MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800...

30
1 Before you begin: Turn on the sound on your computer. There is audio to accompany this presentation. MET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated, illustrations in this presentation are taken from the 11 th Edition of Degarmo’s Materials and Processes in Manufacturing textbook by J.T. Black and Ronald A. Kohser, ©2012, Wiley. MET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Definitions Measure To determine the dimension, quantity or capacity of something. Measurement Act of measuring, fundamental activity of inspection. Inspection Measuring conformance to design specifications (characteristics). Chapter 35 3

Transcript of MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800...

Page 1: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

1

Before you begin: Turn on the sound on your computer. There is audio to accompany this presentation.

MET 33800 Manufacturing Processes

Chapter 35

Measurement and Inspection

Unless otherwise indicated, illustrations in this presentation are taken from the 11th Edition of Degarmo’s Materials and Processes in Manufacturing textbook by J.T. Black and Ronald A. Kohser, ©2012, Wiley.

MET 33800 Manufacturing Processes

Chapter 35

Measurement and Inspection

Definitions

Measure  To determine the dimension, quantity or capacity of something.

Measurement  Act of measuring, fundamental activity of inspection.

Inspection Measuring conformance to design specifications (characteristics).

Chapter 35 ‐ 3

Page 2: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

2

Definitions (continued)

Attribute Measurement  Uses gages that determine acceptance or rejection based on design specifications including visual and functional inspection.

Variable Measurement  Uses calibrated instruments used to determine size.

Chapter 35 ‐ 4

Figure 35‐32 page 987

Figure 35‐12 page 974

Definitions (continued)

Metrology  The science of measurement.

Linear Metrology Measurement of linear dimensions (length, depth, diameter).

Chapter 35 ‐ 5

http://ocshah.com/wp‐content/uploads/2015/01/pmi_prod.jpg

Measurement Systems

U.S. Customary System  English system 

Conversion factors shown in table 35‐2 pg. 961.

International System of Units  S.I. or metric system

Fundamental Units  Based on physical phenomena (except mass). All other units derived from fundamental units.

Listed in table 35‐1 pg. 959.

Chapter 35 ‐ 6

Page 3: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

3

Chapter 35 ‐ 7

Measurement Systems (continued)

Chapter 35 ‐ 8

Primary Standard  International standard. 

Transfer Standard  Traceable to primary standard. Lower accuracy than primary standard.

Traceability  Links instrument and transfer standard to primary standard.

Measurement Systems (continued)

Chapter 35 ‐ 9

Page 4: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

4

Metrology Standard Responsibility:

National Institute of Standards and Technology (NIST)

International Bureau of Weights and Measures (Paris)

Measurement Systems

Chapter 35 ‐ 10

One thousands of an inch (0.001) is the basic unit of measuring in most manufacturing environments.

One thousands of an inch is typically referred to and “one” so when someone says plus or minus “five” they mean ±0.005 inch. 

The next level of discrimination is referred to as a “tenth” so plus or minus “2 tenths” = ± 0.0002 in.

Finally when a machinist talks about “millionths” they are referring to 0.000 001 so ± 5 millionths is ± 0.000 005 and ±15 millionths is ±0.000 015. (0.000 001 = 1.0 in)

Shop Speak

Chapter 35 ‐ 11

Linear Standard  Gage Blocks:

Standard of measurement in physical form.

Typically the ultimate standard of length in a manufacturing facility.

Used as a master gage comparison instruments.

Measurement Systems

Chapter 35 ‐ 12

Page 5: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

5

Figure 35‐2 Standard set of rectangular gage blocks.

Figure 35‐4 Wrung‐together gage blocks in special holder, used with a dial indicator to from an accurate comparator.

Measurement Systems

Chapter 35 ‐ 13

Linear Standard  Gage Blocks

Developed by Carl Johansson (Sweden 1900).

Utilizes arithmetic progression to allow over 120,000 combinations with a discrimination of 0.0001 from a standard 81 piece set.

Accurate only at the Standard Temperature of Measurement, which is 68 F (20 C).

Measurement Systems

Chapter 35 ‐ 14

Available Gage Block Materials:

Tool Steel: 65 RHC, 6.4 in/in/F

Stainless Steel: 70 RHC, 5.5 in/in/F

Carbide: 70 RHC, 3.0 in/in/F

Chrome Carbide: 73 RHC, 4.7 in/in/F

Ceramic: 1400 HV, 6.4 in/in/F

Measurement Systems

Chapter 35 ‐ 15

Page 6: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

6

Accuracy Standards (table 35‐3 page 963):

Grade 0.5 ‐Metrology Laboratory Grade

Grade 1 ‐ Laboratory Grade 

Grade 2 ‐ Precision Grade 

Grade 3 ‐Working Grade 

Measurement Systems

Chapter 35 ‐ 16

Chapter 35 ‐ 17

http://i.ebayimg.com/00/s/MTQxM1gxNDAw/z/ScIAAOxyM89

Sar9y/$(KGrHqEOKpQE7I)Sq07BBS,r9)Vs-w~~60_35.JPG

Standard 81 piece Gage Block Set

Series 1:  One Ten Thousandth Inch ‐ 9 blocks0.1001 ‐ 0.1009 in 0.0001 steps

Series 2:  One‐Thousandth Inch ‐ 49 blocks0.101 – 0.149 in 0.001 steps

Series 3:  Fifty‐Thousandths Inch ‐ 19 blocks0.050 – 0.950 in 0.050 steps

Series 4:  Inch Series ‐ 4 blocks1.000 ‐ 4.000 in 1.000 steps

Measurement Systems

Chapter 35 ‐ 18

Page 7: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

7

Wringing (creating gage block stack‐ups):

Clean surfaces with conditioning stone and/or chamois.

Overlap surfaces slightly.

Slide and rotate with light finger pressure.

If blocks are in good condition they will wring (cohere) with a 1‐2 in gap.

Measurement Systems

http://blog.spacetec.org/wp‐content/uploads/2011/08/Putting‐

gage‐blocks‐together.gif

Chapter 35 ‐ 19

Accuracy and Precision Measuring systems are subject to variability from many sources including the measuring instrument, operator and environment. 

We distinguish between accuracy and precision when considering variability.

Chapter 35 ‐ 20

https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/Accuracy_and_precision.svg/300px‐Accuracy_and_precision.svg.png

Accuracy and Precision Accuracy or Reliability is the difference between the observed average of the measurements and the true average.  The true average represents the actual measurement determined by the most accurate method available.  Accuracy is measured by central tendency. 

Chapter 35 ‐ 21

Page 8: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

8

Precision or Repeatability is the variation in the measurements taken by one operator using the same instrument measuring the same characteristic on the same parts.  Repeatability is                measured by dispersion.

Reproducibility is the variation in the                average of the measurements taken by different operators using the same instrument measuring the same characteristic on the same parts.

Accuracy and Precision

Chapter 35 ‐ 22

Chapter 35 ‐ 23

Accuracy and precision (if known) of a measurement should be included in report. At the minimum, the measuring instrument accuracy should be used.

Example:

length instrument accuracy ± 0.001 in

length reading 0.750 in

report measurement  0.750 ± 0.001 in

Accuracy and Precision

Chapter 35 ‐ 24

Page 9: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

9

Stability or Drift is the difference between the average of two sets of measurements taken with the same instrument, operator and parts but at different times.

Linearity is the difference in accuracy over the instrument's operating range.  Linearity is typically measured as inches error/inch travel (in/in) or as a percentage of travel (%).

Accuracy and Precision

Chapter 35 ‐ 25

Discrimination is the finest division of the scale.  The discrimination rule is to use an instrument with the desired discrimination

DO NOT estimate measurements on instruments with lower discrimination. 

Discrimination is not equal to the instrument's accuracy. 

Accuracy and Precision

Chapter 35 ‐ 26

Magnification or Amplification is the ratio of the readout scale graduation separation to the movement of the instrument's contact points.

Resolution or Sensitivity is the ability of an instrument to detect variations.  A 0.001 sensitivity indicates than a variation of 0.001 or larger is necessary to cause a reaction by the instrument.

Accuracy and Precision

Chapter 35 ‐ 27

Page 10: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

10

Allowance and Tolerance Nominal (Basic) Dimension  Ideal or theoretically 

perfect dimension.

Tolerance  Amount a characteristic can vary and still meets the design’s functional requirements. Methods of specifying tolerances:

Bilateral 

Unilateral 

Limit 

±0.0051.000 +0.010- 01.000

1.010

1.000

Chapter 35 ‐ 28

Unilateral Basic dimension with either a positive or negative tolerance. Includes limit dimensions. Typically used for mating components in assemblies.

Bilateral Basic dimension with both a positive and negative tolerance. Tolerance may or may not be equally divided.

Allowance and Tolerance

Chapter 35 ‐ 29

Allowance  Amount of clearance between mating components.  

Positive allowance clearance for free fits.

Negative allowance interference for press fits.

Allowance and Tolerance

Chapter 35 ‐ 30

Figure 35‐4 page 964

Page 11: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

11

ANSI Allowance Standards (see Table 35‐4 pg. 968)

Class 1 Loose fit

Class 2 Free fit  liberal allowance

Class 3 Medium fit  sliding fits

Class 4 Snug fit  zero allowance

Class 5 Wringing fit  zero to negative allowance

Class 6 Tight fit  slight negative allowance

Class 7 Medium force fit

Class 8 Heavy force or shrink fit  permanent

Allowance and Tolerance

Chapter 35 ‐ 31

ISO System of Limits and Fits: more complex than ANSI system.

Clearance fit  positive allowance

Transition fit  positive or negative allowance

Interference fit  negative allowance

Allowance and Tolerance

Chapter 35 ‐ 32

Geometric TolerancesGeometric Tolerances:

Based on perfect geometry (basic dimension).

Tolerance is allowable deviation of form or position –tolerance zone.

Incorporate modifiers to specify limit of linear dimensions.

Maximum Material Condition (MMC)

Least Material Condition (LMC)

Regardless of Feature Size (RFS)

Feature controls incorporate datum's or reference surfaces.

Chapter 35 ‐ 33

Page 12: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

12

Geometric Tolerance Symbols [Figure 35‐10 pg. 971]

Individual Features  Form

Individual or Related Features  Profile

Related Features  Orientation, Location and Runout

Geometric Tolerances

34

Chapter 35 ‐ 35

Basic Inspection Methods Pneumatic  Air spindles and columns. Optical Light Energy 

Toolmaker's microscopes. Optical comparators. Interferometers. Monochromatic lights and optical flats.

Optical Electron Energy  Machine vision systems. Laser scanning. Laser interferometers.

Electronic  LVDT’s. Mechanical  Common instruments.

Chapter 35 ‐ 36

Page 13: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

13

Chapter 35 ‐ 37

Measuring InstrumentsInstrument types:

Direct  Incorporates a line graduated scale. Can make measurement directly from instrument

Indirect  No integral line graduated scale. Used to transfer measurement from part to direct measuring instrument.

Chapter 35 ‐ 38

Basic Rules of Measurement1. Measuring device should have an accuracy of at least 

10 times better than the desired measurement accuracy (Rule of 10).

Chapter 35 ‐ 39

Page 14: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

14

2. Never estimate, read all line‐graduated scales to the nearest graduation using the discrimination of the measuring device. Reason ‐ linearity of the instrument

3. Avoid the use of excessive forces during measurement.

4. Avoid parallax error on all types of measuring devices.

Basic Rules of Measurement

Chapter 35 ‐ 40

5. Attachments can have the effect of decreasing the accuracy of the measurement.

6. Understand the hysteresis effect in the instrument and how it affects the measurement.

7. Reliable measurement possible only when the condition of the instrument is known.

8. Reliable measurement possible only when the instrument is in calibration.

Basic Rules of Measurement

Chapter 35 ‐ 41

Indirect Instrument Examples

Measuring Instruments

Chapter 35 ‐ 42

http://www.micro‐machine‐shop.com/inside_gages_detail_Mitutoyo.jpg

Small HoleGage

Telescoping Gage

Page 15: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

15

STEEL RULE  Common direct reading (line graduated) measuring instrument.  Constructed with engraved graduations ('V' form) to an accuracy of 0.0003"/inch.  Scale variations include fractional inch, decimal inch and metric.

Linear Measuring Instruments

Chapter 35 ‐ 43

STEEL RULE  Procedure for use:

Align reference point on part with graduation, not end of rule.

Read to nearest graduation, do not estimate.

Avoid excessive force that might cause distortion or deflection of rule.

Avoid parallax errors by aligning eye perpendicular to graduations and both the reference point and measured point.

Linear Measuring Instruments

Chapter 35 ‐ 44

Linear Measuring Instruments

Steel Rule: Correct Usage Method

Chapter 35 ‐ 45

Source Unknown

Page 16: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

16

Linear Measuring InstrumentsSteel Rule Variations  Combination Square

Chapter 35 ‐ 46

http://www.rockler.com/wordpress/wp‐content/uploads/2013/02/Four‐Piece‐Combination‐Square.jpg

VERNIER INSTRUMENTS  Vernier scale system developed by Pierre Vernier (1631).  Vernier scale and slide caliper combined by Joseph Brown (1851).  

Construction consists of a main frame that incorporates the fixed jaw and main scale; a moveable jaw, which incorporates the Vernier scale; and a clamping screw or integral spring used for error reduction. 

Linear Measuring Instruments

Chapter 35 ‐ 47

Linear Measuring Instruments

Chapter 35 ‐ 48

Page 17: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

17

Vernier scale system reading technique:

1. Read main scale to 1‐inch discrimination using zero on Vernier scale.

2. Read main scale to 0.100‐inch discrimination using zero on Vernier scale.

3. Read main scale to 0.025 (three lines between 0.100 graduations) or 0.050 (one line between 0.100 graduations) discrimination using zero graduation on Vernier scale.

4. Read Vernier scale to 0.001‐inch discrimination using graduation that coincides with a graduation on the main scale.

Linear Measuring Instruments

Chapter 35 ‐ 49

Linear Measuring Instruments

Chapter 35 ‐ 50

Vernier Reading Examples

Linear Measuring Instruments

Chapter 35 ‐ 51

3.075+0.0163.091 

1.375+0.0131.388 

Fig 6‐8, page 65, Basic Shop Measurement, National Machine Tool Builders’ Association, ©1983, John Wiley & Sons.

Page 18: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

18

Vernier Caliper procedure for use:

1. Align fixed jaw with reference point on part.

2. Position moveable jaw with measured point on part.  Use a centralizing or rocking motion to insure accurate alignment.

3. Use fine adjustment screw if available using care not to distort the instrument frame.

4. Use clamping screw to reduce error if available.

Linear Measuring Instruments

Chapter 35 ‐ 52

Vernier Instrument Types  Height, Depth Inside/outside/depth combination and protractors (angle measurement).

Dial Caliper Mechanical adaptation of dial indicator to slide caliper. 

Digital Caliper  Adaptation of electronic scale to slide caliper.

Linear Measuring Instruments

Chapter 35 ‐ 53

Linear Measuring Instruments

Chapter 35 ‐ 54

Page 19: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

19

Linear Measuring Instruments

Chapter 35 ‐ 55

http://bidonindustrial.com/wp‐content/uploads/2014/03/381.jpg

http://www.kailathtools.com/admin/uploads/product/1389018093MI%20Vernier%20Height%20Gage.jpg

MICROMETER Micrometers are the most common of the direct reading instruments.  Micrometers are designated by their largest opening.  Major components include an anvil (0.250 diameter standard), which is used for the reference point; a spindle (0.250 dia standard), which is used for measured point; main scale engraved into barrel (0.025 discrimination); micrometer scale engraved into thimble (0.001 discrimination); and Vernier scale engraved into barrel (0.0001 discrimination). 

Linear Measuring Instruments

Chapter 35 ‐ 56

Linear Measuring Instruments

Chapter 35 ‐ 57

Page 20: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

20

Micrometer procedure for use:

1. Place and hold anvil on part's reference point.

2. Bring spindle in contact with measured point.

3. Approach spindle contact slowly to avoid defeating the ratchet. 

4. Use a centralizing or rocking motion to insure proper alignment.

5. Avoid excessive force that cause distortion or deflection.

Linear Measuring Instruments

Chapter 35 ‐ 58

Micrometer Reading Examples

Linear Measuring Instruments

Chapter 35 ‐ 59

Fig 5‐7, page 45, Basic Shop Measurement, National Machine Tool Builders’ Association, ©1983, John Wiley & Sons.

Metric and English Micrometer Reading Examples

Linear Measuring Instruments

Chapter 35 ‐ 60

Source Unknown

Page 21: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

21

Linear Measuring Instruments

Chapter 35 ‐ 61

Fig 5‐14, page 47, Basic Shop Measurement, National Machine Tool Builders’ Association, ©1983, John Wiley & Sons.

Micrometer Reading Examples

Outside Micrometer Instrument Types:

Thread ‐ indicates pitch diameter.

Spline ‐ .118 diameter anvil and spindle

Ball ‐ incorporates spherical anvil

Tube ‐ incorporates cylindrical anvil

Point ‐ point contact on reference and measured surfaces

Linear Measuring Instruments

Chapter 35 ‐ 62

Outside Micrometer Instrument Types:

Disc ‐ sheet or plate applications

Hub ‐ small frame for through bore hub measurement

Blade ‐ reduced thickness anvil and spindle for grooves

Deep Throat ‐ sheet or plate applications

V‐Anvil ‐ three lobed part measurement

Linear Measuring Instruments

Chapter 35 ‐ 63

Page 22: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

22

Linear Measuring Instruments

Chapter 35 ‐ 64

Fig 5‐22, page 51, Basic Shop Measurement, National Machine Tool Builders’ Association, ©1983, John Wiley & Sons.

Linear Measuring Instruments

Chapter 35 ‐ 65

Fig 5‐22, page 51, Basic Shop Measurement, National Machine Tool Builders’ Association, ©1983, John Wiley & Sons.

Other Micrometer Instrument Types: 

Depth: Interchangeable rods for increased range

Digital/Mechanical

Digital/Electronic 

Inside caliper

Inside micrometer 

Linear Measuring Instruments

Chapter 35 ‐ 66

http://www.repair‐‐parts.com/Industrial‐Metal‐Machines‐Parts‐/Welder‐Parts‐/Machinist‐tool‐

mitutoyo‐inside‐micrometer‐set‐3‐12‐partpix.jpg

Page 23: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

23

Linear Measuring Instruments

Chapter 35 ‐ 67

Page 53‐54, Basic Shop Measurement, National Machine Tool Builders’ Association, ©1983, John Wiley & Sons.

DIAL INDICATORS  Dial Indicators are deviation or comparison type instruments.  Deviation instruments are measuring devices that incorporate a line‐graduated scale (direct reading) but do not incorporate an integral standard.  Comparison instruments require the use of an external standard or master for deviation type measurement.  Dial indicators can be used for highly accurate and repeatable measurements.  

Linear Measuring Instruments

Chapter 35 ‐ 68

Linear Measuring Instruments

Chapter 35 ‐ 69

http://www.peacockozaki.jp/pt_890.gif

Page 24: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

24

Linear Measuring Instruments

Chapter 35 ‐ 70Page 77, Handbook of Dimensional Metrology, Francis T. Farago 

and Mark A. Curtis, ©1994, Industrial Press Inc.

Linear Measuring Instruments

Chapter 35 ‐ 71

http://www.gagesgalore.com/Mitutoyo/Images/Dial_Indicator_Group1_Pic2.gif

Other Dial Indicator Devices:

Test Indicators

Dial Snap Gages

Dial Bore Gages

Depth Gages

Indicating Micrometers

Linear Measuring Instruments

Chapter 35 ‐ 72

Page 110, Handbook of Dimensional Metrology, Francis T. Farago and Mark A. Curtis, ©1994, Industrial Press Inc.

Page 25: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

25

Test Indicators

Linear Measuring Instruments

Chapter 35 ‐ 73

Page 95, Handbook of Dimensional Metrology, Francis T. Farago and Mark A. Curtis, ©1994, Industrial Press Inc.

Gages for Attribute Inspection:

FIXED‐TYPE GAGES  Designed to gage only one dimension and indicate whether it is larger or smaller than the standard.  Includes: Plug Gage, Ring Gages, Snap Gages, Flush Pin Gages, and Profile Gages.

DEVIATION‐TYPE GAGES  Determines amount measurement deviates from a standard.  Includes: Dial Indicators, Air Gages and LVDT’s.

Attribute Measurement

Chapter 35 ‐ 74

Attribute Measurement

Chapter 35 ‐ 75Source Unknown

Page 26: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

26

Attribute Measurement

Chapter 35 ‐ 76

http://blog.threadcheck.com/wp-content/uploads/2015/05/SNAP_GAUGE_GROUP.jpg

Source Unknown

Snap Gages

Attribute Measurement

Chapter 35 ‐ 77

Plug and ring gages for various geometries.

http://www.biopack‐tech.com/Thread/Thread%20Photo/spline%20gauge.jpg

Attribute Measurement

Chapter 35 ‐ 78

Page 49, Handbook of Dimensional Metrology, Francis T. Farago and Mark A. Curtis, ©1994, Industrial Press Inc.

Page 27: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

27

Attribute Measurement

Thread Form/Pitch Gages

Radius Gages

Chapter 35 ‐ 79

Figure 35‐37 page 988

Figure 35‐36 page 988

Testing

Chapter 35 ‐ 80

Reference: Page 233 Materials and Processes in Manufacturing, 9th

Edition, Degarmo, Black and Kohser, Wiley 

Testing – Penetrant 

Chapter 35 ‐ 81

Reference: Page 234Materials and Processes in Manufacturing, 9th

Edition, Degarmo, Black and Kohser, Wiley 

http://www.karldeutsch.de/IMAGES/CHEMIE/KD‐Check/Pruefplaetze%20Dez%202013/9550.100_1_large.jpg

Page 28: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

28

Testing – Penetrant 

Chapter 35 ‐ 82

Fluorescent liquid penetrant inspection.

http://esfahan.7gardoon.com/files/test/adverimg‐131845.jpg

Testing – Magnetic Particle

Chapter 35 ‐ 83

Reference: Page 235‐6 Materials and Processes in Manufacturing, 9th Edition, Degarmo, Black and Kohser, Wiley 

Testing – Magnetic Particle

Chapter 35 ‐ 84

Fluorescent magnetic particle inspection.

https://www.nde‐ed.org/EducationResources/CommunityCollege/MagParticle/Graphics/Mt822M.jpg

Page 29: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

29

Testing – Ultrasonic 

Chapter 35 ‐ 85

Reference: Page 237‐8 Materials and Processes in Manufacturing, 9th Edition, Degarmo, Black and Kohser, Wiley 

http://www.tecscan.ca/wp‐content/uploads/2015/02/TSIS‐Series.jpg

Testing ‐ Radiography

Chapter 35 ‐ 86

Reference: Page 239 Materials and Processes in Manufacturing, 9th Edition, Degarmo, Black and Kohser, Wiley 

http://i772.photobucket.com/albums/yy1/Tobphotobucket/ScreenHunter_02Feb121334.gif?t=1297535743

Weld Porosity

Testing – Eddy Current

Chapter 35 ‐ 87

Reference: Page 240‐1 Materials and Processes in Manufacturing, 9th Edition, Degarmo, Black and Kohser, Wiley 

Page 30: MET Manufacturing - Indiana University Bloomingtonmet33800/1_Chapter_35/Chapter_35.pdfMET 33800 Manufacturing Processes Chapter 35 Measurement and Inspection Unless otherwise indicated,

30

The End – See Oncourse for Videos

Chapter 35 ‐ 88

http://www.contractortalk.com/attachments/f40/102309d1383402451‐old‐oak‐tool‐chest‐chock‐full‐vintage‐starrett‐measuring‐tools‐machinist‐tools‐close‐up.jpg