Meta-analysis of omics level data for efficient production of …/file/s...Meta-analysis of –omics...

45
Meta-analysis of –omics level data for efficient production of N-linked glycoproteins in a bacterial host Stephen Jaffé – PDRA - University of Sheffield, UK PI – Prof Phil Wright Co-I – Dr Jagroop Pandhal 7 th ICBE – San Diego 10/01/2017 1

Transcript of Meta-analysis of omics level data for efficient production of …/file/s...Meta-analysis of –omics...

  • Meta-analysis of –omics level data for efficient production of N-linked glycoproteins

    in a bacterial host

    Stephen Jaffé – PDRA - University of Sheffield, UKPI – Prof Phil Wright

    Co-I – Dr Jagroop Pandhal7th ICBE – San Diego

    10/01/2017 1

  • 2

    Signal peptide modifications and chromosomal basing of key gene

    Meta-analysis of –omics level data

    Mass spec based glyco-quant

    Key points of the talk

    Aim – Increase the glycosylation efficiency, glycoprotein yield and develop a more accurate analytic technique

  • Glycotherapeutic market

    • $140 billion market in 2013 [1]

    • Chinese Hamster Ovary (CHO) cells are the predominant host cell for glycotherapeutic production [1]

    • CHO cells generate fully functional

    complex proteins (most notably mAbs)

    • Humanised glycan structure [3]

    3

    [4][1] Walsh. B. (2014) Biopharmaceutical benchmarks 2014. Nature Biotechnology. 32. 10. 992-1000 [3] Hossler. P., Khattak. S. F., Li. Z. J. (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology. 19. 9. 936-949. [4] Baker. J. L., Celik. E., DeLisa. M. P. (2013) Expanding the glycoengineering toolbox: the rise of bacterial N-linked protein glycosylation. Trends in biotechnology. 31. 5. 313-323.

  • Glycosylation is in all domains of life

    4[4]

    [4] Baker. J. L., Celik. E., DeLisa. M. P. (2013) Expanding the glycoengineering toolbox: the rise of bacterial N-linked protein glycosylation. Trends in biotechnology. 31. 5. 313-323.

  • Bacterial glycosylation

    5[5] Wacker. M., Linton. W., Hitchen. P. G., Nita-Lazar. M., Haslam. S. M. North. S. J., Panico. M., Morris. H. R., Dell. A., Wren. B. W., Aebi. M. (2002). N-linked glycosylation in Campylobacter and its functional transfer into E. coli. Science. 298.1790-1793.

    [5]

  • 6

    • Paper generated idea of making therapeutic glycoproteins in the primary organism for recombinant protein production – E. coli [7]

    • Highly adaptable “plug and play”

    system for glycans of choice

    • Recombinant prokaryotic glycosylation

    system allows for defined glycoforms [8]

    E. coli N-linked glycosylation

    [7] Huang et al (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol. 39. 383-399 [8] Jaffé et al. (2014)Escherichia coli as a glycoprotein production host: recent developments and challenges. Current Opinion in Biotechnology. 30. 205-210.

    [8]

  • N-linked glycosylation in E. coli

    • Block transfer

    • Glycans generated in cytoplasm

    • Built onto cytoplasmic face of IM

    • Transferred to periplasm

    7[6] Nothaft. H., Szymanski. C. 2010. Protein glycosylation in bacteria: sweeter than ever. Nature Reviews Microbiology. 8. 768-778

  • N-linked glycosylation in E. coli

    • Block transfer

    • Glycans generated in cytoplasm

    • Built onto cytoplasmic face of IM

    • Transferred to periplasm

    • Attached to defined protein sequon

    8

    [6]

    [6] Nothaft. H., Szymanski. C. 2010. Protein glycosylation in bacteria: sweeter than ever. Nature Reviews Microbiology. 8. 768-778

  • 9

    Advantages and uses of the technology

    • Expression in bacteria is much cheaper than mammalian cells

    • Homogenous glycoprofile

    • Currently most successfully applied towards glyco vaccines

    • Possible to expand to vast number of glycans and glycan structures

  • Shake flask strain testing

    pACYCpgl2 14,949 bp

    Glycosylation

    pECAcrA6,552 bp

    Target protein

    5.5 mg/L19% glyco efficiency

    10

  • Shake flask strain testing

    • How can we move beyond our current glycosylation efficiency limits?

    pACYCpgl2 14,949 bp

    Glycosylation

    pECAcrA6,552 bp

    Target protein

    5.5 mg/L19% glyco efficiency

    11

  • Signal peptide modification

    0

    1000

    2000

    3000

    4000

    5000

    6000

    Sec Tat

    Are

    a u

    nd

    er p

    eak

    Export mechanism/signal sequence

    CLM24 pgl2 pEC based plasmids • Glycosylation occurs in periplasm

    • Varying export pathway changes product yield

    • 86% increase using Tat over Sec

    12

  • Chromosomal basing of OST

    • N-linked glycosylation reliant

    upon a key oligosaccharide protein, PglB

    • Site specific chromosomal integration

    Plasmid based pglB

    Chromosomally based PglB

    pglB minus strain

    13

  • Chromosomal basing of OST

    • N-linked glycosylation reliant

    upon a key oligosaccharide protein, PglB

    • Site specific chromosomal integration

    • Increases glycosylation efficiency by 85%

    over plasmid based expression

    Plasmid based pglB

    Chromosomally based PglB

    pglB minus strain

    14

    Glyco band

    Noglyco band

  • Glycosylation of human therapeutics

    15

    • Fermenter study using IFNα2b with internal glycosylation site

    • Glycosylation efficiency up to 19% identified

    Aglycosylated band

    Glycosylated band

  • Glycosylation of human therapeutics

    16

    • Fermenter study using IFNα2b with internal glycosylation site

    • Glycosylation efficiency up to 19% identified

    Aglycosylated band

    Glycosylated band

  • 17

    Identifying metabolic bottlenecks

    • Cells aren’t inherently optimised to generate glycoprotein

    • Global approach to identify metabolic bottlenecks within cells

    • Quantitative proteomics - iTRAQ

    • Inverse metabolic engineering – with Ryan Gill’s group

    [9]

    [9] Pandhal. J., Woodruff. L. B. A., Jaffé. S., Desai. P., Ow. S. Y., Noirel. J., Gill. R. T., Wright. P. C. (2013) Inverse metabolic engineering to improve Escherichia coli as an N-glycosylation host. Biotechnology and Bioengineering. 110. 9. 2482-2493. [10] Pandhal. J. et al (2011) Improving N-glycosylation efficiency in Escherichia coli using shotgun proteomics, metabolic network analysis, and selective reaction monitoring. Biotechnology and Bioengineering. 108. 4. 902-912.

  • 18

    Removing metabolic bottlenecks

    • Overexpression of components ofcentral metabolism

    • Isocitrate lyase (ICL) – 3.8 fold increase GP[10]

    • Phosphotransferase system (ptsA) – 6.7 fold increase TP [9]

    • 1-deoxyxylulose-5-phosphate synthase (dxs) – 1.6 fold increase GP [9]

    • How do we push this further?[8] Jaffé et al. (2014) Escherichia coli as a glycoprotein production host: recent developments and challenges. Current Opinion in Biotechnology. 30. 205-210. [9] Pandhal. J et al. (2013) Inverse metabolic engineering to improve Escherichia coli as an N-glycosylation host. Biotechnology and Bioengineering. 110. 9. 2482-2493. [10] Pandhal. J. et al (2011) Improving N-glycosylation efficiency in Escherichia coli using shotgun proteomics, metabolic network analysis, and selective reaction monitoring. Biotechnology and Bioengineering. 108. 4. 902-912.

    [8]

  • 19

    Combining -omics data sets

  • Identifying overlapping targets

    Quantitative proteomics 1

    Quantitative proteomics 2

    Quantitative proteomics 3

    Genetic level analysis

    • Pooling of the global analysis data

    • Identification of key targets

    • Necessity to add directionality todata

    20

  • Adding directionality and weighting

    Quant proteomics 1

    Quant proteomics 2

    Quant proteomics 3 (1)

    Quant proteomics 3 (2) IME

    21

  • Metabolic engineering testing

    • Plasmid consolidation and overexpression of central carbon metabolism enzymes

    pACYCpgl2 14,949 bp

    Glycosylation

    pECAcrA-met eng 9,325 bp

    Target and met eng

    pECAcrA-met-eng

    10,456 bpTarget and met eng

    28% glycosylation efficiency

    26% glycosylation efficiency

    22

  • Glyco quant

    • Currently a combination of western blot and mass spectrometry

    • Mass spec is the gold standard of this technology

    • Simplified methodology

    • Developing a methodology to simultaneously:– Determine absolute protein concentration– Glycosylation efficiency

    23

  • No released glycan analysis

    24[11] Marino. K., Bones. J., Kattla. J. J., Rudd. P. M. (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nature chemical biology. 6. 713-723.

  • Glyco quant - Western

    25

    kDa Ladder G1 G2 AG1

  • Glyco quant – Westerns

    26

  • Glyco quant – Mass spec

    27

    N14 – Target (light) protein

  • Glyco quant – Mass spec

    28

    N14 – Target (light) protein N15 – Heavy protein

  • Glyco quant – Mass spec

    29

    N15 – Heavy protein

  • Glyco quant – Mass spec

    30

    • Purify and quantify N15 protein using HPLC

    Inte

    nsi

    ty

    Retention time

  • Glyco quant – Mass spec

    31

    N15 – Heavy peptides

    • Selectively digest protein using protease of choice i.e. Trypsin

  • Glyco quant – Mass spec

    32

    • Run on mass spec

    • Identify peptides

    • Identify m/z

  • Glyco quant – Mass spec

    33

    • Generate standard curve of proteins to run on MS

    • Determine which peptides show linearity at varyingconcentrations

    0.0

    Pe

    ak In

    ten

    sity

    IDLDHTEIK

  • Glyco quant – Mass spec

    34

    0.4 µg of 15N AcrA spiked into the sample pre-tryptic digestion

    IDLDHTEIK

  • Glyco quant – Mass spec

    35

    0.2 µg of 15N AcrA spiked into the sample pre-tryptic digestion

    IDLDHTEIK

  • Glyco quant – Mass spec

    36

    0.1 µg of 15N AcrA spiked into the sample pre-tryptic digestion

    IDLDHTEIK

  • Glyco quant – Mass spec

    37N14 – Target (light) protein N15 – Heavy protein

    • Mix undigested heavy (N15) protein with undigested light (N14) protein and co-digest

  • Glyco quant – Mass spec

    38

    N14 and N15 – Light and Heavy peptides

    All 1:1 ratio

  • Glyco quant – Mass spec

    39

    N14 and N15 – Light and Heavy peptides

  • Glyco quant – Mass spec

    40

    N14 and N15 – Light and Heavy peptides

    1 0.55

  • Glyco quant – Mass spec

    41

    N14 and N15 – Light and Heavy peptides

    1 0.55 0.45

  • Glycopeptide analysis

    • Detection of glycan diagnostic ions within IFN

    = HexNAc= HexHexNAc

    42

  • Summary

    • Metabolic engineering strategies can be utilised to increase glycoprotein yield

    • Chromosomally basing OST, pglB, increases glycosylation efficiency

    • Mass spectrometry can provide accurate, simultaneous yield and glycosylation efficiency data

    43

  • Thank youDr. Benjamin Strutton –Recently passed PhD student – University of Sheffield, UK

    Dr. Gregory Fowler – Post Doc – University of Sheffield, UK

    Dr. Jagroop Pandhal –Lecturer – University of Sheffield, UK

    Prof. Phillip C. Wright. –Pro Vice chancellor of Science, Agriculture and Engineering – Newcastle University, UK

    Prof. Colin Robinson –University of Kent, UK

    44

    Dr. Zdeno Levarski – Post Doc – Comenius University Science Park, Slovakia

    Dr. Caroline Evans – Post Doc – University of Sheffield, UK

    Email: [email protected]

    Dr. Josselin Noirel –Lecturer - Conservatoire national des arts et métiers, France

    mailto:[email protected]

  • References

    1. Walsh. B. (2014) Biopharmaceutical benchmarks 2014. Nature Biotechnology. 32. 10. 992-1000

    2. Munkley. J., Mills. I. G., Elliott. D. J. (2016) The role of glycans in the development and progression of prostrate cancer. Nature reviews urology. 13. 324-333.

    3. Hossler. P., Khattak. S. F., Li. Z. J. (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology. 19. 9. 936-949.

    4. Baker. J. L., Celik. E., DeLisa. M. P. (2013) Expanding the glycoengineering toolbox: the rise of bacterial N-linked protein glycosylation. Trends in biotechnology. 31. 5. 313-323.

    5. Wacker. M., Linton. W., Hitchen. P. G., Nita-Lazar. M., Haslam. S. M. North. S. J., Panico. M., Morris. H. R., Dell. A., Wren. B. W., Aebi. M. (2002). N-linked glycosylation in Campylobacter and its functional transfer into E. coli. Science. 298.1790-1793.

    6. Nothaft. H., Szymanski. C. 2010. Protein glycosylation in bacteria: sweeter than ever. Nature Reviews Microbiology. 8. 768-778

    7. Huang. C. J., Lin. H., Yang. X. (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol. 39. 383-399

    8. Jaffé. S. R. P., Strutton. B., Levarski. Z., Pandhal. J., Wright. P. C. (2014) Escherichia coli as a glycoprotein production host: recent developments and challenges. Current Opinion in Biotechnology. 30. 205-210.

    9. Pandhal. J., Woodruf. L. B. Jaffe. S., Desai. P., Ow. S. Y., Noirel. J., Gill. R. T., Wright. P. C. (2013) Inverse metabolic engineering to improve Escherichia coli as an N-glycosylation host. Biotechnol. Bioeng. 110. 9. 2482-2493.

    10. Pandhal. J. Ow. S. Y., Noirel. J. Wright. P. C. (2011) Improving N-Glycosylation Efficiency in Escherichia coli Using Shotgun Proteomics, Metabolic Network Analysis, and Selective Reaction Monitoring. Biotechnol. Bioeng. 108. 4. 902-912.

    11. Marino. K., Bones. J., Kattla. J. J., Rudd. P. M. (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nature chemical biology. 6. 713-723. 45