Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass...

37
Mesoscopic multiclass traffic flow modeling on multi-lane sections Guillaume Costeseque * , Aur´ elien Duret Inria Sophia-Antipolis M´ editerran´ ee & Universit´ e de Lyon-IFSTTAR-ENTPE, LICIT TRB Annual Meeting 2016, Washington DC January 12, 2016 G. Costeseque * , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 1 / 23

Transcript of Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass...

Page 1: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Mesoscopic multiclass traffic flow modelingon multi-lane sections

Guillaume Costeseque∗, Aurelien Duret

Inria Sophia-Antipolis Mediterranee& Universite de Lyon-IFSTTAR-ENTPE, LICIT

TRB Annual Meeting 2016, Washington DCJanuary 12, 2016

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 1 / 23

Page 2: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Motivations

Example: congested off-ramp

*

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 2 / 23

Page 3: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Motivations

Example: congested off-ramp

*

Requirements for modeling the upstream section:

1 multiclass2 non-FIFO

* [Richmond Bridge, c©Bay Area Council]G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 2 / 23

Page 4: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Motivations

Outline

1 Theoretical background

2 Mesoscopic formulation of multiclass multilane models

3 Numerical scheme

4 Conclusion and perspectives

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 3 / 23

Page 5: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Theoretical background

Outline

1 Theoretical background

2 Mesoscopic formulation of multiclass multilane models

3 Numerical scheme

4 Conclusion and perspectives

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 4 / 23

Page 6: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Theoretical background Macroscopic models

Three representations of traffic flow

Moskowitz’ surface

Flow x

t

N

x

See also [Moskowitz(1959), Makigami et al(1971), Laval and Leclercq(2013)]

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 5 / 23

Page 7: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Theoretical background Mesoscopic resolution

Mesoscopic resolution of the LWR model

Lagrangian-Space EulerianMeso Macron − x t − x

CLVariables

Pace p := 1v

Density k

Headway h := 1q= H(p) Flow q = Q(k)

Equation ∂np − ∂xH(p) = 0 ∂tk + ∂xQ(k) = 0

HJ

VariablePassing time T Label N

T (n, x) =

∫ x

−∞

p(n, ξ)dξ N(t, x) =

∫ +∞

x

k(t, ξ)dξ

Equation ∂nT − H (∂xT ) = 0 ∂tN − Q (−∂xN) = 0

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 6 / 23

Page 8: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Theoretical background Mesoscopic resolution

Mesoscopic: what for?

Strengths1 Consistent with micro and macro representations2 Large scale networks // spatial discontinuities OK3 Data assimilation (from Eulerian and Lagrangian sensors)

Weakness1 Single pipe2 Mono class3 No capacity drop at junctions

Developments1 Multilane and multiclass approach2 Relaxed FIFO assumption

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 7 / 23

Page 9: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Theoretical background Mesoscopic resolution

Mesoscopic: what for?

Strengths1 Consistent with micro and macro representations2 Large scale networks // spatial discontinuities OK3 Data assimilation (from Eulerian and Lagrangian sensors)

Weakness1 Single pipe2 Mono class3 No capacity drop at junctions

Developments1 Multilane and multiclass approach2 Relaxed FIFO assumption

−→ Moving bottleneck theory

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 7 / 23

Page 10: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Theoretical background The moving bottleneck theory

Notations(Eulerian)

vB

−w

−w

vB

k

Q

(N − 1) lanes N lanes

R(vB , qD)

(D) (U)

ξN(t)

x

(U) (D)

vB

kD (N − 1)κ Nκ

qD

NC

Q∗(vB)

u

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 8 / 23

Page 11: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Mesoscopic formulation of multiclass multilane models

Outline

1 Theoretical background

2 Mesoscopic formulation of multiclass multilane models

3 Numerical scheme

4 Conclusion and perspectives

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 9 / 23

Page 12: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Mesoscopic formulation of multiclass multilane models

Settings

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Density (veh/m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Flo

w (

veh/

s)

Fundamental Diagrams

RabbitsSlugs

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Pace (s/m)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Hea

dway

(s/

veh)

Fundamental Diagrams

RabbitsSlugs

Stretch of road [x0, x1] (diverge at x1)composed by N separate lanes

Two classes of users: “rabbits” (I = I1)and “slugs” (I = I2).

Triangular class-dependentheadway-pace FD

H : (p, I ) 7→ H(p, I )

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 10 / 23

Page 13: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Mesoscopic formulation of multiclass multilane models Capacity drop

Capacity drop parameter

vB

k

Q

(D) (U)

kD (N − 1)κ Nκ

NC

(D)

(U)

δ = 1

δ = 0

vBqD =

1

hB

R(vB , qD)

Introduce parameter δ ∈ [0, 1]

If δ = 0, strictlynon-FIFO

If 0 < δ < 1, reductionof the passing rate

If δ = 1, strictly FIFO

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 11 / 23

Page 14: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Mesoscopic formulation of multiclass multilane models Capacity drop

Time (s)40 60 80 100 120 140 160 180

Spa

ce (

m)

0

100

200

300

400

500

600

700

800

900

1000

Trajectories

T2(n, x)

T1(n, x)

Time (s)40 60 80 100 120 140 160 180

Spa

ce (

m)

0

100

200

300

400

500

600

700

800

900

1000

Trajectories

T2(n, x)

T1(n, x)

δ = 0 δ = 0.4

Time (s)40 60 80 100 120 140 160 180

Spa

ce (

m)

0

100

200

300

400

500

600

700

800

900

1000

Trajectories

T2(n, x)

T1(n, x)

Time (s)40 60 80 100 120 140 160 180

Spa

ce (

m)

0

100

200

300

400

500

600

700

800

900

1000

Trajectories

T2(n, x)

T1(n, x)

δ = 0.6 δ = 1 (FIFO case)

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 12 / 23

Page 15: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Mesoscopic formulation of multiclass multilane models Expression of the MCML model

System of coupled HJ PDEs

{

∂nT1 − H (∂xT1, I1) = 0, (rabbits)

∂nT2 − H (∂xT2, I2) = 0, (slugs)

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23

Page 16: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Mesoscopic formulation of multiclass multilane models Expression of the MCML model

System of coupled HJ PDEs

∂nT1 − H (∂xT1, I1) = 0, (rabbits)

∂nT2 − H (∂xT2, I2) = 0, (slugs)

H (∂xT1(n, ξ(n)), I1)− (1− δ)ξ (n∗2) ∂xT1(n, ξ(n))

≥N

N − 1H⊠

(

(1− δ)ξ (n∗2) , I1

)

, (2 → 1)

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23

Page 17: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Mesoscopic formulation of multiclass multilane models Expression of the MCML model

System of coupled HJ PDEs

∂nT1 − H (∂xT1, I1) = 0, (rabbits)

∂nT2 − H (∂xT2, I2) = 0, (slugs)

H (∂xT1(n, ξ(n)), I1)− (1− δ)ξ (n∗2) ∂xT1(n, ξ(n))

≥N

N − 1H⊠

(

(1− δ)ξ (n∗2) , I1

)

, (2 → 1)

whereH⊠(s, I ) = inf

p∈Dom(H(·,I )){H(p, I ) − sp}

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23

Page 18: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Mesoscopic formulation of multiclass multilane models Expression of the MCML model

System of coupled HJ PDEs

∂nT1 − H (∂xT1, I1) = 0, (rabbits)

∂nT2 − H (∂xT2, I2) = 0, (slugs)

H (∂xT1(n, ξ(n)), I1)− (1− δ)ξ (n∗2) ∂xT1(n, ξ(n))

≥N

N − 1H⊠

(

(1− δ)ξ (n∗2) , I1

)

, (2 → 1)

whereH⊠(s, I ) = inf

p∈Dom(H(·,I )){H(p, I ) − sp}

and n∗i = the nearest leader from class i for vehicle n of class j 6= i

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23

Page 19: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Mesoscopic formulation of multiclass multilane models Expression of the MCML model

System of coupled HJ PDEs

∂nT1 − H (∂xT1, I1) = 0, (rabbits)

∂nT2 − H (∂xT2, I2) = 0, (slugs)

H (∂xT1(n, ξ(n)), I1)− (1− δ)ξ (n∗2) ∂xT1(n, ξ(n))

≥N

N − 1H⊠

(

(1− δ)ξ (n∗2) , I1

)

, (2 → 1)

T2 (n, ξ(n)) ≥ T1(n∗

1, ξ(n)) + H (∂xT1(n∗

1, ξ(n)), I2) , (1 → 2)

whereH⊠(s, I ) = inf

p∈Dom(H(·,I )){H(p, I ) − sp}

and n∗i = the nearest leader from class i for vehicle n of class j 6= i

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23

Page 20: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Numerical scheme

Outline

1 Theoretical background

2 Mesoscopic formulation of multiclass multilane models

3 Numerical scheme

4 Conclusion and perspectives

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 14 / 23

Page 21: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Numerical scheme Lax-Hopf formula for the meso LWR model

Lax-Hopf formula & Dynamic Programming

Finite steps (∆n,∆x)

∆n = κ ∆x .

n

x +∆x

x −∆x

n −∆n

x

1

κ

x

n

∆x

∆n

T (n, x)

Solution reads:

T (n, x) = max{

= free flow︷ ︸︸ ︷

T (n, x −∆x) +∆x

u,

T (n−∆n, x +∆x) +∆x

w︸ ︷︷ ︸

= congested

}

.

See [Laval and Leclercq(2013)]

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 15 / 23

Page 22: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Numerical scheme Lax-Hopf formulæ for the MCML model

Representation formulæ

∆n

n

x +∆x

x −∆x

n −∆n

x

1

κξT (n)

Ti(n, x)

∆x

x

n

New supply constraint:

Ti(n, x) = max{

= free flow︷ ︸︸ ︷

Ti (n, x −∆x) +∆x

ui,

Ti (n−∆n, x +∆x) +∆x

w︸ ︷︷ ︸

= congested

,

coupling condition}

.

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 16 / 23

Page 23: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Numerical scheme Lax-Hopf formulæ for the MCML model

Representation formulæ(Coupling conditions)

T1(n, x) = max{

T1(n, x −∆x) +∆x

u1,T1(n −∆n, x +∆x) +

∆x

w,

T2(n∗

2, x) +1

1− δhB

}

T2(n, x) = max

{

T2(n, x −∆x) +∆x

u2, T2(n −∆n, x +∆x) +

∆x

w,

T1(n∗

1, x) + H

(T1(n

1, x) − T1(n∗

1, x −∆x)

∆x, I2

)}

(1)

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 17 / 23

Page 24: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Numerical scheme Simulation with a mixed traffic

Distribution per class: class 1 = 60% and class 2 = 40%Capacity drop: δ = 0.8

50 100 150 200 250 300 350 400 450 500 550

Time (s)0

100

200

300

400

500

600

700

800

900

1000S

pace

(m

)(alpha, delta) = (0.6, 0.8)

T2(n, x)

T1(n, x)

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 18 / 23

Page 25: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Numerical scheme Simulation with a mixed traffic

50 100 150 200 250 300 350 400 450 500 550

Time (s)0

100

200

300

400

500

600

700

800

900

1000

Spa

ce (

m)

(alpha, delta) = (0.6, 0.8)

T1(n, x)

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 19 / 23

Page 26: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Numerical scheme Simulation with a mixed traffic

Individual travel times

20 40 60 80 100 120 140 160 180 200 220 240

Vehicle label

40

60

80

100

120

140

160

180

Tra

vel t

ime

(s)

Class 1

20 40 60 80 100 120 140 160Vehicle label

40

60

80

100

120

140

160

180

Tra

vel t

ime

(s)

Class 2

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 20 / 23

Page 27: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Conclusion and perspectives

Outline

1 Theoretical background

2 Mesoscopic formulation of multiclass multilane models

3 Numerical scheme

4 Conclusion and perspectives

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 21 / 23

Page 28: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Conclusion and perspectives

A new event-based mesoscopic model for multi-class traffic flow onmulti-lane sections

Use of theory of moving bottlenecks

Among the perspectives:

Sensitivity analysis w.r.t. δ

Validation with real traffic data

Data assimilation for real-time applications(→ Aurelien’s presentation)

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 22 / 23

Page 29: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Conclusion and perspectives

Thanks for your attention

Any question?

[email protected]

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 23 / 23

Page 30: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

References

Some references I

Laval, J. A., Leclercq, L., 2013. The Hamilton–Jacobi partial differential equationand the three representations of traffic flow. Transportation Research Part B:Methodological 52, 17–30.

Leclercq, L., Becarie, C., 2012. A meso LWR model designed for networkapplications. In: Transportation Research Board 91th Annual Meeting. Vol. 118. p.238.

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 24 / 23

Page 31: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Complements

Mesoscopic resolution of the LWR model

Speed

Time

(i − 1)Space

x

Spacing

Headway

t

(i) Introduce

the pace p :=1

vthe headway h = H(p)

the passing time

T (n, x) :=

∫ x

−∞

p(n, ξ)dξ.

{

∂nT = h, (headway)

∂xT = p, (pace)

[Leclercq and Becarie(2012), Laval and Leclercq(2013)]

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 25 / 23

Page 32: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Complements

Lax-Hopf formula

1

u

H

p

1

κ

1

C

1

Assume

H(p) =

1

κp +

1

wκ, if p ≥

1

u,

+∞, otherwise,

Proposition (Representation formula (Lax-Hopf))

The solution under smooth boundary conditions is given by

T (n, x) = max{

T (n, 0) +x

u︸ ︷︷ ︸

= free flow

, T(

0, x +n

κ

)

+n

wκ︸ ︷︷ ︸

= congested

}

. (2)

See [Laval and Leclercq(2013)]G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 26 / 23

Page 33: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Complements

Lax-Hopf formula

0

1

κ

x

n

n

x T (n, x)

T (n, 0)

T (0, x)

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 27 / 23

Page 34: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Complements

Math problem in Eulerian framework

Coupled ODE-PDE problem

∂tk + ∂x (Q(k)) = 0,

Q(k(t, ξN(t)))− ξN(t)k(t, ξN(t)) ≤N − 1

NQ∗

(

ξN(t))

,

ξN(t) = min {vb, V (k(t, ξN(t)+))} ,

(3)

with {

k(0, x) = k0(x), on R,

ξN(0) = ξ0.(4)

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 28 / 23

Page 35: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Complements

Math problem in Eulerian framework

Coupled ODE-PDE problem

∂tk + ∂x (Q(k)) = 0,

Q(k(t, ξN(t)))− ξN(t)k(t, ξN(t)) ≤N − 1

NQ∗

(

ξN(t))

,

ξN(t) = min {vb, V (k(t, ξN(t)+))} ,

(3)

with {

k(0, x) = k0(x), on R,

ξN(0) = ξ0.(4)

and Q∗ is the Legendre-Fenchel transform of Q

Q∗(v) := supk∈Dom(Q)

{Q(k)− vk} .

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 28 / 23

Page 36: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Complements

Capacity drop parameter

ξN(t)

x

(U) (D)

vB

vB

k

Q

(D) (U)

kD (N − 1)κ Nκ

NC

u

(D)

(U)

δ = 1

δ = 0

vBqD =

1

hB

R(vB , qD)

−w−w

Case non−FIFO Case FIFO

(D)

(U)

(U) (D)

Flow

(MB)

(U)

pB =1

vB

δ = 0 δ = 1

H

1

κ

1

u

hB =1

qD

1

R(vB , qD)

vB

1

C1

vB

R(vB , qD)

p

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 29 / 23

Page 37: Mesoscopic multiclass traffic flow modeling on multi-lane ... · PDF fileMesoscopic multiclass traffic flow modeling on multi-lane sections ... G. Costeseque∗, A. Duret Meso Multiclass

Complements

Mixed Neumann-Dirichlet boundary conditions

∂nTi (n, x0) = gi (n), on [n0,+∞),

∂nTi (n, x1) = gi (n), on [n0,+∞),

Ti (n0, x) = Gi(x), on [x0, x1],

for i ∈ {1, 2} . (5)

x

nn0

x1

x0

Downstream Supply

Upstream Demand

First trajectory

G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 30 / 23