lose H2O & add amino acid (M-18+R)

    Glutathione Conjugation Various addition of SG-amino acid (M+306-X; X=leaving group)

  • LC/MS/MS Techniques for the Identification of Metabolites

  • Q1 or Full Scan

    Q1 Q2 Q3OR

    N2

    M1 M2

    M3

    Similar to an LC/MS total ion chromatogram.

    Fromcolumn

    All ions Scanned

    m/z

    Only Q1 operational (LC/MS mode)

  • Full Scan MS of MicrosomalIncubation of Compound X

    m/z250 300 350 400 450 500

    0

    20

    40

    60

    80

    100

    Rel

    ativ

    e A

    bu

    nd

    ance

    404

    387 425426.336.1

    295.2 359.2279.2 315.1 489.1473.241.4

    RT:

    HLM Control

    250 300 350 400 450 500m/z

    0

    20

    40

    60

    80

    100

    Rel

    ativ

    e A

    bu

    nd

    ance

    394 410

    428380

    Background subtracted

    396414

    250 300 350 400 450 500m/z0

    20

    40

    60

    100

    Rel

    ativ

    e A

    bu

    nd

    ance

    410

    394

    428380

    329.1 376.1347.1295.2 458.4279.4 489.0313.1

    HLM + Substrate

    396414404

    80

  • Problem Set:Full Scan MS of Metabolites of Compound X (MW 394)Determine possible additions of functionality of metabolites

    250 300 350 400 450 500m/z

    0

    20

    40

    60

    80

    100

    Rel

    ativ

    e A

    bu

    nd

    ance

    394410

    428

    380

    396

    414

  • Q1 Q2 Q3ORFromcolumn

    Product Ion Spectrum

    One ion selected(parent ion)

    N2

    Fragmentation All ions scanned(product ions)

    50 500

    421

    375162

    78

    m/z

    Reli

    nten

    sity

    (%)

    A product ion spectrum

  • CID Product Ion Spectrum of Compound Y

    100 200 300 400m/z

    100

    75

    50

    25

    0

    Rel

    ativ

    e In

    tens

    ity (%

    )

    121

    147 167

    177

    469

    N

    N O

    177

    167

    147-OMe

    +H

    MH+

  • Q1 Q2 Q3ORFromcolumn

    Precursor Ion Scan

    Scanned over a mass range

    N2

    Fragmentation(all ions fragmented)

    Ions with specificproduct ions traced

    M1 M2

    M3

    m/z

    Precursor ion scan

    Precursor ion experiment yields a spectrum of all parent ions which have the same product ion in their spectrum

  • Q1 Q2 Q3ORFromcolumn

    Neutral Loss Scan

    N2

    M1M2

    M3

    m/z

    Neutral loss scan

    All ions selected Fragmented scanned at the same rate as Q1but with a mass offset

    Mass offset corresponds to the mass of neutral fragment loss during fragmentation

    Neutral loss experiment yields a spectrum of all parent ions which lose a selected neutral loss fragment

  • O

    N

    S

    OO

    NH2

    -81

    M+H = 213

    132+

    81

    132

    RE

    L. I

    NT

    EN

    SIT

    Y (%

    )

    m/z

    213

    136

    RE

    L. I

    NT

    EN

    SIT

    Y (%

    )

    m/z

    213

    230

    77 149

    Full Scan MS

    Product ion MS/MS

    O

    N

    S

    OO

    NH2

    MW=212

    Interpreting Product Ion MS/MS Spectrum

  • Systematic Approach for the Identification of Metabolites by LC/MS/MS

    GET A Q1 SCAN OF THE COMPOUND IN QUESTION

    OBTAIN A PRODUCT ION SPECTRUM OF THE COMPOUND: INTERPRET THE SPECTRUM

    IDENTIFY MAJOR FRAGMENT ION AND NEUTRAL LOSS

    IDENTIFY MAJOR FRAGMENT ION AND NEUTRAL LOSS

    RUN PRODUCT ION SCANS FOR ALL POSSIBLE METABOLITES IDENTIFIED FROM STEP 4 PLUS EXPECTED METABOLITES

    INTERPRET THE SPECTRA AND ASSIGN STRUCTURES OF METABOLITES

  • Example

    N

    NH

    CH3O

    *

  • CID Product Ion Spectrum of a Parent Drug

    100 200 300 400m/z

    100

    75

    50

    25

    0

    Rel

    ativ

    e In

    tens

    ity (%

    )

    121

    147 167

    177

    469

    N

    N O

    177

    167

    147-OMe

    +H

    MH+

    Identify parent scan ions?

  • HPLC-RAD and TIC Chromatograms for Biliary Metabolites of CJ-11,972

    100

    75

    50

    25

    0

    Rel

    . Int

    . (%

    )

    RAD Chromatogram

    Time (min)10.0 20.0 30.0 40.0

    100

    75

    50

    25

    0

    Rel

    . Int

    . (%

    )

    Par167 Chromatogram

    III III

    IV+VVI

    VIII

    VII

    IX

    XX! XII

    (Parents of m/z 167)

  • CID Product Ion Spectra of Metabolites 485-A and 485-B

    50 100 150 200 250 300 350 400 450 500m/z

    100

    75

    50

    25

    0

    Rel

    ativ

    e In

    ten

    sity

    (%)

    73105

    121

    133163167

    175

    193

    485

    485-ARet. Time 29.9 min

    O

    OH

    N

    N

    167

    73193

    163-HCHO

    50 100 150 200 250 300 350 400 450 500m/z

    100

    75

    50

    25

    0

    Rel

    ativ

    e In

    ten

    sity

    (%)

    57105119132

    147

    165

    177

    183

    485

    485-BRet. Time 36.6 min

    N

    N O

    OH

    183

    177

    147

    -HCHO57

  • CID Product Ion Spectra of Metabolites 455-A and 455-B

    NN OH

    163

    293

    276-NH3

    167

    -tert-butyl 106

    50 100 150 200 250 300 350 400 450m/z

    100

    75

    50

    25

    0Rel

    ativ

    e In

    tens

    ity (%

    )

    82

    96

    106

    163

    167

    181 276

    293

    455

    455-ARet. Time 28.1 min

    O

    N

    N

    43163

    167

    133

    121

    50 100 150 200 250 300 350 400 450m/z

    100

    75

    50

    25

    04356

    82

    96

    121133152

    163

    167

    181 455

    455-BRet. Time 37.7 min

    Rel

    ativ

    e In

    tens

    ity (%

    ) -CH2O

    -C3H6

  • ION TRAP MS

  • ION TRAP MS

    Sensitivity Ion accumulation

    (10-1000 times better sensitivity than quadrupole MS) Specificity

    Multistage MS capabilities (MSn)

    Speed Can complete an entire scan in 100 ms

    Data Dependent Acquisition Acquire MW information and MSn spectra in the same

    run High value/Cost Ratio

  • MS 2

    MS 3

    Rf

    trapping scanning

    MS 4

    Triple Quad vs LCQ (MS/MS)

  • Q-TOF

  • Why use a Q-TOF ?Sensitivity

    - detection of low level metabolites in complex matrices in vivo

    Exact mass (high resolution mass measurement)

    - added confidence in confirming expected metabolites (confirm elemental composition for metabolites with the same nominal mass)

    LC/MS/MS

    - confirmation of metabolites (compare MS/MS spectra)

    - data dependent MS -- MS/MS (time saving, High throughput)

  • MS operation : Quadrupole MS transmits TOF detects all ions transmitted : full scan mass spectrum

    MS/MS operation: Precursor ion selection in quadrupole, collision induced dissociation (CID) in hexapole collision cell product ion detection in TOF: MS/MS spectrum

    Operating principle of the Q-TOF mass analyzer

  • Instrument Capabilities

    High Resolution MS and MSMS 20,000 resolution Peak Width of 0.025 at 500 amu

    High Resolution= High Selectivity Able to easily separate masses that differ in 0.1 amu

    easily

    TOF allows fast scan speeds without sacrificing sensitivity or scan ranges in MS or MS/MS modes

    High Resolution MS and MSMS 20,000 resolution Peak Width of 0.025 at 500 amu

    High Resolution= High Selectivity Able to easily separate masses that differ in 0.1 amu

    easily

    TOF allows fast scan speeds without sacrificing sensitivity or scan ranges in MS or MS/MS modes

  • Mass

    Element Nominal Mass Exact Mass

    C 12 12.0000

    H 1 1.0078

    O 16 15.9949

    N 14 14.0031

    Average Mass

    12.011

    1.00797

    15.9994

    14.003

    Cl 35 34.968935.45

    S 32 31.97232.06

  • Biotransformation of Ziprasidone

    Question: Can we differentiate the structures of these metabolite with m/z 429 by TOF?Previous assignment: S-oxides or S-methyl (+ 16) .

    m/z 413

    M10; m/z 429 M9; m/z 429C21H22N4O2SCl C22H26N4OSCl

    NO

    HCl

    N NN

    S

    NO

    HCl

    N NN

    S

    NO

    HCl

    N NNH

    O SCH3

    C21H22N4OSCl

  • 425 426 427 428 429 430 431 432 433 434 m/z0

    100 429.1520

    431.1516430.1529

    432.1510

    M9

    425 426 427 428 429 430 431 432 433 434 m/z0

    100429.1151

    431.1140430.1193

    432.1145

    M10

    27.50 28.00 28.50 29.00 29.50 30.00 30.50 31.00 Time0

    100M9 M10

    Selected Ion Chromatogram and Full ScanMS of M9 and M10

  • Mass Measurements of M9 and M10

    Metab Cal. Mass Obs. Mass+/-mDa +/-ppm Mol. Formula

    M9 429.1516 429.1520 0.4 0.9 C22H26N4OSCl

    M10 429.1152 429.1151 -0.1 -0.3 C21H22N4O2SCl

    Parent 413.1203 413.1205 0.2 0.4 C21H22N4OSCl

  • 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 m/z0

    100194.0384

    150.0386280.1222

    196.0369

    282.1195 429.1516

    NH

    OCl

    N NSCH3NH

    NH

    OCl

    CH2+

    m/z 194.0373(5.3 ppm)HN SCH3

    +

    NH

    OCl

    N NH2+

    m/z 150.0377(5.7 ppm)

    m/z 280.1217(1.9 ppm)

    m/z 429.1516(0.9 ppm)

    80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 m/z0

    100 194.0383

    99.0923152.0179

    175.0336

    196.0370

    232.0922 429.1175

    NH

    OCl

    N NSN

    O

    NH

    OCl

    CH2+N NH

    +H2C

    m/z 429.1152(-0.3 ppm)

    m/z 194.0373(5.3 ppm)

    m/z 99.0922(0.8 ppm)

    MS/MS Spectra of Metabolites M9 and M10

  • N OH N OH

    O

    N

    N

    Two Isobaric metabolites of Compound X

    R2

    BA

  • 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259m/z0

    100

    %

    242.0783

    243.0818

    249.1486

    Mass corrected and centroid Exact mass: 242.0793 -1.0 mda; ppm error= -3.9 Formula= C12H11NOF3

    TOF MS Spectrum of Structure ATOF MS Spectrum of Structure A

  • 240 242 244 246 248 250 252 254 256 258 260 262m/z0

    100

    %

    242.0432

    244.0486

    243.0458

    Mass corrected and centroid Exact mass: 242.0429 0.3mda; ppm error= 1.2 Formula= C11H7NO2F3

    TOF MS Spectrum of Structure BTOF MS Spectrum of Structure B

  • Analytical techniques combined with mass spectrometry for

    characterization of metabolites

  • When Derivatization is Useful

    Metabolite is unstable Metabolite is very polar Metabolite is volatile To characterize the functional group To prove MS fragmentation To improve sensitivity when metabolite

    is available in only trace amounts

  • Derivatizations of Hydroxyl Groups

    ROH or ArOH ArOCOCH3CH3COCl

    (CH3CO)2O

    ArOH ArOCH3CH2N2

    ArOH +

    N

    SO2Cl

    N

    SO2OAr

    -Methylation

    -Dansylation

    ROCOCH3 or -Acetylation

    -Silylation

    ROH or ArOHMTBSTFA

    ArOBDMSROBDMS or

    MTBSTFA; Tert-butyldimethylsilyl-N-methyltrifluoroacetamide

  • Derivatizations of Amines

    RNH2CH3COCl

    (CH3CO)2O

    +

    N

    SO2Cl

    N

    SO2NHR -Dansylation

    RNHCOCH3

    -Acetylation

    RNH2 RNHCOCF3MBTFA

    RNH2

    MBTFA; N-methylbis(trifluoroacetamide)

  • Derivatization of Carboxyl Group

    RCOOHCH3OH/HCl RCOOCH3

    -Methylation

    RCOOHCH2N2 RCOOCH3

    -Triphenylphosphonium Derivative

    RCOOH + H2NCH2CH2P(Ph)3+

    RCO HNCH2CH2P(Ph)3+

    -Reduction

    RCOOH RCH2OHLiAlH4

  • Functional group-specific chemistry

    OR3N

    R2S=O

    TiCl3

    TiCl3

    R3N

    R2S

    RCNHNH2

    HFAAR

    N

    NCF3

    CF3

    Hexafluoroacetylacetone

  • CID product ion spectra of glucuronide conjugates

    100 200 300 400 500m/z

    100

    75

    50

    25

    0

    Rel

    ativ

    e In

    tens

    ity (

    %)

    147162

    176

    308

    326

    344484

    502

    520MH+

    (a)

    m/z100 200 300 400 500

    100

    75

    50

    25

    0

    Rel

    ativ

    e In

    tens

    ity (

    %)

    147162

    176

    308

    326

    344

    502

    520MH+

    (b)

    N

    CH3

    OH

    HO

    glucuronide

    176

    -glu.

    -H2O

    151

    344326-H2O308

    -H2O

    OH

    OH

  • CID product ion spectrum of glucuronide conjugates after methylation

    100 200 300 400 500

    m/z

    100

    75

    50

    25

    0

    Rel

    ativ

    e In

    tens

    ity (%

    )

    135

    161

    173

    190

    322

    340

    512

    530

    548

    MH +

    N

    OH

    CH 3

    OH

    -O O

    HO HO

    H 3 COOC

    HO

    OCH 3

    340 -H2O

    322 -H2O 190

    161 -H2O

    -H2O

    151 -glu.

    m/z

    - H2O

    - 2H2O

    Peak I

    N

    OH

    CH 3

    OH

    H 3 CO

    O- O

    OH OH

    COOCH 3

    HO

    366 176

    -H2O -methyl glu.

    165

    147 -H2O

    -methyl glu.

    100 200 300 400 500

    100

    75

    50

    25

    0

    Rel

    ativ

    e In

    tens

    ity (%

    )

    121

    147 165

    176

    202 322

    340 366 512

    530

    548 MH +

    - H2O

    - 2H2O

    Peak II

  • CID Product Ion Spectrum of Sunepitron

    100 200 300 400m/z

    100

    75

    50

    25

    0

    Rel

    ativ

    e In

    ten

    sity

    (%)

    56 7081

    93

    108

    122

    136

    195

    209

    235

    287

    330MH+

    N

    NN

    N

    N

    O

    O

    +H

    122136

    209195235

    -2H

    +H

    +H+H

    C. Prakash, et al. Drug Metab Disp. (1997) 26, 206-218

  • CID product ion spectrum of M18

    m/z50 100 150 200 250 300

    100

    75

    50

    25

    0

    69

    86

    93

    104

    151

    195209

    235

    252

    277

    294

    Rel

    ativ

    e In

    tens

    ity (%

    )

    MH+

    2

    N

    NN

    O

    O

    252

    209

    R=COCH3R=C(=NH)NH

    R

  • Mass Spectra of M18 Before and After Deuterium Exchange

    200 210 220 230 240 250 260 270 280 290 300 310 320m/z

    0

    20

    40

    60

    80

    100

    Rel

    ativ

    e A

    bu

    nd

    ance

    298

    299297

    200 210 220 230 240 250 260 270 280 290 300 310 320m/z

    0

    20

    40

    60

    80

    100

    Rel

    ativ

    e A

    bu

    nd

    ance

    294

    295

    MD+

    MH+

  • CID product ion spectrum of M18 after treatment with HFAA

    100 200 300 400

    50

    38

    25

    12

    0

    Rel

    ativ

    e In

    tens

    ity (%

    )

    81

    90

    108 136 195

    209 258

    272 299 365

    466

    N

    NN

    N

    N

    O

    CF3

    CF3

    209

    258(b)

    MH+

    O

    N

    NN

    N

    N

    O

    O

    CF3

    CF3

    N

    NN

    NH

    NH2

    O

    O

    CF3COCH2COCF3

    Reduced polarityDiagnostic massincrease

  • Identification of Drug MetabolitesLC-NMR

  • LC-NMR (Continuous flow or stopped flow) Fast Reportedly sensitive (50 - 200 ng) Amenable to automation Negate the need for isolation Sample Stability Cleaner Spectra

    ADVANTAGES

  • Disadvantages and Limitation of LC-NMR

    Sensitivity Nearly eliminates quantitative application

    The Chromatograph Solvent Suppression Expensive deuterated mobile phase and

    buffers Shimming problems introduced by LC-

    gradient methods

  • What information does NMR provide

    Each proton (or carbon atom) in a molecule typically has a different resonant frequency (chemical shift) Thus, NMR spectrum is a fingerprint of a molecule Chemical shifts are governed by nuclear environment,

    e.g. CH3O, CH3CN, CH3 NH2 Adjacent NMR-active nuclei 91-4 bonds apart) in a

    molecule may couple to one another Coupling constants can be identified by inspection of 1D

    spectra

  • Activation of Acetaminophen by Cytochrome P450 to N-acetyl-p-benzoquinonimine (NAPQI) and subsequent conjugation with Glutathione

    N

    O

    O

    CH3 HN

    O

    O

    CH3 HN

    OH

    O

    CH 3

    N

    O

    O

    CH3 N

    OH

    O

    CH3 HN

    OH

    O

    CH 3

    H

    SG

    H

    SG

    SG

    SG

    GSH

    NAPQI

    GSH

    NAPQI

    H+

    H+

    H+

    3' ADDUCT

    2' ADDUCT

    H+

    NH

    CH3

    O

    OH

    P450

  • Proposed Reaction Product of N-acetyl-pbenzoquinone imine(NAPQI) with Glutathione

    N

    O

    O

    CH3

    GSH

    ONAPQI

    H+

    GSHN

    O

    CH3

    IPSO ADDUCT

  • CID Product Ion Mass Spectra of Reaction Mixture

  • 1H NMR Data Obtained on The Reaction Mixture

  • Characterization of Metabolites of Compound X

    R1NOR

    CH 3

    C H 3C H 3

  • HPLC Radiochromatograms of Compound X Metabolites

    0 2 4 6 8 10 12 14 16 18 20 22 24

    Time (min)

    0.0

    0.2

    0.4

    0.6

    Inte

    nsity

    ParentM22

    M23

    M3/M4

    M24

    M26

  • CID Product Ion Spectrum of compound X

    MH+

    100

    0

    50

    75

    25

    100 200 300 400 480

    165

    326147

    469192 335270 41357 367 423

    m/z

    N

    OR

    147

    165

    326

    MH+=469

    R1

  • 9 8 7 6 5 4 3 2 1 ppm

    6.87.07.27.47.67.88.08.28.48.68.8 ppm

    Proton double presat 278K d1=10sec CP-533,536 LC peak at 57.41 minutes (m/z=471) injection # 636

  • CID mass and NMR spectra of M4

    100 200 300 400 500m/z

    0

    100165

    145

    467324

    192

    335

    342

    421

    485

    N

    O

    OH

    -H2O

    -H2O

    145

    165

    324

    342

    MH+

    MH+=485MD+=488

    12345678 ppm

  • 100 180 260 340 420 500m/z

    0

    100165

    161

    133

    483340

    295266

    409437

    N

    O

    O

    161

    165

    340

    MH+

    CID mass and NMR spectra of M24

    123456789 ppm

    MeOD impurities

    Proton double presat 278K CP-533,536 metabolite LC peak at 45.30 minutes (m/z=485) injection # 622

    aldehyderesonance

    2 Methylgroups

    -NCH2

    -OCH2

    MH+= 483MD+= 485

    RR1

  • Conclusions

    Combination of LC/MS/MS with other analytical approaches is a powerful tool for solving difficult problems encountered in the analysis of drug metabolites.

  • SOME REFERENCES

    Biochemistry of reactions by Bernard Testa. Biotransformation of Xenobiotics - Andrew Parkinson

    - in Casarett and Doulls Toxicology, 5th edition. Drug Biotransformations - Neal Castagnoli - in

    Burgers medicinal chemistry 4th edition. Drug Metabolism -Bernard Testa- in Burgers

    Medicinal Chemistry, 5th edition. Metabolism of Heterocycles by L. A. Damani in

    Comprehensive Heterocyclic Chemistry