MESB374 System Modeling and Analysis Transfer Function Analysis

18
MESB374 System Modeling and Analysis Transfer Function Analysis

description

MESB374 System Modeling and Analysis Transfer Function Analysis. Transfer Function Analysis. Dynamic Response of Linear Time-Invariant (LTI) Systems Free (or Natural) Responses Forced Responses Transfer Function for Forced Response Analysis Poles Zeros General Form of Free Response - PowerPoint PPT Presentation

Transcript of MESB374 System Modeling and Analysis Transfer Function Analysis

Page 1: MESB374  System Modeling and Analysis Transfer Function Analysis

MESB374 System Modeling and Analysis

Transfer Function Analysis

Page 2: MESB374  System Modeling and Analysis Transfer Function Analysis

Transfer Function Analysis• Dynamic Response of Linear Time-Invariant (LTI)

Systems– Free (or Natural) Responses

– Forced Responses

• Transfer Function for Forced Response Analysis– Poles

– Zeros

• General Form of Free Response – Effect of Pole Locations

– Effect of Initial Conditions (ICs)

• Obtain I/O Model based on Transfer Function Concept

Page 3: MESB374  System Modeling and Analysis Transfer Function Analysis

( ) ( ) (0)Y s U s y

( )

y y Ku

y y u

K

£ £

£ £ K £

Dynamic Responses of LTI SystemsEx: Let’s look at a stable first order system:

Y s

y y Ku

( ) ( ) (0)1 1

KY s U s y

s s

– Solve for the output:

– Take LT of the I/O model and remember to keep tracks of the ICs:

– Rearrange terms s.t. the output Y(s) terms are on one side and the input U(s) and IC terms are on the other:

0sY s y U s

1s K

Free ResponseForced Response

Time constant

Page 4: MESB374  System Modeling and Analysis Transfer Function Analysis

Free & Forced Responses• Free Response (u(t) = 0 & nonzero ICs)

– The response of a system to zero input and nonzero initial conditions.

– Can be obtained by

• Let u(t) = 0 and use LT and ILT to solve for the free response.

• Forced Response (zero ICs & nonzero u(t))– The response of a system to nonzero input and zero initial conditions.

– Can be obtained by

• Assume zero ICs and use LT and ILT to solve for the forced response (replace differentiation with s in the I/O ODE model).

Page 5: MESB374  System Modeling and Analysis Transfer Function Analysis

In Class ExerciseFind the free and forced responses of the car suspension system without tire model:

2 4 2 4 , , ry y y u u y z u x

2 2 4 ( ) 2 4 ( ) 2 (0) (0)s s Y s s U s s y y

2

2 4 2 4

2 4 2 4

0 0 2 0 4 2 0 4

y y u u

y y y u u

s Y s sy y sY s y Y s sU s u U s

£ £

£ £ £ £ £

2 2

2 (0) (0)2 4( ) ( )

2 4 2 4

s y ysY s U s

s s s s

– Solve for the output:

– Rearrange terms s.t. the output Y(s) terms are on one side and the input U(s) and IC terms are on the other:

Free ResponseForced Response

– Take LT of the I/O model and remember to keep tracks of the ICs:

Page 6: MESB374  System Modeling and Analysis Transfer Function Analysis

Given a general n-th order system model:

The forced response (zero ICs) of the system due to input u(t) is:– Taking the LT of the ODE:

Forced Response & Transfer Function

( ) ( 1) ( ) ( 1)1 1 0 1 1 0

n n m mn m my a y a y a y b u b u b u b u

( ) ( ) WHY?n ny s Y s £1

1 1 01

1 1 0

1 11 1 0 1 1 0

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

n nn

m mm m

n n m mn m m

D s N s

s Y s a s Y s a sY s a Y s

b s U s b s U s b sU s b U s

s a s a s a Y s b s b s b s b

( )U s

ForcedResponse Transfer Function Inputs Transfer

FunctionInputs

11 1 0

11 1 0

( )

( )( ) ( ) ( ) ( ) ( )

( )

m mm m

n nn

G s

b s b s b s b N sY s U s U s G s U s

s a s a s a D s

= =

Page 7: MESB374  System Modeling and Analysis Transfer Function Analysis

Transfer FunctionGiven a general nth order system:

The transfer function of the system is:

– The transfer function can be interpreted as:

( ) ( 1) ( ) ( 1)1 1 0 1 1 0

n n m mn m my a y a y a y b u b u b u b u

11 1 0

11 1 0

( )m m

m mn n

n

b s b s b s bG s

s a s a s a

DifferentialEquation

u(t)

Input

y(t)

Output

Time Domain

G(s)U(s)

Input

Y(s)

Output

s - Domain

zero I.C.s

( )Y s

G sU s

Static gain

Page 8: MESB374  System Modeling and Analysis Transfer Function Analysis

Transfer Function Matrix

For Multiple-Input-Multiple-Output (MIMO) System with m inputs and p outputs:

( ) ij p mG s G s

zero I.C.s

iij

j

Y sG s

U s

Inputs

1U s

2U s

mU s

Outputs

1Y s

2Y s

pY s

1, ,k p

1

1 1 2 2

m

k kj jj

k k km m

Y s G s U s

G s U s G s U s G s U s

1 11 1 1

1

m

p p pm m

U sY s G s

Y s G s G s U s

Y s G s G s U s

Page 9: MESB374  System Modeling and Analysis Transfer Function Analysis

Poles and Zeros

• PolesThe roots of the denominator of the TF, i.e. the roots of the characteristic equation.

Given a transfer function (TF) of a system:1

1 1 01

1 1 0

( )( )

( )

m mm m

n nn

b s b s b s b N sG s

s a s a s a D s

11 1 0

1 2

( )

( )( ) ( ) 0

n nn

n

D s s a s a s a

s p s p s p

1 2 , , , np p p

1 0 1 2

1 0 1 2

( )( ) ( )( )( )

( ) ( )( ) ( )

mm m m

nn

b s b s b b s z s z s zN sG s

s a s a D s s p s p s p

n poles of TF

• ZerosThe roots of the numerator of the TF.N s b s b s b s b

b s z s z s zm

mm

m

m m

( )

( )( ) ( )

11

1 0

1 2 0

1 2 , , , mz z z

m zeros of TF

Page 10: MESB374  System Modeling and Analysis Transfer Function Analysis

(2) For car suspension system:

Find TF and poles/zeros of the system.

Examples(1) Recall the first order system:

Find TF and poles/zeros of the system.

y y Ku y By K y Bu Ku

1 ( ) ( )s Y s K U s

1

Y s KG s

U s s

Pole:

Zero:

1 0s 1

s

No Zero

2 ( ) ( )s Bs K Y s Bs K U s

2

Y s Bs KG s

U s s Bs K

Pole:

Zero:

2 0s Bs K 2

1,2

4

2

B B Kp

0Bs K 1

Kz

B

Page 11: MESB374  System Modeling and Analysis Transfer Function Analysis

System ConnectionsCascaded System

2 1G s G s G sInput Output

1G s 2G s 1U s U s 1 2Y s U s 2Y s Y s

Parallel System

1 2G s G s G s

InputOutput

1G s

2G s

1

2

U sU s

U s

1Y s

Y s++

2Y s

Feedback System

1

1 21

G sG s

G s G s

Input Output 1G s

2G s

U s 1Y s Y s+

-

2U s 2Y s

1U s

Page 12: MESB374  System Modeling and Analysis Transfer Function Analysis

Given a general nth order system model:

The free response (zero input) of the system due to ICs is:

– Taking the LT of the model with zero input

(i.e., )

General Form of Free Response( ) ( 1) ( ) ( 1)

1 1 0 1 1 0n n m m

n m my a y a y a y b u b u b u b u

( ) ( 1)1 1 0 0n n

ny a y a y a y

1 1 2 ( 1)1 1 0 1 1

( )

( ) (0) (0)n n n n nn Free n

F s

s a s a s a Y s s a s a y y

( ) ( 1)

1 ( 1) 1 2 ( 2)1

1

( ) (0) (0) ( ) (0) (0)

( ) (0)

n n

n n n n n nn

y y

s Y s s y y a s Y s s y y

a sY s y

£ £

£0 ( ) 0

yy

a Y s

£

11 1 0

( ) ( )Free n n

n

F sY s

s a s a s a

A Polynominal of s that depends on ICsFree Response(Natural Response)

=Same Denominator as TF G(s)

Page 13: MESB374  System Modeling and Analysis Transfer Function Analysis

Free Response (Examples)Ex: Find the free response of the car suspension system without tire model (slinker toy):

Ex: Perform partial fraction expansion (PFE) of the above free response when:

(what does this set of ICs means physically)?

2 2

2 (0) (0)2 4( ) ( )

2 4 2 4

s y ysY s U s

s s s s

2 4 2 4 , , ry y y u u y z u x

(0) 0 and (0) 1y y

Q: Is the solution consistent with your physical intuition?

2 2

2 2( ) (0)

2 4 2 4

s sY s y

s s s s

2 2 22 2 2

12 1 3( )

31 3 1 3 1 3

ssY s

s s s

11 2sin 3 cos 3 sin 3 tan 3

3 3t ty t e t t e t

Decaying rate: damping, mass

Frequency: damping, spring, mass

phase: initial conditions

Page 14: MESB374  System Modeling and Analysis Transfer Function Analysis

The free response of a system can be represented by:

Free Response and Pole Locations

ip tiAe

11 1 0 1 2

1 2

1 2

( ) ( )( )

( )( ) ( )Free n nn n

n

n

F s F sY s

s a s a s a s p s p s p

A A A

s p s p s p

1 2

For simplicity, assume that

np p p

1 211 2( ) ( ) np tp t p t

Free Free ny t Y s A e A e A e

£

Real

Img.

,

0

is real 0

0

0

0

0

i

i i

i

i j

p

p p

p

p j

0ip

exponential decrease

iA constant

exponential increaseip tiAe

0ip 0ip

2 Re2 cos

i i i

i

p t p t p ti i i

ti i

Ae Ae AeA e t

ip j

jp j

decaying oscillation

Oscillation with constant magnitude

increasing oscillation

0

t

Page 15: MESB374  System Modeling and Analysis Transfer Function Analysis

• Complete Response

Q: Which part of the system affects both the free and forced response ?

Q: When will free response converges to zero for all non-zero I.C.s ?

Complete Response

G sN s

D s( )

( )

( )U(s)

Input

Y(s)

Output( 1)ICs: (0) , (0) , , (0)ny y y

A Polynomial of depending on I.C.s

( ) ( ) ( )

( )

Forced Free

sD s

Y s Y s Y s

N sU s

D s

Denominator D(s)

All the poles have negative real parts.

Page 16: MESB374  System Modeling and Analysis Transfer Function Analysis

Obtaining I/O Model Using TF Concept (Laplace Transformation Method)

• Noting the one-one correspondence between the transfer function and the I/O model of a system, one idea to obtain I/O model is to:

– Use LT to transform all time-domain differential equations into s-domain algebraic equations assuming zero ICs (why?)

– Solve for output in terms of inputs in s-domain to obtain TFs (algebraic manipulations)

– Write down the I/O model based on the TFs obtained

Page 17: MESB374  System Modeling and Analysis Transfer Function Analysis

• Step 1: LT of differential equations assuming zero ICs

1 1 1 1 1 2 1 1 1 2

2 2 1 1 1 2 2 1 1 1 2 2 2 2

0

p p

M x B x B x K x K x

M x B x B B x K x K K x B x K x

Example – Car Suspension System

• Step 2: Solve for output using algebraic elimination method

1. # of unknown variables = # equations ?

2. Eliminate intermediate variables one by one. To eliminate one intermediate variable, solve for the variable from one of the equations and substitute it into ALL the rest of equations; make sure that the variable is completely eliminated from the remaining equations

L

21 1 1 1 1 2 1 1 1 2

22 2 1 1 1 2 2 1 1 1 2 2 2 2

0

p p

M s X s B sX s B sX s K X s K X s

M s X s B sX s B B sX s K X s K K X s B sX s K X s

21 1 1 1 1 1 2

22 1 2 1 2 2 1 1 1 2 2

0

p

M s B s K X s B s K X s

M s B B s K K X s B s K X s B s K X s

xp

1K

2K

g

2x

2B

1B

1x1M

2M

Page 18: MESB374  System Modeling and Analysis Transfer Function Analysis

Example (Cont.)

• Step 3: write down I/O model from TFs

2

1 1 1

2 11 1

M s B s KX s X s

B s K

from first equation

Substitute it into the second equation

2

1 1 122 1 2 1 2 1 1 1 1 2 2

1 1p

M s B s KM s B B s K K X s B s K X s B s K X s

B s K

1 1 1 2 2

22 22 1 2 1 2 1 1 1 1 1p

X s B s K B s K

X s M s B B s K K M s B s K B s K

1

1 1 1 2 2

22 22 1 2 1 2 1 1 1 1 1

x pp

X s B s K B s KG

X s M s B B s K K M s B s K B s K

1 1 2 1 3 1 4 1 5 1 1 2 3p p pa x a x a x a x a x b x b x b x