Mep Dbr Compilation

112
DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI PART A: HVAC CONTENTS 1. GENERAL : PROJECT DESCRIPTION 2. MECHANICAL SYSTEM DESCRIPTION : A. DESIGN OBJECTIVES B. GENERAL REQUIREMENTS C. DESIGN CRITERIA D. COOLING LOAD DESIGN PARAMETERS E. MAIN PLANT DESCRIPTION F. FACILITY FLOORS G. MECHANICAL VENTILATION SYSTEM 3. REFERENCE STANDARDS AND DOCUMENTS 4. ANNEXURES DESIGN CONCEPT REPORT 1 M.E.P. SERVICES

Transcript of Mep Dbr Compilation

Page 1: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

PART A:HVAC

CONTENTS

1. GENERAL : PROJECT DESCRIPTION

2. MECHANICAL SYSTEM DESCRIPTION :A. DESIGN OBJECTIVES

B. GENERAL REQUIREMENTS

C. DESIGN CRITERIA

D. COOLING LOAD DESIGN PARAMETERS

E. MAIN PLANT DESCRIPTION

F. FACILITY FLOORS

G. MECHANICAL VENTILATION SYSTEM

3. REFERENCE STANDARDS AND DOCUMENTS

4. ANNEXURES

DESIGN CONCEPT REPORT 1 M.E.P.

SERVICES

Page 2: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

GENERAL

A. Project Description

1. Project is a deluxe hotel located at prime upcoming location in city of Varanasi. The building is designed by renowned Architect M/s. Identity Architects & Interior Designers.

2. The building consists of basement, ground + seven hotel tower building.

3. The services are distributed over basement, service floor and service areas on guest floors. The mechanical ventilation fans for various service areas are being planned in respective areas. The air handling units for public areas are being planned in respective area with separate mechanical rooms, guest floor common areas shall be catered through dedicated air handling unit envisaged to be in service areas of guest floor. Individual Guest Room shall be catered through the fan coil unit provided in the respective room.

4. The mechanical and service areas are being planned with adequate slab loading to have vibration free floors while access to services areas is also given utmost important with provisions of loading and unloading of heavy equipments.

MECHANICAL SYSTEM DESCRIPTION

A. Design Objectives

1. To evolve sustainable and energy efficient design and engineering of HVAC system 2. To develop and engineer integrated and cost effective building intelligence system.

DESIGN CONCEPT REPORT 2 M.E.P.

SERVICES

Page 3: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

B. General Requirements

1. Air conditioning & Ventilation systems to be designed & installed in accordance with the latest recommendations of ASHRAE and in confirmation with the latest International Building code, all local and National codes and the requirement of agencies exercising jurisdiction over work at the project.

2. All piping systems shall be complete with hangers, anchors, guides, valves, insulation, etc.

3. All duct systems shall be complete with hangers, volume dampers, fire dampers, smoke dampers, filters, diffusers, grilles, registers, insulation, etc.

4. All equipment shall be complete with vibration isolation, starters, control wiring, painting, insulation, etc.

5. All systems shall be fully tested and balanced.

6. The entire installations, commissioning and performance evaluation procedures shall be predetermined and documented.

C. Design Criteria

1. The building is expected to be catered with varied need of air conditioning being multi facility. The systems are conceptualized to cater such needs with inherent features mentioned in subsequent Para.

2. The systems provided for this project shall meet the following parameters while satisfying all local design weather conditions and code requirements.

Inside Design : As described in subsequent para.

Ventilation Rate for Air conditioning : ASHRAE 62.1 standard 2007

Working Cycle : 24 hours for guest areas

DESIGN CONCEPT REPORT 3 M.E.P.

SERVICES

Page 4: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Operational Diversity : 80%

Occupancy : As per cooling load summary sheet

Equipment and Lighting load : As per cooling load summary sheet

Ventilation Rate for Mechanical Areas :

Public Area toilets : 50 cfm / WC

Guest Room Toilet : 50 CFM

STP : 35 ACH

Back of House Areas : 10 ACH

AC plant Room and Pump Room : 10 ACH

All other mechanical areas : 6 ACH

Kitchen and Laundry : As per user’s requirement

Elevator Machine Room and OtherUser specific service areas : As per equipment Operating Parameters

3. Basic Consideration for cooling load calculation shall be as follows.

Site : VARANASI (UP STATE)

Latitude : 25° 20' north Mean sea level : 76 meters.

DESIGN CONCEPT REPORT 4 M.E.P.

SERVICES

Page 5: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

AMBIENT CONDITIONS

SUMMER (May)

Dry Bulb Temperature : 109°F (42.78°C) Wet Bulb Temperature : 76°F (24.44°C) Relative Humidity : 21%

WINTER (January)

Dry Bulb Temperature : 50°F (10°C) Wet Bulb Temperature : 47°F (8.33°C) Relative Humidity : 80%

MONSOON (July)

Dry Bulb Temperature : 94°F (34.44°C) Wet Bulb Temperature : 83°F (28.33°C) Relative Humidity : 64%

SPACE DESIGN CONDITIONS

All Year Round Dry Bulb Temperature : 74 °F (23.3°C) for Guest Rooms and Public

areaWet Bulb Temperature : 63.1°F (16.3°C) Relative Humidity : NMT 55%

DESIGN CONCEPT REPORT 5 M.E.P.

SERVICES

Page 6: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

D. Cooling Load Estimation Summary Sheet : As per enclosed Annexure

E. Monthly Average Cooling Load Profile : As per enclosed Annexure

F. Capital Cost Analysis of various system Alternatives : As per enclosed Annexure

G. Yearly Operating Cost Analysis : As per enclosed Annexure

H. Monthly Operating Cost Analysis : As per enclosed Annexure

I. Mechanical Ventilation Systems

o The mechanical Ventilation systems are being considered to be designed for removal of heat and provide moderate dust free working environment.

o The systems are designed based on the adequate no. of air changes per hour however areas with higher heat dissipation could be considered for designing with restricted temperature rise over ambient temperature.

o Considering Varanasi Weather conditions we propose to install the evaporative cooling system to supply the fresh air to mechanical areas with greater heat dissipation like Pump Room and AC Plant Room.

o The special emphasis is given to mechanical ventilation of STP area with higher air changes per hour.

o Toilet ventilation system shall consist of cabinet type exhaust fans located at terrace level to cater the respective zone.

DESIGN CONCEPT REPORT 6 M.E.P.

SERVICES

Page 7: Mep Dbr Compilation

SR. NO

PARTICULARS LEVEL AREA (SQ.FT) OCCUPANCYEQUIPMENT LOAD(KW)

HEAT LOAD(TR) CFM

28 SPA LVL-31 19232 385 5.0 125.07 51672

29 Sky Lobby LVL-32 19232 385 5.0 125.07 51672

30 Restaurant LVL-33 19232 385 5.0 125.07 51672

31 Restaurant LVL-34 19232 385 5.0 125.07 51672

76928 1540 20.0 500.28 206688

32 Family Meeting Area LVL-35 19232 385 5.0 125.07 51672

19232 385 5.0 125.07 51672

33 Apartment 1 To 5 & Lobby LVL-38 10520 73 5.0 58.82 28073

34 Apartment 1 To 5 & Lobby LVL-39 10520 73 5.0 58.82 2807335 Apartment 1 To 5 & Lobby LVL-40 10520 73 5.0 58.82 2807336 Apartment 1 To 5 & Lobby LVL-41 10520 73 5.0 58.82 2807337 Apartment 1 To 5 & Lobby LVL-42 10520 73 5.0 58.82 2807338 Apartment 1 To 5 & Lobby LVL-43 10520 73 5.0 58.82 2807339 Apartment 1 To 5 & Lobby LVL-44 10520 73 5.0 58.82 2807340 Apartment 1 To 5 & Lobby LVL-45 10520 73 5.0 58.82 2807341 Apartment 1 To 5 & Lobby LVL-46 10520 73 5.0 58.82 2807342 Apartment 1 To 5 & Lobby LVL-47 10520 73 5.0 58.82 2807343 Apartment 1 To 5 & Lobby LVL-48 10520 73 5.0 58.82 2807344 Apartment 1 To 5 & Lobby LVL-49 10520 73 5.0 58.82 2807345 Apartment 1 To 5 & Lobby LVL-50 10520 73 5.0 58.82 28073

136760 949 65.0 764.66 364949

46 PENT HOUSE 1 To 4 & Lobby LVL-53 7981 58 4.5 53.35 25610

47 PENT HOUSE 1 To 4 & Lobby LVL-54 5540 41 5.3 29.52 1337048 PENT HOUSE 1 To 4 & Lobby LVL-55 7981 58 4.5 53.35 2561049 PENT HOUSE 1 To 4 & Lobby LVL-56 5540 41 5.3 29.52 1337050 PENT HOUSE 1 To 4 & Lobby LVL-57 7981 58 4.5 53.35 2561051 PENT HOUSE 1 To 4 & Lobby LVL-58 5540 41 5.3 29.52 1337052 PENT HOUSE 1 To 4 & Lobby LVL-59 7981 58 4.5 53.35 2561053 PENT HOUSE 1 To 4 & Lobby LVL-60 5540 41 5.3 29.52 13370

54084 396 39.0 331.48 155920

GRAND TOTAL 726148 7784 275.0 4197.58 1841560

TOTAL-HOTEL Public Areas( LVL -31 TO 34 )

TOTAL-LONG LEASED APRT.( LVL -38 TO 50)

TOTAL-PENT HOUSES( LVL -53 TO 60)

TOTAL-FAMILY MEETING ( LVL - 35 )

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

3. STANDARDS & CODES

Following STANDARDS & CODES will be applicable for the project.

1. ANSI/ASHRAE STANDARD 34-2001 : Number designation & safety classification of

refrigerants

2. ANSI/ASHRAE STANDARD 41.1-86-2001 : Measurements guide

3. ARI 110-2002 : Air conditioning & refrigerating equipment

nameplate voltages

4. ASHRAE 1991 : Terminology of Heating Ventilation Air

conditioning & Refrigeration.

5. ASME STANDARD PTC 19.2-1987 PART II : Instruments & apparatus pressure

measurements

6. IEC STANDARD 60038 : IEC Standard voltages

7. ISA STANDARD RP 31.1 : Recommended Practice, Specification,

Installation, & Calibration of Flow meters8. SMACNA -1990 : HVAC Systems-Duct Design

9. SMACNA- 1985 : HVAC air duct leakage test manual

10. SMACNA- 1985 : HVAC duct construction standards-Metal &

DESIGN CONCEPT REPORT 7 M.E.P.

SERVICES

Page 8: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

flexible I edition

13. SMACNA-1989 : HVAC duct system inspection guide

14. SMACNA- 1989 : Rectangular industries duct construction

15. SMACNA- 1977 : Round industries duct construction

16. ANSI/ASHRAE/52.1-1992 : Gravimetric & Duct spot procedure for testing air

cleaning devices used in general ventilation for

removing particulate matter

17. BS 6540, Part 1 : Methods of test for atmospheric dust spot

efficiency & synthetic dust weight arrestance

18. ANSI/ASHRAE 55-1992 : Thermal environmental conditions for human

occupancy

19. CTI-ATC 105-1990 : Acceptance test code for watercooling towers,

mechanical draft, natural draft, fan assistant typeevaluation of

results and thermaltesting of results and thermaltesting of wet and

dry coolingtowers. (1990)

20. CTI-ATC 128-1981 : Code of measurement of sound from water

cooling towers

21. SMACNA 1984 : Energy conservation guidelines

22. SMACNA 1991 : Energy recovery equipment and Systems, air

to air

23. ANSI/ASHRAE-51-1985 : Laboratory methods for testing fans for rating

ANSI/AMCA-210-1985

24. ANSI-UL-555-1990 : Fire dampers

25. NFPA : Fire protection hand book 17th edition

DESIGN CONCEPT REPORT 8 M.E.P.

SERVICES

Page 9: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

26. TEMA 1988 : Standards of tubular exchanger

manufacturers association 7th edition

27. ASME/ANSI B-31.5/1987 : Refrigeration piping

28. ANSI/ASME A-13.1/1981 (R 1985) : Scheme for identification of piping system

29. ANSI/ASHRAE 34-1992 : Number designation and safety classification

of refrigerants

30. ASHRAE : Refrigeration oil

31. ANSI/UL/1963-1991 : Refrigerant recovery recycling equipment,

1989

32. ANSI/ASHRAE/111-1988 : Practices for measurement, testing and

balancing of building, heating, ventilation, airconditioning and

refrigeration system.

33. SMACNA : HVAC Systems- Testing, adjusting and

balancing

34. ANSI/ASHRAE 62-1989 : Ventilation for acceptance indoor air quality

and balancing, 1983

35. ASHRAE 90-1-1989 : Energy Efficient Design of New Buildings

except low rise residential buildings

36. ASHRAE 15-1994 : Safety code for Mechanical Refrigeration

37. ASHRAE 100-1989 : Guideline 1-1989 –Commissioning of HVAC

systems.

IS CODES & STANDARDS:

DESIGN CONCEPT REPORT 9 M.E.P.

SERVICES

Page 10: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

AIRCONDITIONING EQUIPMENT:

38. IS 659 – 1991 : Safety code for airconditioning (revised)

(Amendment 1)

39. IS 660 – 1991 : Safety code of mechanical refrigeration (revised)

40. IS 6272 –1991 : Industrial cooling fans (Man coolers) (1st revision)

41. IS 7896 -1991 : Data for outside design conditions for

airconditioning for summer months

42. IS 8188 -1988 : Code of practice for treatment of water industrial

cooling systems

43. IS 8362 -1991 : Copper and copper alloy rolled plates for

condensers and heat exchanges

44. IS 8667 -1993 : Purchasers data sheet for cooling towers for

process industry

45. SP 7 1983 Group 4 : National Building code

ELECTRICAL WIRES & CABLES, LT & HT GRADE:

46. IS 694 -1977 Part I & Part II : PVC Insulated cables for voltage upto

1100V with copper and aluminium conductors

respectively

47. IS 732 -1989 : Code of practice for electrical wiring installation

EARTHING:

48. IS 3043 -1966 : Code of practice for earthing

DESIGN CONCEPT REPORT 10 M.E.P.

SERVICES

Page 11: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

MOTORS:

49. IS 325 : Specification for 3 phase induction motors

NOISE & VENTILATION:

50. IS 9901 – Part I & Part II – Part 9-1991 : Measurement of sound insulation in buildings and

building elements

51. IS 11050 – Part I, Part II & Part III- 1991 : Rating of sound insulation in buildings and

building elements

52. IS 14280 – 1995 : Mechanical vibration – balancing – shaft and

fitment key convention

53. Is 14259 – 1995 : Vibration & shock – Isolators, procedure of

specifying characteristics

54. IS 12065 – 1987 : Permissible limits of noise level for rotating

electrical machines

55. IS 1950 – 1991 : Code of practice for sound insulation of non

industrial buildings (Amendment – 1)

56. IS 4729 : Measurement and evaluation of vibration for

motors. (Withdrawn)

PIPE & FITTINGS:

57. IS 638 – 1993 : Gaskets

DESIGN CONCEPT REPORT 11 M.E.P.

SERVICES

Page 12: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

58. IS 1239- Part I, Part II 1990/1992 : Mild steel tubes and fittings

59. IS 5822 – 1994 : Code of practice laying of electrically welded steel

pipes for water supply (2nd revision)

60. IS 6392 – 1988 : Steel pipe flanges (Amendment 1)

PUMP AND VALVES:

61. IS 5312 Part I 1990, Part II 1991 : Swing check type non return valves

62. IS 8418 – 1990 : Horizontal centrifugal self priming pumps

63. IS 9542 – 1993 : Horizontal centrifugal mono set pumps for clear,

cold, fresh water (Amendment 2)

64. IS 10981 – 1993 : Class of acceptance test for centrifugal mixed flow

and axial flow pumps – class B

65. IS 12992 – 1993 Part I, 1990 Part II : Safety relief valves

66. IS 13095 – 1991 : Butterfly valve for general purposes

REFRIGERANT GAS & LUBRICANTS:

67. IS 10609 – 1991 : Refrigerants – Number – designation

SAFETY:

68. IS 1641 – 1993 : Code of practice for fire safety of building

(general): General principles of fire grading and

classification (1st revision)

DESIGN CONCEPT REPORT 12 M.E.P.

SERVICES

Page 13: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

SHEET METAL WORK:

69. IS 277 – 1992 : Galvanised Steel sheet (5th revision, Amendment 2)

70. IS 513 – 1963 : Cold rolled low carbon steel sheets

71. IS 655 – 1991 : Metal air ducts (revised) (Amendment – 3)

72. IS 1079 – 1994 : Hot rolled carbon steel sheets

73. IS 1977 – 1992 : Structural steel (ordinary quality)

74. IS 2026 – 1992 : Steel for general structural purposes

75. IS 7613 – 1991 : Method of testing panel type air filters for

airconditioning purpose

TERMINAL INSULATION:

76. IS 3346 – 1990 : Method of determination of thermal conductivity

of thermal insulation materials (2 slab guarded

hot plate method) (1st revision)

77. IS 4671 – 1990 : Expanded polystyerene for thermal insulation

purposes (1st revision)

78. IS 10556 – 1990 : Code of practice for storage and handling of

insulation materials

79. IS 11239 – Part 1 to Part 13 : Method pf test for cellular thermal insulation

materials

VENTILATION:

DESIGN CONCEPT REPORT 13 M.E.P.

SERVICES

Page 14: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

80. IS 3103 – 1975 : Code of practice for industrial ventilation

(1st revision)

81. IS 3588 – 1991 : Electric axial flow fans (1st revision)

82. IS 4894 – 1991 : Centrifugal fans (1st revision)

PART B: ELECTRICAL:

INTRODUCTION:

DESIGN CONCEPT REPORT 14 M.E.P.

SERVICES

Page 15: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

The services system for the proposed 5 star hotel for KBJ group, has been conceptualized based on the master plan drawings and

relevant IS / BS codes relevant for electrical system design and energy efficient devices to produce concept which is integrated as a

whole. Total conceptual design is done from the point of view of energy efficacy and power distribution to provide clean power to

equipments and other sensitive equipments. Wherever required modern state of the art control systems are envisaged for power

optimization.

The proposed planning is for ;

Hotel Block – (1parking basements with services + Ground for hotel public areas + 1 st floor for rooms and public areas + 2nd to 7th

typical room floors.

1. DESIGN CRITERIA FOR POWER AND LIGHTING :

A. POWER LOAD:

Power load are considered as per actual for facilities like lifts / kitchen equipments / plumbing equipments / HVAC equipments

etc.

General small power – other than equipments is considered as follows :

DESIGN CONCEPT REPORT 15 M.E.P.

SERVICES

Page 16: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

SR NO AREA POWER DENSITY

1 BOH 1 W / SFT

2 FOH 1W / SFT

3 RESTAURANT / BANQUETS /

CONFERENCE / MEETINGS /

LOBBIES

1 W / SFT

4 CLUB AREA 1 W / SFT

5 GUEST ROOMS 4 W / SFT

Other than above specialized equipment loads are considered as follows :

Kitchens and bar all together for hotel - 300 KW

Laundry - 50 KW

Banquets / conferencing equipments – 14 KW

SPA and Gym equipments - 60 KW

HVAC high side load - 800 KW

HVAC low side for - 300 KW

Plumbing load - 200 KW

Lifts - all blocks - 50 KW

Ventilation (basements / stair case / lifts / toilets / etc) - 100 KW

Fire fighting load - 500 KW (not part of actual load on transformer).

Based on the above total connected general power and equipments load comes to 2485 KW for all block put together.

DESIGN CONCEPT REPORT 16 M.E.P.

SERVICES

Page 17: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

B. LIGHTING LOAD :

Lighting load is derived based on the lux level provisions which are as follows :

Sr.

No.

Area Average Maintained

Lux

Watt/sft. Consider by

us

Light fixture basis.

Convention areas:

1 Ball Room (Banquets) 500 3W / sft CFL / CDMT / Halogen

spots / QR 111 / Cove

FTL / LED’s with

dimming

2 Ball Room Foyer 350 3W / sft Halogen spots / QR

111 / Cove FTL / LED’s

3 Meeting Rooms 400-(500FC on table top) 3W / sft CFL / CDMT / Halogen

spots / QR 111 / Cove

FTL / LED’s with

dimming

4 Assembly and Circulation 250 1W / sft CFL / FTL / LED

Public Areas :

5 Main Lobby 300 2 W / sft Halogen spots / QR

111 / Cove FTL / LED’s

6 Assembly and Circulation 250 1W / sft CFL / FTL / LED

DESIGN CONCEPT REPORT 17 M.E.P.

SERVICES

Page 18: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

7 Restaurants, Lounges, Bars, Coffee

Shops

200 3W / sft CFL / CDMT / Halogen

spots / QR 111 / Cove

FTL / LED’s with

dimming

8 Administrative office areas ( at desk

level

500 2W / sft

9 Front desk ( at desk level) 500 2W / sft

10 Elevator foyer 100-200 1W / sft CFL / FTL / LED

11 Corridors 100-200 1W / sft CFL / FTL / LED

12 Guest Rooms 500 4W / sft Halogen spots / QR

111 / Cove FTL / LED’s

Back of House and Service Areas:

13 Kitchen Areas 500 2W / sft

FTL / CFL with covers14 Maintenance Areas 500 1W / sft

15 Housekeeping 500 2W / sft

16 Laundry 500 2W / sft

Based on above total lighting load for hotel block including all services areas / BOH / restaurants /kitchens / ball rooms /

prefunction / guest rooms / FOH / service apartments / lobbies / etc comes to 571 KW of connected load for total carpet area

of 254189 sft.

2. POWER REQUIREMENT COMPUTATION :

Based on the above criteria power computation is done attached as ANNEXURE A with this report. From the same we have

following quantities:

DESIGN CONCEPT REPORT 18 M.E.P.

SERVICES

Page 19: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Total Actual power: 1.92 MW / 2.02 MVA @0.95 p.f.

Transformers: 1 x 2500KVA or 2 x 1250KVA – space requirement for 2 transformers shall be 2 nos x 5 m x 5 m OTS space at

ground level.

D.G. sets: (2 x 1250 + 1 x 500) KVA. – Space requirement for all generators shall be 15 m x 13 m OTS space at ground level.

1 incomer – 2 outgoing feeders 11KV H.T. panel of client in case of 2 nos transformers – Room of 6 x 5 x 3.5 m required at

ground level.

SEC D.P. Structure for overhead supply – 5 m x 5 m OTS space at ground level near road.

Metering kiosk of SEC – 5 x 5 x 3.5 m room at ground level next to D.P. structure.

3. SOURCE OF POWER SUPPLY AND OPERATION IN VARIOUS SCENARIOS

Grid power of SEB shall be HT power made available for the project at 11 KV from nearby substation. HT metering and ring

main unit shall be located on the Ground level within the complex or in a dedicated service block.

From the H.T. panel the supply shall go to H.T. panel at basement from which it shall go to different transformers as per the

ratings derived in point 2 above for various options.

4. DG BACKUP CALCULATION AND CAPACITY COMPUTATION

DG Backup calculation is shown in point 2 above for various options. As far as possible we have tried to make banks of similar

rating sets with synchronizing of sets for lighting, AHU and power load and other group for chiller and utilities. This is done to

keep fault level under control.

DESIGN CONCEPT REPORT 19 M.E.P.

SERVICES

Page 20: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

All lighting, UPS power, convenience power, Lifts, Plumbing Fire pumps, Central AC System, Pressurization System and Fans

shall be supplied by DG set equipped with Auto Mains Failure panels along with synchronizing panels. Change over panels will

switch over the above loads onto DG supply within 15-20 seconds (time shall be app 45 seconds with synchronizing). In case of

repair/ maintenance or operational difficulty with any of DG set, these shall be manually interchangeable to meet the critical

loads.

Engine cooling shall be achieved by radiator type air cooled engines in case ground level installation.

Residential type silencers shall be provided for each DG set. D.G. sets shall be with acoustic canopies. The noise level shall not

be more than @75 db at 1 mtr distance from DG.

The D.G. sets are planned for 100% back up power with underground diesel storage tank for capacity of 1 day diesel storage in

case of nearest source of diesel is far off. The capacity for the same as computed below shall come to 1 tanks of 10 KL.

SR NO ITEM DESCRIPTION UNITS QTY

1DIESEL CONSUMED AT 100%

LOAD BY 1250 KVA GENSETLTR / HR 275

2DIESEL CONSUMED BY 2 SUCH

SETS SHALL BELTR / HR 550

3DIESEL CONSUMED AT 100% BY

500KVA GENSETLTR / HR 105

4DIESEL CONUSMED BY 1 SUCH

SETS SHALL BELTR / HR 105

5TOTAL DIESEL CONSUMPTION

PER HOURLTR / HR 655

6DIESEL REQUIREMENT FOR 24

HOURS FOR 100% LOADINGLTR / DAY 15720

DESIGN CONCEPT REPORT 20 M.E.P.

SERVICES

Page 21: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

7

CONSIDERING LOADING

CONDITION AS 80% OVERALL

DIESEL REQUIRED FOR 1 DAY

STORAGE

LTR / DAY12576…say 10KL / 15

KL

5. HIGH SIDE POWER GENERATION & DISTRIBUTION SLD

Power shall be tapped from SEB RMU at 11KV from substation of near by vicinity. KBJ shall install 1 no. 11KV H.T. panel with 1

incomer and 2 outgoing along in case we are going ahead with 2 nos transformers.

From the two outgoing feeders of KBJ H.T. panel power at 11KV shall be fed 2 nos 1250 KVA transformers respectively.

All the transformers shall be cast resin dry type with OLTC and RTCC panel located at ground level of Hotel block from which

supply shall be fed to respective block main panel.

6. LOW SIDE POWER DISTRIBUTION

415V distribution from the LT panel to the various service areas/facilities shall be carried out through a network of sub panels

dedicated for lighting / raw power / UPS power / HVAC / plumbing / lifts etc. Power from sub panels shall be fed to equipments

through XLPE insulated armoured cables / busbars of 1100 volts grade insulation. All main panels and sub panels shall be part

of L.T. panel room at basement level.

DESIGN CONCEPT REPORT 21 M.E.P.

SERVICES

Page 22: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Sub distribution boards for lighting / UPS power / Raw power / Emergency lighting through inverter shall be located on each

floor in the electrical shafts. Supply to these distribution boards shall be fed from sub panels at podium level with use of

busducts.

Design of distribution system will be such that the farthest point is restricted to 3% voltage drop from the transfer supply

points. Complete Single line diagram is sent as part of schematic design package for further understanding of distribution

system.

SWITCHING ARRANGEMENT

Switching arrangement at various locations will be planned keeping in view the ease with which isolation can be achieved and

also the level of fault protection desired at the particular current rating. In the L T panel, switching of incoming circuits will

consist of ACBs, where as switching of outgoing circuits up to 630 amps will be four pole Moulded Case Circuit Breakers and

above 630 amps will be ACB’s. Main distribution boards and sub-distribution boards will incorporate moulded case circuit

breakers. Final distribution boards will incorporate miniature circuit breakers and earth leak circuit breakers. Besides, care shall

be taken to achieve voltage drop of not exceeding 3 percent in the cables.

INTERNAL WIRING SYSTEM

The system of wiring shall consist of FRLS PVC insulated copper conductor wires in FIA and ISI marked PVC conduits. Minimum

size of copper conductor shall be 2.5 sq.mm for lighting and 4/6 sqmm for power. Colour code shall be maintained for the

entire wiring installation that is Red, Yellow and Blue for the three phases, Black for neutral and Green for earthing. Besides

lugs providing ferruling shall also be provided for number coding and easy identification for maintenance purposes.

DESIGN CONCEPT REPORT 22 M.E.P.

SERVICES

Page 23: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

The electrical system shall include wiring for light and power points from the final distribution boards. However, it is envisaged

that critical areas shall have uninterrupted power supply, where even 1 second power shut down may not be acceptable.

Where ever possible we shall have localized switching for convenience and operational purposes. Convenience power outlets

will be provided throughout the Building.

7. LIGHTING PHILOSOPHY AND CONTROL METHODOLOGY AND EMERGENCY LIGHTING

Lighting for this type of project shall be dealt by lighting / landscape / interior consultant for all public areas for hotels, front of

house areas, banquets, restaurants, meeting rooms, board rooms, guest rooms, guest corridors, kitchens (kitchen consultant),

branded residences, residences, club level, spa, pool decks, landscapes, bars etc. We shall be give lighting design for all back

of house areas like pantries / stores / services rooms / kitchens (if not given by kitchen consultant) / service passages / staff

offices etc.

General lighting of various spaces will be planned to provide the required illumination levels. General lighting shall be through

energy efficient lamps and task lighting through the low power compact fluorescent lamps. Illumination levels for various areas

shall be as described above in point 1.

Where ever possible following features shall be incorporated for lighting:

Intelligent lighting system – Use of occupancy sensors for all closed cabins.

DESIGN CONCEPT REPORT 23 M.E.P.

SERVICES

Page 24: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Dimming with mood controller lighting system for areas like restaurants / bar etc as per interior designer’s choice.

Electronic ballast < 10% THD APFC type / Energy efficient lamps

EMERGENCY LIGHTING

As per industry standard emergency lighting shall be planned in all public areas / guest corridors / parking / guest rooms / etc

where by complete darkness during switchover time from grid to D.G. is not allowed. Hence the system is designed to have

10% lighting for all hotel block public areas including BOH and parking to be on UPS for which UPS / inverter of app. 40 KVA

shall be required which shall require space of app. 3 m x 3m x 3m room.

Guest rooms though shall not have any emergency lights.

8. EARTHING PHILOSOPHY

Distribution earthing shall be carried all along the LT distribution system, or through local earth station and effectively bonding

the cables / equipment as the case may be. Earthing for light and power points shall be carried out with insulated copper earth

wire running throughout the length of circuits and shall be terminated at boxes, fixtures etc with effective bonding to main

earth. Separate and distinct earth stations with copper plates shall be provided for UPS System, EPABX, Computer System and

equipments in critical areas if any.

Chemical earthing shall be adopted as they are maintenance free for 15 years.

LIGHTNING PROTECTION

DESIGN CONCEPT REPORT 24 M.E.P.

SERVICES

Page 25: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Building shall be protected by providing technically advanced (Early Streamer Emission) lightning protection system. This

system shall include air terminal on top of the building, screened insulated cable as down conductor, lightning event counter

and low impedance earthing grid. From air terminal to the low impedance earthing grid, only one conductor will be used. This

system eliminates requirement of multiple horizontal and vertical down conductors.

9. POWER FACTOR IMPROVEMENT

Automatic power factor compensation with capacitor banks shall be provided for maintaining minimum power factor of 0.95, as

per the requirement of Local Electricity Board.

10. UNINTERRUPTED POWER SUPPLY SYSTEM (UPS)

UPS shall play a major role in the facility for sensitive equipments loads like computers / printers / fire alarm systems / CCTV

system / access control system / security check equipments and charging points etc. The requirement for the UPS shall largely

depend on the communication / AV requirements which are to be given by A/V consultant. Though we have made data sheets

as per four seasons standard guidelines to conclude on requirement for the same.

For the annexure A if becomes clear that UPS of approximately 76 KW / 100KVA at 0.9 pf and 80% loading shall be required.

We recommend to use 2 x 50 KVA for the same. Ideally considering redundancy one should go with 3 x 50 KVA system where

by n+ 1 redundancy shall be achieved. The UPS rating though shall be reviewed once we have final BOH interior plans freezed.

Battery backup up to 30 minutes shall be provided with UPS. Storage batteries shall be sealed maintenance free type. Static

bypass switch shall be provided with isolation transformer in the bypass line. UPS shall be designed for near unity power factor.

As 100% power back up is available the UPS shall be backed up by generators.

11. COMMUNICATIONS SYSTEMS:

Various low voltage system shall be part of the building. The systems which can be integrated are as follows :

DESIGN CONCEPT REPORT 25 M.E.P.

SERVICES

Page 26: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Telecommunication System

LAN system

MATV

For above systems requirements are to be given by A/V consultant based on which low side wiring of Cat 6 shall be designed

by us. Any other specialized wiring like fibre back bone / speaker / projector cabling etc shall be scope of IT contractor.

12. STANDARD CODES AND BRIEF SPECS FOR MATERIALS :

A. APPLICABLE IS STANDARDS

1. METERS (MEASURING) FOR ANALOG METERS IS:1248-1986

2. INSTALLATION AND MAINTENANCE OF SWITCH GEARS IS:3072-1975

3. CODE OF PRACTICE FOR EARTHING IS:3043

4. H.D. AIR BREAKER, SWITCH GEARS AND FUSES FOR

VOLTAGE NOT EXCEEDING 1000 VOLTS IS:4047-1977

5. SELECTION, INSTALLATION AND MAINTENANCE OF FUSES IS:8106-1966

UP TO 650 VOLTS

6. GENERAL REQUIREMENTS FOR SWITCH GEAR AND IS:4237-1967

GEAR FOR VOLTAGE NOT EXCEEDING 1000 VOLTS

7. DEGREE OF PROTECTION PROVIDED BY

ENCLOSURES FOR LV S/GEARS IS:2147-1962

DESIGN CONCEPT REPORT 26 M.E.P.

SERVICES

Page 27: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

8. INSULATED CONDUCTOR RATING IS:8084-1972

9. ENCLOSED DISTRIBUTION FUSE BOARDS AND CUT-OUTS

FOR VOLTAGE NOT EXCEEDING 1000 VOLTS IS:2675-1983

10. MINIATURE CIRCUIT BREAKER IS:8828-1978

11. FUSE WIRE USED IN RE-WEARABLE TYPE ELECTRIC FUSES

UP TO 650 VOLTS IS:9926-1981

12. PVC INSULATED ELECTRIC CABLES HEAVY DUTY IS:1554 (PART I)

13. RECOMMENDED CURRENT RATING FOR CABLES IS:3961(PART II)

14. COPPER CONDUCTOR IN INSULATED CABLES AND CORES IS:2982

15. CONDUCTOR FOR INSULATED ELECTRIC CABLES AND

FLEXIBLE CORDS IS:8130

16. MILD STEEL WIRES, STRIPS AND TAPES FOR ARMOURING

CABLES IS:3975

17. PVC INSULATION AND SHEATH OF ELECTRIC CABLES IS:5831

18. ALUMINIUM CONDUCTOR FOR INSULATED CABLES IS:1753

19. PVC INSULATED AND PVC SHEATHED SOLID ALUMINIUM IS:4288

CONDUCTOR CABLES OF VOLTAGE RATING NOT

EXCEEDING 1100 VOLTS

20. RECOMMENDED CURRENT RATING FOR CABLE IS: 961

21. CODE OF PRACTICE FOR ELECTRICAL WIRING

INSTALLATION SYSTEM VOLTAGE NOT EXCEEDING 650 IS: 732

VOLTS

DESIGN CONCEPT REPORT 27 M.E.P.

SERVICES

Page 28: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

22. CODE OF PRACTICE FOR FIRE SAFETY OF BUILDINGS

GENERAL)ELECTRICAL INSTALLATION IS: 1646

23. RIGID STEEL CONDUITS FOR ELECTRICAL WIRING IS:1653

24. FITTINGS FOR RIGID STEEL CONDUITS FOR ELECTRICAL IS:2667

WIRING

25. FLEXIBLE STEEL CONDUIT FOR ELECTRICAL WIRING IS:3480

26. ACCESSORIES FOR RIGID STEEL CONDUITS FOR IS:3837

ELECTRICAL WIRING

27. PVC INSULATED CABLES (WIRES) IS:694

28. RIGID NON-METALLIC CONDUITS FOR ELECTRICAL WIRING IS:2509

29. FLEXIBLE (PLAYABLE) NON-METALLIC CONDUITS FOR IS:6946

ELECTRICAL INSTALLATION

30. THREE PIN PLUGS AND SOCKETS IS:1293

31. CONDUCTORS FOR INSULATED ELECTRICAL CABLES AND IS:8180

FLEXIBLE CODES

32. SPECIFICATION FOR CONDUIT FOR ELECTRICAL

INSTALLATION IS:9537-1980

33. ACCESSORIES FOR NON-METALLIC CONDUITS FOR

ELECTRICAL WIRING IS:3419

34. SWITCHES7 IS:3854

35. PLUGS IS:6538

36. SHUNT CAPACITORS FOR POWER SYSTEMS IS:2834-1954

37. HRC CARTRIDGE FUSES AND LINKS UP TO 660 VOLTS IS:2208

DESIGN CONCEPT REPORT 28 M.E.P.

SERVICES

Page 29: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

38. GENERAL AND SAFETY REQUIREMENT FOR LIGHTING

FITTINGS IS:1913-1969

39. CODE OF PRACTICE FOR LIGHTING PUBLIC THOROUGH

FARES IS:2944-1981

40. WATERPROOF ELECTRIC LIGHTING FITTINGS IS:3528

41. WATER TIGHT ELECTRIC LIGHTING FITTING IS:3553-1966

42. MILD STEEL TUBULAR AND OTHER WROUGHT STEEL PIPE

FITTING IS:1239-1958

43. LUMINARIES FOR STREET LIGHT IS:2149-1970

44. HRC FUSES HAVING RUPTURING CAPACITY OF 90 KA IS:9224

45. EXHAUST FAN IS:2312-1967

46. CLASS I CEILING FAN IS:374-1979

47. DANGER NOTICE BOARDS IS: 2551

ADDITIONALLY WE SHALL FOLLOW :

a. Indian Electricity Act of 1910 and rules issued there under revised up to date.

b. Special Attention should be given to Rule No. 50.

c. Regulations for electrical equipment in building issued by The Bombay Regional Council of insurance Association of India.

B. BROAD SPECIFICATIONS

ITEM BROAD SPECIFICATIONS

Unitised substation / Trafo / Indoor type with Vaccum / SF6 H.T. beaker / 11KV dry type cast resin transformer

DESIGN CONCEPT REPORT 29 M.E.P.

SERVICES

Page 30: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Breaker

D.G. sets Radiator type with air cooling.

Switchgears / PCC / MCC

Switchgears shall be with microprocessor based release switchgears. Panels shall be

compartmentalized with live parts separated with hylum sheets / metal sheets. Separate cable alleys /

busbar alleys shall be planned in panels. Tinned EC grade Copper busbars shall be used. Fabrication

shall be from 2 mm flats for structure and 1.6 mm for doors. The panel shall be powder coated with

seven tank process.

H.T. / L.T. cables XLPE grade copper cables as per FS standards.

Busduct / risers Tinned EC grade Copper busbars.

Distribution boards Factory fabricated, double door type with per phase isolation for 3 phase boards

Point wiring

With modular accessories for BOH areas and high end range for guest floors as suggested by interior

architect, HFFR grade wires and PVC FRLS grade couduits of general areas and MS conduit for services

areas like kitchen and plant rooms.

Light fixtures - indoorCFL type for staff areas / CFL type down lighters in general areas and FTL type tube light fixtures for

basements / pantries etc.

Light fixtures - outdoor

Metal halide indirect fixtures with 12' poles for 20 ft roads / 150 W sodium vapour street lights for 6 mtr

and above roads / metal halide flood lights for façade lighting / other planter lights and bollards for

landscape.

Telephone wiring Backbone with multipair 0.5 mm dia XLPE jelly filled armoured cable. Outlets wired with Cat 6 wires.

Data wiring Outlet wired through Cat 6 wires from floor IT room. Back bone as per clients IT dept.

Raceways - floor Al / GI raceways with company fabricated junction boxes for voice / data and UPS power wiring.

Raceways - Wall PVC raceways with compartments

Cable trays Hot Dip GI of 14 guage perforated type for power cables. Metal powder coated / GI - enclosed type for

DESIGN CONCEPT REPORT 30 M.E.P.

SERVICES

Page 31: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

communication – AV cables.

UPS IGBT based parallel redundant UPS with 0.9 power factor and THD < 3%

PART D: - WATER MANAGEMENT, PUBLIC HEALTH & SANITATION

D.1 Project Brief

a. Conceptual Plan

a) The Concept report is based on the architectural concept plan given by client/architect.

b. Soil Investigation

a) The information regarding the sub-soil characteristics of site is not available. Detailed storm water harvesting design shall be

taken up based on the available soil report.

b) Site test to find out water absorption capacity / percolation rate of soil shall be carried out for detailed design of percolation /

harvesting well.

c. Climatic Data

The design of the water management system shall be done keeping in view the detailed climatic data like rainfall, temperature

variation, etc. of the region.

DESIGN CONCEPT REPORT 31 M.E.P.

SERVICES

Page 32: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

d. Water Quality

The quality of water from all the sources shall be checked. The major source of fresh water shall be municipal corporation supply.

Client to furnish water test reports for the same. Client to check and explore the possibility of water supply through bore wells /

tankers for any future provision and emergency. Suggestion regarding the treatment of water required, if any, shall be given from

the water test report.

e. Drainage and Storm Water Connection

The pipe size and invert levels for nearby municipal sewers and storm water drains shall be furnished by client for final design of sewage and storm

water disposal.

D.2 Assumptions

a) Average annual rainfall in the vicinity – 1000 mm.

b) Maximum intensity of rainfall – 50 mm/hr.

c) Area of soft landscape is 15% of the site area.

d) Source of water supply will be corporation supply, bore-wells and tankers.

e) All the sewage generated in the building shall be treated in a Sewage Treatment Plant (STP) with a bypass connected to

Municipal drains to meet emergencies. The recycled water shall be used for flushing, air-conditioning and irrigation.

f) 30 cum/hr rate of water percolation assumed for rain water harvesting.

g) Water efficient and low flow fixtures will be used in toilets.

h) Water less urinals can be used in certain areas

i) All the surface and terrace rain water runoffs shall be drained through well designed storm water disposal system after

adopting suitable rain water harvesting system.

DESIGN CONCEPT REPORT 32 M.E.P.

SERVICES

Page 33: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

D.3. Water management system Infrastructure Requirements

Overall the Water management system consists of:

a) Water supply

b) Hot water and steam generation and distribution.

c) Sewerage disposal system.

d) Sewage treatment scheme.

e) Storm water drainage system.

f) Rain water harvesting.

g) Sanitary vessels and water management system fixtures.

D.3.A. Water Supply

The main source of domestic water supply will be water supplied by Municipal Corporation. As per the inputs received from the client,

Corporation will not supply sufficient quantity of fresh water. The quality of water from Corporation will be assured. Suggestion for the

water treatment can be given from the water test report for all the available sources of water. The other source of water may be

water from bore wells and tankers.

Water supply required for various usages are categorized as follows:

A. Raw Water:

The water available from bore wells and tankers is the raw water and shall be stored in the raw water tank in the basement.

Water treatment plant shall be designed based on the chemical and physical analysis of water from the sources identified. This

treated water shall be collected in the fire water tank. Water from this fire water tank shall overflow into the domestic water

tank.

DESIGN CONCEPT REPORT 33 M.E.P.

SERVICES

Page 34: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

B. Domestic Water:

Treated water from the raw water tank, after over flow from the fire water tank shall be stored in the domestic water tank. The

water supplied by the local authority also, shall be collected in this tank. This will be supplied for all the domestic purposes

such as showers, wash basins and health faucets in all the toilets; in laundry for washing clothes; and for steam generation.

RO/UV units installed at the points of consumption shall further treat the water to make it potable and this potable water shall

be used in the kitchen for cooking and for drinking.

C. Recycled Water:

Sewage Treatment Plant (STP) shall be installed to treat all the sewage and sullage generated in the premises of the hotel. The

STP shall be able to treat the sewage to generate clear water which can be used for flushing, irrigation and for HVAC make up,

after further treatment. Provision will also be kept to use domestic water for flushing in absence of or in case of shortfall of

recycled water.

Assumptions for Water Supply Calculations for the hotel:

Occupancy per room type:

Average occupancy per room is considered as 1.5

Water requirement: (as per NBC - Part - 9, Clause 4.1.2.)

No. Use of water Water requirement (lpcd)

Domestic

cold

Domestic hot Flushing

1 Guest rooms 160.00 100.00 60.00

DESIGN CONCEPT REPORT 34 M.E.P.

SERVICES

Page 35: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

2. Banquet hall guests 4.00 1.00 10.00

3. Hotel staff 25.00 20.00 45.00

Based on these assumptions, the water requirement is as follows:

Type of rooms Twin bed room King's room Jr. Suite Ex. Suite

First 12.00      

Second 12.00      

Third 14.00 18.00    

Fourth   32.00    

Fifth   32.00    

Sixth   18.00 7.00  

Seventh   18.00   2.00

Total 38.00 118.00 7.00 2.00

Persons per

room 1.50 1.50 1.50 1.50

Total no. of

guests 57.00 177.00 10.50 3.00

Rounded 57.00 177.00 11.00 3.00

Water requirement for guest rooms:

Type of room Twin

bedroom

King’s

room

Jr. Suite Ex.

Suite

DESIGN CONCEPT REPORT 35 M.E.P.

SERVICES

Page 36: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Water requirement (lit)

Domestic cold

(lpd) 9120.00 28320.00 1760.00 480.00 39680.00

Domestic hot

(lpd) 5700.00 17700.00 1100.00 300.00 24800.00

Flushing (lpd) 3420.00 10620.00 660.00 180.00 14880.00

Total79360.0

0

Water requirement for banquet hall guests:

Banquet hall number 1 2 3  

No. of guests per hall as per heat load

calculations

102.00 101.00 102.00  

Water requirement (lit)

Domestic cold (lpcd) 408.00 404.00 408.00 1224.00

Domestic hot (lpd) 102.00 101.00 102.00 305.00

Flushing (lpd)1020.0

0

1010.0

0

1020.0

0 3050.00

Total

4575.0

0

Water requirement for staff:

DESIGN CONCEPT REPORT 36 M.E.P.

SERVICES

Page 37: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Total No of rooms

165.0

0 Staff per room

2.0

0

Total staff

330.0

0   

  lpcd lit

Domestic cold 25.00 8250.00

Domestic hot 20.00 6600.00

Flushing 24.00 7920.00

Total 22770.00

Water requirement for laundry (as per input from hotel consultant):

Ambient (lit) 25000.00

Hot @ 74 Deg C.

(lit)

12000.00

Water requirement for kitchens (as per input from hotel consultant):

Ambient (lit) 46000.00 Hot @ 60 Deg C.

(lit)

9200.00

HVAC make up water requirement: Make up water quantity = Tonnage X 10 lit X 24 X 0.7

Tonnage  1015.70 Make up water

quantity

170637.60

DESIGN CONCEPT REPORT 37 M.E.P.

SERVICES

Page 38: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Summary of water requirement:

  Domestic cold Domestic hot Recycled

Guest room 39680.00 24800.00 14880.00

Banquet halls 1220.00 305.00 3050.00

Staff 8250.00 6600.00 7920.00

Laundry 25000.00 12000.00  

Kitchen 46000.00 9200.00  

A/C make up     170637.60

Total 120150.00 52905.00 196487.60

Total water requirement: 369542.60 (lit)

Domestic Cold Domestic Hot Recycled

Add wastage 2% 2% 2%

  2403.08 1058.12 5124.415

Sum Total 122553.08 53963.10 261334.98

Say 123000.00 54000.00 261500.00

Sum total water requirement (lit) 377500.00

DESIGN CONCEPT REPORT 38 M.E.P.

SERVICES

Page 39: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Quantity of water going into STP:

Total water requirement 369542.60

Deduct A/C make up 170637.60

Volume of water going into STP @

90% of 198905.00

Generation of sewage @ 90% of water requirement without wastage

Daily sewage quantity

179014.1

5 Lit 179.01 m3

Load condition

STP capacity

(lit) 

STP capacity

(m3) 

100% 179014.15 179.01

90% 161113.05 161.11

80% 143211.60 143.21

Irrigation water requirement (lump

sum) 30000.00 Lit 30.00 m3

DESIGN CONCEPT REPORT 39 M.E.P.

SERVICES

Page 40: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Break up of recycled water requirement:

Description Value Unit

Flushing water requirement 25850.00 Lit

HVAC makeup  170637.60 Lit

Irrigation  30000.00 Lit

Total  226487.60 Lit

Shortfall  74325.28 Lit

Hence additional 74325.28 lit water will have to be sourced from bore wells/tankers

DESIGN CONCEPT REPORT 40 M.E.P.

SERVICES

Page 41: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Proposed Water Storage System:

SCHEMATIC ARRANGEMENT OF WATER TANKS

DESIGN CONCEPT REPORT 41 M.E.P.

SERVICES

Page 42: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Tank capacities

Description

Volume

(lit)

Raw water (half of total domestic water tanks capacity) 189000.00

Domestic water (half of total domestic water tanks capacity) 189000.00

Fire water 200000.00

Flushing and irrigation water (recycled + treated domestic) 126000.00

HVAC make up water (softened recycled + treated domestic) 256000.00

We have considered total one and a half day of storage capacity for the entire project including fire fighting tanks

Water storage and treatment:

Domestic water:

Water from bore-wells / tankers (raw water) shall be brought to the building at approximately 1 m below ground level in raw water

tank. Water supplied by Municipal Corporation shall be stored in the domestic water tank.

From Raw water tank, water shall be fed to suitable water treatment plant by means of feed pumps and stored in the fire water

tank, overflow of which shall be given in domestic water tank. The treatment for raw water will consist of filtration through

pressure sand filters, activated carbon filters. Water treatment philosophy shall be detailed out based on the chemical and

physical analysis of water from bore wells / tankers. Since the quantity of water supplied by corporation may not be consistent,

we propose to mix water treated water with the water supplied by Municipal Corporation.

DESIGN CONCEPT REPORT 42 M.E.P.

SERVICES

Page 43: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Drinking water:

Domestic water shall be treated by UV/RO filters and shall be supplied for drinking and cooking. These UV/RO filters shall be

installed at the points of consumption i.e. all the kitchens and near the central water cooler for the hotel.

Recycled water:

Water treated by STP is termed as recycled water. It shall be collected in the underground tank meant for the same and shall be

supplied to all the WCs and urinals for flushing, and for irrigation. This recycled water shall be further treated for softening and

shall be stored in the soft water tanks. This softened water shall be used for HVAC make up.

Since recycled water supply is less than requirement of flushing, irrigation and HVAC make up, it shall be supplemented with

domestic water. Hence an additional overflow of fire water tank shall be given in the recycled water tank.

There shall be a proper system to receive 15 to 20 tankers daily with well planned entry and exits so as not to disturb the overall

traffic movement within and outside the premises. We also suggest entering into a long term agreement with reliable tanker

suppliers providing consistent quality of water.

Since fresh water deficit is supplemented with bore wells, it is suggested to have a resistively test and hydro-geological survey to

ensure good quality consistent water supply throughout the year. Standby bore wells shall also be planned for the same. The

water received everyday shall be randomly checked for physical, chemical and microbial analysis to ensure that water quality is

maintained.

Water Distribution and Supply System:

There will be a separate pumping and distribution system for domestic and flushing water.

Hydro-pneumatic pressure boosting system comprising of 2 working and 1 standby pumps shall be installed in the pump room in

basement near the tanks, which will feed domestic water to each facility at pressures between 2.5 kg/cm2 to 4.5 kg/cm2. The same

system will be used to feed the overhead fire fighting make up tank.

DESIGN CONCEPT REPORT 43 M.E.P.

SERVICES

Page 44: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Similarly, a separate hydro-pneumatic pressure boosting system will be provided near the recycled water tanks to supply flushing

water tank to each facilities. Provision will be kept to feed STP recycled water tank with domestic water to meet the shortfall in

the requirement of recycled water. Small capacity make up tanks, at terrace/roof level, are proposed for domestic and flushing

water so as to ensure continuous flow of water to each facility even during DG change over periods during electricity failures

A separate hydro-pneumatic system shall be installed in the basement near the main tanks, for providing domestic water to

laundry, all the toilets and other requirements in the basement.

From soft water tank, water shall be fed to HVAC make up tank constructed near cooling towers, minimum 1.5 m above the basin,

through a set of transfer pumps (1 W + 1 S) with automatic level controllers. Soft water shall be supplied to the cooling towers

through gravity from this make up tank. Provision shall also be made to supply suitably treated and softened tanker / bore-well

water or domestic water into the soft water make up tank to meet any emergency situations.

From recycled water tanks, water will be fed to all the gardening and irrigation needs with the help of independent hydro

pneumatic pumping system.

Hot Water for guest rooms and other public areas shall be supplied through the same domestic water hydro pneumatic system so

as to ensure equal pressures at the user points. A separate network of hot water supply shall be provided with a provision of

return line and a circulation pump to ensure instant hot water at the user point and minimize the heat loss in the pipe network.

For Hotel guest rooms, the entire water supply system shall be designed to supply water at pressures between 2.5 kg/cm 2 to 4.5

kg/cm2 at the user points. For all the BOH areas, the water shall be supplied at a pressure between 1.5 kg/cm2 to 2.5 kg/cm2. It

shall be ensured that the pressure of hot and cold water remains the same at the user points.

DESIGN CONCEPT REPORT 44 M.E.P.

SERVICES

Page 45: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

D.3.B. Generation and distribution of hot water and steam:

Quantity

The total peak hot water requirement is about 54,000 liters per day. (Refer above table for domestic water requirement

calculation). Most of the hot water is used for guest rooms, kitchen – BOH areas and laundry.

The total peak steam requirement for laundry is assumed to be 350 kg/hr. For kitchen steam, standalone units shall be provided in

consultation with the BOH / Kitchen consultant and the required quantity of hot water shall be supplied to the same.

Assumptions

Following criteria is considered for the design of hot water and steam supply system:

1. Water supply for 24 hours to all required facilities.

2. Steam supply to laundry area as per BOH consultant’s requirement

3. All hot water and steam lines will be insulated.

Hot Water Production and Distribution

It is proposed to produce hot water by providing hot water generators with dual burners capable of firing on natural gas and

HSD. Three (2 working + 1 Standby) numbers of hot water generators, each of capacity 300,000 K. Cal are proposed to be

installed in the basement. These generators will be gas / HSD fired and will receive cold water from feed water tanks through

feed water pumps. The feed water will be from the domestic water tank in basement, pumped through a polishing softener so

as to maintain the hardness within 5 ppm (soft water). Hot water from the generators will have a temperature of around 80

degree C and this will be the heating medium to heat the cold water in pressurized hot water mixing tanks provided in boiler

room for different requirements. Cold feed to all these pressurized hot water mixing tanks will be from the respective hydro

pneumatic system for domestic water supply for different requirements. Hot water from the generators will be pumped and

supplied to these hot water mixing tanks as heating medium through M.S piping and the return water after transmission of

heat to cold water in the mixing tanks will be collected and pumped through return pumps into the generators.

DESIGN CONCEPT REPORT 45 M.E.P.

SERVICES

Page 46: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

It will be ensured that the same pressure is maintained for hot and cold water supplies at the user points as the same hydro

pneumatic booster system will be used for hot and cold domestic water supply.

Hot water return lines will be provided and a circulation pump will be installed to ensure a constant hot water supply at each

user point.

Steam

It is assumed that the steam requirement is generally in hotel back of house areas, primarily in the laundry for use in flat

workers, driers and presses. It is also required in kitchen and in health clubs.

As it is not advisable to carry high-pressure steam to high levels, use of steam in hotel public areas (for kitchen and health

club) in the building is not contemplated. Thus use of steam in the building is confined to laundry areas only.

Steam Production and Distribution

It is proposed to have two (1 working + 1 standby) no 350 kg/hr IBR steam boilers, with dual fuel burners – Natural gas and

HSD.

Heating medium in the boiler can be electricity, oil or gas. Even though electrically operated boiler is the cleanest, as the cost

of electricity is prohibitive, it is not advisable to use electricity as heating medium. Natural gas / HSD are cheaper compared to

electricity so we suggest using dual fuel burners so as to have a flexibility of using either of the fuels.

As the peak requirement is only about 350 Kg per hour, one boiler will be working continuously and second boiler will always

be in a standby mode giving 100% standby capacity. These boilers will deliver steam to a steam header from which separate

branches will be provided for supply to laundry and BOH areas, If required.

Cold water feed for the boiler will be water having a commercial hardness of Zero (0 to 5 ppm of hardness) stored in feed

water tanks and pumped to the boilers by feed water pumps. Water from the domestic water compartment in basement

softened by polishing softeners to zero hardness will be stored in the feed water tanks and this will be the boiler cold feed.

Steam condensate from equipments where steam is indirectly used will be collected and brought back to the feed water tanks

to minimize heat losses in the system to the maximum extent possible.

DESIGN CONCEPT REPORT 46 M.E.P.

SERVICES

Page 47: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

D.3.C. Sewerage Disposal System

General

Client shall check if there is any municipal sewer line in the abutting road and the pipe diameter, invert level and depth of the said

man hole chamber shall be furnished for designing the final connection to the sewer line. Provision shall be made for future

connection and by-pass of sewage treatment plant.

A sewage treatment plant shall be provided. Client has confirmed that the treated sewage and wastewater will be re-used

flushing, air-conditioning and irrigation.

Provision shall be made to dispose the sludge generated after STP into the nearby existing drainage manhole of corporation.

Alternatively, sludge can be dried using filter press or centrifuge within our premises and dried sludge can be used as manure for

irrigation.

Sewerage Disposal

The waste water and soil water shall be collected from toilet blocks / kitchen to main drainage network.

From toilets and kitchen, soil and wastewater shall be passed through gully trap chamber before connecting the same to main

drainage line.

Waste water from kitchens and pantry shall be passed through a grease trap before connecting to the drainage network.

The main drainage line shall discharge the soil and wastewater to sewage treatment plant for recycling the water for re use. The

recycled water shall be used for flushing, irrigation and for HVAC make up after softening.

D.3.D. Sewage Treatment Scheme

Possible Options of Sewage Treatment Plants

1. Membrane Bio Reactor (MBR)

2. FAB

3. SAFF

DESIGN CONCEPT REPORT 47 M.E.P.

SERVICES

Page 48: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

4. Chemical Treatment

5. Extended Aeration

Out of all the above five possible options, we suggest to install MBR technology STP. Client has also confirmed using MBR

technology STP. The comparison of MBR with other technologies is given here in under:

No

.

Description Extended

Aeration

SAFF FAB Chemical

Treatment

Plants

MBR

1 Type of Treatment Based on

suspended growth

of bacteria

Based on attached

growth process

Based on attached

growth process

Based on

continuous

batch process

Based on

activated

sludge

process with

ultra filtration

2 Media used for

treatment

No Media required Utilizes plastic

media floating in

sewage

Utilizes plastic media

fixed in position

Utilizes three

non toxic, non

hazardous

chemical

formulations

Utilizes

membranes

for treatment

3 Final Clarifier required? Yes Yes Yes Yes No

4 Tertiary Filter

required?

Yes Yes Yes Yes No

DESIGN CONCEPT REPORT 48 M.E.P.

SERVICES

Page 49: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

No

.

Description Extended

Aeration

SAFF FAB Chemical

Treatment

Plants

MBR

5 MLSS (mg/l) < 3000 No criterion No criterion No criterion as it

works on physio

chemical

reactions such

as precipitation,

disinfection,

flocculation &

clarification

15,000 -

20,000

6 M.L.S.S. monitoring Required Not Required Not Required Required

7 Footprint area Large 2-3 times smaller 2-3 times smaller 2-3 times

smaller

3-5 times

smaller

8 Process Stability Highly Sensitive to

Sludge Bulking

Medium Sensitive to

Sludge Bulking

Medium Sensitive to

Sludge Bulking

Medium

Sensitive to

Sludge Bulking

Not Sensitive

to upsets

9 Retention Time 20 - 24 hrs 6 - 8 hrs 6 - 8 hrs 6 - 8 hrs 4 - 6 hrs

10 Sludge Recycling Required Not Required Not Required Not Required Not Required

DESIGN CONCEPT REPORT 49 M.E.P.

SERVICES

Page 50: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

11 Power Consumption High Medium Medium High High

12 Ease of Maintenance Difficult Easy Easy Easy Easy

13 Ease of Operation Difficult Easy Easy Easy Easy

No

.Description

Extended

Aeration SAFF FAB

Chemical

Treatment

Plants

MBR

14 Energy Cost High Medium Medium High High

15 Useful for

modification / capacity

extension of existing

STP ?

No Yes Yes Yes Yes

16 Use of Chemicals for

pre-treatment / post

treatment

High Medium Medium Very High Very Low

17 Requirement of

Continuous monitoring

for the treatment plant

Yes Yes Yes Yes No

18 Chlorination Required Required Required Required Not Required

19 Environmental Aspect

of sewage treatment

         

a) Sludge Production High Low Low Low Low

DESIGN CONCEPT REPORT 50 M.E.P.

SERVICES

Page 51: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

b) Reduction of Coliform Ineffective Ineffective Ineffective Effective Effective

c) Use of Coagulants and

Flocculants

High Moderate Moderate Very High, since

it is a chemical

process plant

Not required

d) Use of Chlorine Required as per

sewage load

Required as per

sewage load

Required as per

sewage loadHigh

Not required

No

.Description

Extended

Aeration SAFF FAB

Chemical

Treatment

Plants

MBR

e) Residual Chlorine

Presence in treated

water

Yes Yes Yes Yes No

f) Quality of Treated

Recycled water

Moderate Good Good Good Of the quality

of potable

water

g) Overall Cleanliness of

the plant area

Bad Moderate Moderate Moderate Good

20 Dependency on the

vendor for routine

operation

Moderate Moderate Moderate Very High for the

chemicals

procurement

Moderate

Effluent Characteristics

The effluent generated during activities contains mainly:

DESIGN CONCEPT REPORT 51 M.E.P.

SERVICES

Page 52: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

1. Suspended / colloidal organic components like food waste, toilet flushing, basins and hand wash, etc.

2. Dissolved organic components

3. Dissolved inorganic solids of cleaning chemicals

Raw Sewage Characteristics

Flow - 350 cum/day

PH - 7 – 8

BOD - 250 - 350 mg/l

COD - 500 - 600 mg/l

O & G - ~ 60 mg/l

TSS - 300 mg/l

Treated Sewage Characteristics

For Re-use

Flow 300 cum/day

PH 7 – 8

BOD < 5 mg/l

COD < 30 mg/l

O & G < 5 mg/l

TSS < 5 mg/l

Assumptions

1. No other parameter which exceeds the treated sewage limits or which is hazardous in nature, will affect the biological

process is present in the raw sewage.

2. The oil present is in free-floating form.

Process Description

The brief process description for MBR sewage treatment process is as follows:

DESIGN CONCEPT REPORT 52 M.E.P.

SERVICES

Page 53: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

1. Sewage from main drain line is collected through gravity pipes into a screen chamber. This manually cleaned screen is

provided to remove floating and big size particles, which may choke the pumps and pipe lines.

2. Screened sewage is then passed through equalization tank to homogenize the sewage quality and also even out flow

fluctuations and feed sewage of uniform quality at constant rate to subsequent treatment units. Air mixing is also provided

to mix the contents of the equalization tank. A coarse bubble aeration grid is provided to distribute air uniformly at the

base of the equalization tank.

3. After above treatment, raw sewage is fed into aeration basin.

4. In aeration tank MLSS (mixed liquor suspended solids) in the range of 12000 to 15000 mg/l are maintained. The high

amount of bacteria gives better and complete removal of organic matter from the raw sewage in relatively small area.

Oxygen required for the bacteria is supplied through the blower. The air is used both for scouring of membranes and

supplying oxygen to bacteria.

5. The filtration is carried out by the suction pump directly sucking permeates water. The permeate water produced is clear

and devoid of bacteria and viruses to the minimum levels.

6. As the membranes are continuously under operation, they are polluted with organic or inorganic substances. Hence,

chemical cleaning is carried out once in two to three months for removing substances polluting and clogging the

membranes. Normal cleaners used are sodium hypo chloride and citric acid.

Benefits for MBR Technology STP

MBR (Membrane Bio Reactor) is the latest technology in wastewater treatment with many advantages as listed

below:

1. MBR requires much less space when compared to conventional activated sludge process.

2. MBR does not require clarifier tank where as conventional activated sludge process requires clarifier, which further adds to

the area requirement and cost.

3. Biological reaction in MBR can be carried out under the condition of 4 to 5 times of MLSS compared to conventional

DESIGN CONCEPT REPORT 53 M.E.P.

SERVICES

Page 54: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

activated sludge process. It means the biological reaction is faster and more organic components included in the feed

wastewater can be decomposed in shorter time or in smaller space. This also gives good treatment efficiency and high

stability of sludge, which is easy to dispose off.

4. The quality of treated water in case of MBR is much superior than conventional biological systems. As the membrane acts

as a physical barrier, it does not allow any sludge particles and to great extent bacteria and viruses to pass through it.

Microorganisms like coliform or cryptosporidium can be easily removed in MBR. This increases the reliability of the system

multifold.

5. Conventional biological systems require further costlier tertiary treatment to match the performance of the MBR system.

This may include coagulation, filtration, chlorination, adsorption, UV treatment etc.

6. MBR system has minimum number of treatment units and very simple to operate. It does not require any regular handling

of hazardous chemicals. As the treatment units are less, it is less prone to system breakdowns.

7. As conventional treatment systems require disinfections with chlorine, it needs to be removed completely before applying

on to gardens or for green belt development. Otherwise, high amount of residual chlorine may damage the plants. Also,

disinfection with any disinfectant does not remove organisms, it only inactivates them. The effect depends on the amount

of disinfectant used, the quality of filtration applied, the retention time available for oxidation and the existence or non-

existence of other competing reaction partners (scavenging). As MBR acts like a physical barrier, it does completely

remove bacteria and viruses up to a degree of 4 - 6 log removal (104 to 106 times reduction), independent of type or life

form of organism. It also helps in complete retention of biomass in the aeration basin.

8. As the system has minimum units, it requires less chemical cost and power consumption when compared to conventional

systems.

9. As chlorination is not required, MBR does not produce disinfection by-products or bad odors.

10.The energy consumption of “MBR” is extremely low (0.30 kwh/m3) and the treated domestic effluents has a four to six log

(99.99%) removal of total coliform. The MBR system does not require the use of chemicals, thereby making it extremely

safe during operation and re-use.

DESIGN CONCEPT REPORT 54 M.E.P.

SERVICES

Page 55: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Area requirement

Approximate area required for STP will be 300 sqm.

D.3.E. Storm Water Drainage System

Design Criteria

1. Maximum intensity of rainfall is assumed as 50 mm/hr.

2. Average Co-efficient of Run-off is taken as 0.90.

3. Road camber is taken as 1:100 for concrete roads starting from center.

4. Surface slope as minimum 1:500.

Storm Water Disposal from Basement

1. Down take pipes shall be provided at the upper basement levels connecting to the lower basement.

2. A channel network will be provided at the lower basement level. All the down take pipes from the upper basement will be

connected to these channels.

3. Channels will be provided at the starting and end of the ramps so as to avoid / minimize the outside water and water along

with the wheels entering the basements.

4. Storm water sumps of suitable capacity will be provided in the lower basement in coordination with the structural

consultant and architect.

5. Mud Pumps (1-working and 1-standby) will be provided in each of the sumps with auto level controller so as to discharge

the collected water to external storm water drainage system.

Storm Water Disposal from Terraces

1. Rain water pipes / spouts will be provided from terraces to ground level for taking out the rainwater.

DESIGN CONCEPT REPORT 55 M.E.P.

SERVICES

Page 56: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

2. Slope of natural ground and infiltration capacity of open ground within the plot will not be sufficient to absorb /

dispose off surface water.

3. Looking to rain intensity in the vicinity, storm water is proposed to be disposed off through a network of channels,

pipes and chambers / catch basins.

4. The rainwater from the terraces will be disposed off through channels / pipe network.

5. A grating at the main entrance will be provided to prevent entry of outside rainwater to the premises.

6. Ground shall have minimum 1:500 surface slopes towards storm water collection system.

D.3.F. Rain Water Collection and Harvesting

Design Criteria

Broadly, there are two options for rain water harvesting:

1. 100% percolation / infiltration of the rain water to raise the sub-soil water levels and no reuse.

2. Maximum possible storage of rain water falling in the said premises and re-using the same for flushing, air-conditioning and

irrigation, surplus water to be used for percolation / infiltration.

The first option of 100% percolation / infiltration is possible only in the places where dry sub-soil aquifers are available so that the

ground water table is recharged. This option doesn’t give the immediate benefit of water to the society, but over a period of time

maintains or increases the water table of the area.

Second option of storage of rain water and then re-using the same with suitable treatment is more advantageous in the present

scenario where we are facing shortages of water. The stored rain water can be re-used for air-conditioning, flushing and irrigation.

In this case, the initial rains are allowed to drain away in the harvesting well or city drainage so as to clean the storm water

network and achieve clearer and better quality of rain water for usage.

Depending upon the space availability and ground water conditions, we will decide the exact system for rain water harvesting.

DESIGN CONCEPT REPORT 56 M.E.P.

SERVICES

Page 57: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

D.3.G. Sanitary Fixtures and Water management system Fittings:

Since this is a high end project, the best quality fittings as approved by architect shall be used.

Water saver taps, push type fittings for basins / sinks / urinals shall be used.

Flush valves with facility to adjust discharge shall be used.

Water less urinals shall be used in some of the executive areas to reduce the water consumption.

D.4 Water management system Materials and Finishes

The following is schematic list of water management system materials, which we have considered at this stage.

Water Supply Network: Copper pipes shall be used for all internal hot and cold domestic water lines for hotel. C-PVC/PE-AL-PE pipes

shall be used for all the internal flushing water supply lines. Galvanised Iron pipes shall be used for all lines in the plumbing shafts for

hotel. Suitable insulation and protection will be provided to all the water supply lines at terraces and in ducts. Hot water lines will be

suitably insulated to prevent heat losses. CPVC pipes will be used for supply of RO / purified water. On terrace, UV stabilized CPVC

pipes will be used and proper protection will be given.

Sewerage Disposal System: Glazed stoneware pipes and RCC pipes with PCC haunch shall be used for external drainage system

with proper gradient and brick masonry chambers/manholes with CI covers and steps, shall be constructed at all junctions of sewer

lines and at point of change in direction of flow. For vertical soil and waste drainage lines, centrifugal cast iron pipes with drip seal /

lead caulked joints shall be used. For all suspended drainage pipe lines within the building, C.I LA class pipes shall be used with proper

gradient.

Rain Water Disposal System: RCC pipes with PCC haunch shall be used for external storm water disposal system with proper

gradient and brick masonry chambers/manholes with grating / covers and steps at all junctions of storm drain lines and at point of

change in direction of flow. On driveways and landscape areas, properly designed storm water channels shall be provided as per the

DESIGN CONCEPT REPORT 57 M.E.P.

SERVICES

Page 58: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

landscape features. For vertical rain water down take lines, centrifugal cast iron pipes with drip seal / lead caulked joints shall be

used. For all suspended storm water drain pipe lines within the building, C.I LA class pipes shall be used with proper gradient.

Water Tanks / Pumps: Underground water tank will be constructed in R.C.C. with CI manholes / steps and MS ladders. All pumps

will be vertical / horizontal submersible pumps with control panel and variable frequency driven.

Sanitary Fixtures / Water management system Fittings: Being a high end project, the best quality fittings as approved by

architect will be used. Water saver taps, push type fittings for basins / sinks / urinals, low volume dual flush cisterns will be used to

reduce water consumption.

The details of other water management system materials and finishes will be worked out at the stage of finalization of the design.

PART E:- FIRE ENGINEERING AND LIFE SAFETY

1.0 Introduction

The following Fire Engineering Concept report has been produced by M/s. PANKAJ DHARKAR ASSOCIATES for the 5 STAR HOTEL project at Varanasi. The purpose of this report is to provide the client and the design team with an appreciation of the key fire safety provisions necessary within the building at this stage in the development’s design. This report will also subsequently be used for submission to the Chief Fire Officer (CFO) for his consideration when issuing a Final No Objection Certificate (NOC) for the project.

DESIGN CONCEPT REPORT 58 M.E.P.

SERVICES

Page 59: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

The overall fire safety concepts for the building described within this report will deal with the means of escape strategy within the building and the interaction with the physical fire safety features proposed within the building, such as compartmentation and fire separation. In addition to these elements, the active fire safety features, such as sprinkler protection and smoke control, will be introduced along with the building’s proposed fire-fighting strategy.

1.1 Design Standards Considered for Fire Safety Systems

Fire safety systems within the building will be designed to a selection of appropriate standards as indicated below:

Fire Alarm System

NFPA 72, National Fire Alarm Code, 2002 Ed

   Sprinkler System

As per NBC - 2005

   Wet Riser System

As per NBC – 2005

   Portable Fire Extinguishers

As per NBC – 2005

   Emergency Lighting

As per NBC – 2005

   Fire resistance of elements

As per NBC – 2005

   Fire Service Access &

As per NBC – 2005

DESIGN CONCEPT REPORT 59 M.E.P.

SERVICES

Page 60: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Facilities   Fire-fighting Lifts

As per NBC – 2005

   Car Park Ventilation

As per NBC - 2005

The basic parameters for the fire safety design of 5 STAR HOTEL will be therefore be the following local fire safety codes;

National Building Code of India Part IV Fire & Life Safety 2005

1.2 Building Classification

In accordance with NBC - 2005 5 STAR HOTEL will be classified as Group A6.

2.0 Means of Escape

2.1 Emergency Egress Philosophy

The evacuation strategy for the building will be based upon minimizing disruption to occupants in the event of a small fire incident, or a false alarm, while efficiently evacuating those people who may be in direct danger from the effects of a fire.

DESIGN CONCEPT REPORT 60 M.E.P.

SERVICES

Page 61: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

2.2 Staircases

As per NBC – 2005, the escape stairs provided throughout the building will be a minimum of 1.5m each in width.

All stairs serving the basement car park will also be a minimum width of 1.5m.

No exit shall be less than 1000mm except in assembly areas where this is increased to 2000mm

 Number of Occupants per ‘Unit Exit Width’

 Stairway

s RampsDoor

s       Residential (Group A) 25 50 75       Mercantile (Group F) 50 60 75       Assembly (Group D) 40 50 60       Car Park (Group H) 50 60 75

Occupants per Unit Exit Width for Stairs, Ramps & Doors to be applied to 5 STAR HOTEL

All stairs will be physically separated at ground floor level such that each stair is provided with two exits (one from the above ground floor and one from below).

2.3 Basement Car Park Escape

DESIGN CONCEPT REPORT 61 M.E.P.

SERVICES

Page 62: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Escape from the basement car park will be via fire protected stairs which will discharge direct to outside at ground floor level. All basement stairs will be provided with protected lobbies with 1 hour fire resisting doors.To enable the basement travel distances to be achieved, more than one entry point into a protected lobby to an escape stair may be created.

As such, the minimum width of stairs serving the basement car park will be 1.5m.

Note: As the car park is sprinkler protected, NBC permits the car park ramps to be considered part of the escape from the car park levels - as such, if required, this approach will be adopted if considered appropriate.

2.4 Compartmentation & Structural Fire Protection

2.4.1 Structural Fire Protection

ElementFire Resistance Rating (hours)

   External Load Bearing Walls  Supporting more than one floor, columns, or other walls 3Supporting one floor only 3Supporting a roof only 3Internal Load Bearing Walls  Supporting more than one floor, columns, or other bearing walls 3Supporting one floor only 2Supporting roofs only 2   Columns  Supporting more than one floor, columns, or other bearing walls 3Supporting one floor only 2Supporting roofs only 2

DESIGN CONCEPT REPORT 62 M.E.P.

SERVICES

Page 63: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

   Beams, Slabs, Plate Girders, Trusses, and Arches  Supporting more than one floor, columns, or other bearing walls 3Supporting one floor only 2Supporting roofs only 2Floors 2Roofs 1Interior Non-bearing Walls 0Top Spire 0Fire Refuge Areas (Walls) 2Staircases  Walls 3Ceilings 2Corridor Walls 1Lift Enclosure (Walls) 2Compartment Walls 2Service Ducts/Risers & Lift Machine Rooms 2Transformer, Switchgear & Generator Rooms (Walls) 4AHU Rooms 1

Table for Fire Resistance Rating of Structural Members & Other Elements of Construction

2.4.2 Building Materials

Load bearing elements of construction, and elements of construction for which the required fire resistance is 1 hour or more, will be of non-combustible material. Stairways and corridors will not contain any combustible material.

DESIGN CONCEPT REPORT 63 M.E.P.

SERVICES

Page 64: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

2.4.3 Fire DoorsThe following fire resistance periods for doors will be applied within the Building.

Door Location  Fire Resistance Rating (hours)

     Staircase, protected lobby & refuge doors   2 hours     Corridors doors   2 hours     

Lift EnclosuresLanding Doors 1 hour

 Car Doors 1 hour

 Basement Doors 2 hours

     Service Ducts/Risers Doors   2 hours     Transformer, Switchgear & Generator Room Doors   2 hours     Doors to AHU Rooms   1 hour

Guest Room Doors 1 hour

Table for Summary of Door Fire Resistances

2.4.4 Façade Design

In order to limit the potential for fire spread floor-to-floor via the exterior of the building, the minimum distance between the top of the opening on a lower floor and the sill of that on the floor above shall be 0.9m so that the fire

DESIGN CONCEPT REPORT 64 M.E.P.

SERVICES

Page 65: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

would have to travel at least 0.9m between storeys. The fire resistance rating of any such construction will be a minimum of 1 hour.

Figure shows Location of Areas of Fire Resistant Façade Required to Prevent External Fire Spread

The requirement highlighted above is only taken to apply to the building’s external envelope and not within the central atrium space which passes through the building’s hotel portion. The atrium space will be glazed floor to ceiling however any areas of fire load (ie. the contents of the hotel bedrooms) are contained behind a 1 hour fire rated corridor and therefore direct flame impingement (and hence fire spread floor-to-floor) via the atrium will not occur.

2.4.5 Staircase Enclosure Protection

The internal enclosing walls of staircases shall be of brick or RCC construction with a minimum fire resistance of 3 hours. All enclosed stairs shall be accessed via a lobby with both doors (lobby & stair door) having a minimum fire resistance of 30 minutes.Staircases will be mechanically pressurised throughout in according to NBC.

2.4.6 Lift Shaft Enclosure Protection

DESIGN CONCEPT REPORT 65 M.E.P.

SERVICES

Page 66: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

The walls enclosing the lift shafts shall have a minimum fire resistance of 2 hours. Shafts shall have permanent vents at the top of 0.2m2 minimum free area. have a minimum fire resistance of 1/2 hour.The maximum number of lifts in one bank shall be four. The shaft for the fire lift in a lift bank shall be separated from the adjacent lifts by brick masonry or RCC with a minimum fire resistance of 2 hours.

The lift machine room shall be separate from the shaft and shall not contain any other machinery.

Where lifts communicate between the above and below ground levels (ie. basement), the lift lobby at each basement level will be pressurised and provided with fire doors able to achieve 2 hours fire resistance.

These doors may be kept in the open position by an electro-magnetic device linked with the smoke detection system.

2.5 Fire Safety Systems

2.5.1 Sprinkler Protection

The building will be protected throughout (inc. basement levels) by an approved and supervised automatic sprinkler system, to be designed and installed in accordance with NBC – 2005 norms.

As per NBC – 2005 the under ground water tank for Hydrant & Sprinkler System shall be provided.

A Siamese connection will be provided near all Fire Department vehicle set down areas.

Rooms containing other types electrical equipment should be sprinkler protected or provided with an alternative fire suppression system. Such alternative fire suppression systems should be installed in accordance with the appropriate standard, as listed below.

Fire Suppression System Installati

DESIGN CONCEPT REPORT 66 M.E.P.

SERVICES

Page 67: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

on Standard

   Low, medium, and high expansion foam systems NFPA 11   Carbon dioxide systems NFPA 12   Water spray fixed systems NFPA 15   Deluge foam-water sprinkler systems NFPA 16   Dry chemical systems NFPA 17   Wet chemical systems NFPA 17A   Water mist systems NFPA 750

Table for Design standards for various fire suppression systems

2.5.2 External Fire Hydrants

A private ring main, with fire hydrants, will be provided in the area immediately surrounding the building for use by the Fire Service upon their attendance at an incident.

2.5.3 Internal Fire mains (Standpipe System)

Internal fire mains will be provided within the building to assist in fire-fighting operations for both the above and below ground floors (ie. from the lowest to the highest storey within the building). The system will be provided as per NBC – 2005.

DESIGN CONCEPT REPORT 67 M.E.P.

SERVICES

Page 68: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

The system will be provided with outlets within every escape stair enclosure (or protected lobby associated with each escape stair enclosure). Additional outlets will be provided where the most remote portion of a floor or storey is more than 60m, measured along a route suitable for laying hose, from a hose connection point.

The fire protection system for the internal part of the building will be supplied by three fire pumps (2 x electrical and 1 x Diesel) drawing from a dedicated water storage tank with an effective water capacity to supply the fire systems.Pumps requirement as per NBC - 2005.

For Wet Riser and, Hose Systems (Hydrant System) & Sprinkler System AS per NBC – 2005

Electric motor driven main fire pump set (hydrant) complete, 2850 lpm with 75KW Motor

Electric motor driven main fire pump set (sprinkler) complete, 2850 lpm with 75KW Motor

Diesel engine driven standby pump set (common) complete, 2850 lpm with 93BHP Engine

Electric motor driven jockey pump set (common) complete, 180 lpm with 11KW Motor

Water Storage tank

The Minimum water storage required for Fire Protection System as per NBC – 2005 is 2,00,000 liters under ground tank and 20,000 liters over head tank. 2.5.4 Hose Reel System

A hose reel system will be installed within the building such that every part of the floor area is within 30 meters of a hose reel. The hose reels will be provided within either the protected stair enclosure, or the associated protected lobby, within a recessed area such that its presence does not reduce the effective width of the escape route. The provision of a hose reel system within the building is predominately for use by the building's occupants (prior to fire brigade arrival) and not for use by fire-fighters who will use their own hoses/equipment and the wet rising main provided in the fire-fighting lobby.

DESIGN CONCEPT REPORT 68 M.E.P.

SERVICES

Page 69: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

2.5.5 Fire Extinguishers

Portable fire extinguishers are to be provided throughout all areas of the buildings in accordance to NBC – 2005.

2.5.6 Fire Alarm & Detection

All parts of the building will be provided with a fully addressable automatic fire detection system and an emergency voice alarm/communication system or evacuation sounders as appropriate. The design, installation and testing of the system should be in accordance with NFPA.

The system will be designed to sound the alarm on the floors that require evacuation. 2.5.7 Backup Power Supplies

An alternative source of LV/HV power will be provided from either two separate sub-stations or a diesel generator of adequate capacity for all necessary life safety & fire-fighting systems. 2.6 Smoke Ventilation & Control

2.6.1 On Floor Smoke Ventilation (floors above ground)

Each storey of the building, above ground level, will either be provided with;

Openable external windows with a total minimum free area of 2.5% of the floor area at that level, with the windows distributed as evenly as reasonable possible to promote cross ventilation of the floors;

OR

A mechanical smoke clearance system designed to achieve an equivalent level of safety (in this instance extract is required from the fire floor, or apartment of fire origin, only and not all floors/all apartments simultaneously).

DESIGN CONCEPT REPORT 69 M.E.P.

SERVICES

Page 70: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

2.6.2 Basement Ventilation

In order to provide a smoke free environment within the basement level, thereby enabling attending fire-fighters to locate and deal with a incident in a short a time as possible, basement level requires to be provided with adequate smoke ventilation.

In accordance to NBC basement level should be provided with a mechanical ventilation system capable of achieving 15 a/c hr in ‘normal mode’ increasing to 30 a/c hr in ‘fire mode’. In addition to the mechanical ventilation described above, also requires that natural ventilation be provided from each level via smoke outlets around the building’s perimeter.

Various types of CO/multi gas type detectors covering the entire basement will be integrated into the impulse ventilation system.

2.6.3 Smoke Ventilation to Lifts

All lift shafts will be provided with permanent vents at the head with a minimum clear area of 0.2m2 and will open into pressurised lobbies.

Lift lobbies internal to the building (both above and below ground) will be provided with a pressurisation system operated automatically on fire detection (lobbies only pressurised on floor of fire origin).

DESIGN CONCEPT REPORT 70 M.E.P.

SERVICES

Page 71: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

2.7 Fire Service Access & Facilities

2.7.1 Fire Fighting Philosophy

The philosophy to be adopted for fire-fighting within the building will be such that sufficient internal provisions are included within the design in order that a ‘relatively’ safe environment within the building can be created, in an area located near the floor of fire origin, such that fire-fighting activities can all take place internally and that external fire-fighting is not considered necessary.2.7.2 Perimeter/External Access

The building requires an open space/courtyard be provided around the entire perimeter of the building, a minimum of 6m on either side, to allow sufficient Fire Service vehicle access to the building.

The necessity for vehicle access round all sides of the building is based upon the presumption that the Fire Service expect to be able to fight a fire from outside the building as well as internally.However, the fighting strategy for the Building is that ALL fire-fighting will occur from within the building (ie. from the fire-fighting shaft using the wet rising mains etc.). This is the preferred strategy as it is consistent for ALL fire locations within the building.

Where access to the site for the Fire Service is provided, the minimum width of any gate will be 6m and any entrance canopy/archway will be a minimum of 4.5m in height. The open space at the entrance to the building will be paved up to a minimum of 6m from the building and the paving will be capable to supporting the weight of the a Fire Appliances up to 48 metric tonnes with a point load of 10kgs. Per cm2. The paved space will be free of obstructions and motorable.

Exit Signs

Self illuminating, electrically operated, exit signs will be provided on all floors and in the basements indicating the direction of escape.

DESIGN CONCEPT REPORT 71 M.E.P.

SERVICES

Page 72: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Emergency Lighting

Emergency lighting will be provided throughout the building in accordance with NBC. The lighting will be powered from a source independent on that for the building’s normal lighting capable of continuous operation for a minimum duration of 90 minutes.

The lighting will be positioned such that it clearly indicates all escape routes within the building to allow the safe movement of people in an emergency as well as providing illumination to all appropriate fire safety equipment. Emergency lighting will be sited to cover the following locations;

Near each intersection of corridors,

At each exit door

Near each change in direction of escape route

Near each staircase so that each flight of the stairs receives direct light

Near any change in floor level

Outside each final exit

Near each fire alarm call point or emergency communication deviceNear any fire-fighting equipment (eg. fire extinguishers/hoes reels etc.)

To illuminate exit signage

Note: ‘Near’ is taken to be within 2m (measured horizontally)

DESIGN CONCEPT REPORT 72 M.E.P.

SERVICES

Page 73: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

The horizontal luminance at floor level on the centreline of an escape route will be at least 10 lux. For escape routes up to 2m in width, 50% of the route will be lit to a minimum of 5 lux.

Fire Stop Systems

The following areas / services to be minimally provided the passive fire protection system.

The cable ducts shall be sealed at every floor with non combustible materials having the same fire resistances the fire eating of the duct.

The removable cover in the floors and the access panels shall be of the same strength of the fire rating as the floor and walls.

Every vertical openings between the floors of a building shall be suitably enclosed or protected as necessary to provide reasonable safety to the occupants while using the means of egress by preventing spreads of fire , smoke, or flames through vertical openings from floor, thus allowing occupants to complete their safe use of the means of egress.

DESIGN CONCEPT REPORT 73 M.E.P.

SERVICES

Page 74: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

- ANALOGUE ADDRESSABLE FIRE DETECTION AND ALARM SYSTEM-

1.0 Design Basis

Design Standard : National Building Code of India / NFPA 72

Approvals : All major equipments shall be approved by UL / FM / Equivalent

Type of Occupancy : Five Star Deluxe classification A6 as per NBC

Systems required : Automatic and manually operated Fire alarm system

Automatic FAS using : Automatic spot type smoke / heat detectors, hooters / sounders

Manual FAS using : Manual call points, hooters / sounders

Other devices : Monitor modules, Control Modules, Isolators and Relays

Cables & Conduits : ISI marked

1.1 Selection criteria

Car parking areas : Spot type Heat detectors with Manual call points & sounders

Guest rooms : Multi criteria Detectors

DESIGN CONCEPT REPORT 74 M.E.P.

SERVICES

Page 75: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Corridors : Multi criteria Detectors Manual call points & Sounders

AHUs : Duct smoke detectors

Electrical rooms : Spot type Photo-electric smoke detectors

Mechanical rooms : Spot type Photo-electric smoke detectors

Oil handling areas : Spot type Heat detectors

Area above False Ceiling : Spot type Smoke detectors (if height is more than 800mm and hazardous)

Restaurants : Multi Criteria detectors

Kitchens : Spot type Heat detectors

Controls : Control modules for Lift control, AHU control and Door control

1.2 System Description

Analogue addressable fire detection and alarm system is proposed for this project. The fire alarm system Main control panel shall be micro processor based and acts as the brain of the system.

This control panel shall be connected to various input devices like automatic spot type smoke detectors and heat detectors by the Initiating Device Circuits (IDC). The addressable call points, monitor modules (which are used to connect conventional switching devices to addressable loop) and control modules (which are used to connect

DESIGN CONCEPT REPORT 75 M.E.P.

SERVICES

Page 76: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

actuation devices like small relays to addressable loop) are also connected in the same IDC. Each IDC can be connected with 99 automatic spot type addressable detectors and 99 modules.

The control panel shall also be connected to various output devices like electronic hooters, sounders and flashers / strobes by Notification Appliance Circuits (NAC). The conventional devices can be connected through control modules. The number of devices is based on the current consumption. Loop powered sounders / sounder bases are connected in the IDC itself. Power supply requirement for output devices shall be calculated.

Monitor modules are used to connect conventional switches like Fire protection system flow switches, Valve tamper switches, Pressure switches, Level switches and other monitoring devices. Control modules are used to connect conventional horns / strobes, Elevator recall control and relays, Magnetic door lock release control, Air circulation system control, smoke and fire damper controls.

Isolators (or) isolator bases are used to isolate a section of devices in case of fault, to avoid isolation of entire loop or panel. The detectors and devices in the remaining sections will continue to function even in case of isolation of one or more such sections.

All wiring shall be completely supervised. The panel shall also be networkable and interconnection to control panel by others shall be done with the provision of suitable modules as required.

The system to supervise fire detection and notification system, microprocessor based operating system having the following; capabilities, features and capacities:

1.3 Fire Alarm DetectionAlarms generation in case of fire

Notification based on requirements

Building Evacuation.

Fire alarm panel to have inbuilt voice evacuation system to safe evacuation of Guests & staff of hotels.

Fire alarm panel to have networking capability for expansion purpose.

DESIGN CONCEPT REPORT 76 M.E.P.

SERVICES

Page 77: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Fire alarm panel to have capability of integration with 3rd party BMS.

Fire alarm to have auto dial up facility for reporting alarms.

1.4 Fire alarm to have following functionality:

System Operation: Activation of any system fire, security, supervisory, trouble, or status initiating device shall cause the following actions and indications at all network displays with basic graphics and multiple detail screens.

Sound an audible alarm and display a custom screen/message defining the building in alarm and the specific alarm point initiating the alarm in a graphic display. The display shall provide standard NFPA graphical symbols indicating hazardous materials and personnel situations critical to situation management. Hazmat Icons must conform to NFPA standard 170 formats.

The system should have auto dialer unit to inform fire station in case of any alarm.

System should have display capacity to provide information related to particular alarm condition.

Fire alarm panel should have two level of escalation. If any alarm condition is initiated, local alarm to panels and low tone warning alarm should be broadcast to BOH area. After conformation of alarm or unattended alarm for defined duration, alarm should sound at higher volume level and broadcast evacuation messages for occupant’s safety.

System should be password protected to avoid unauthorized access to panel for acknowledgement, re-set etc.

1.5 Design Parameters for Fire Detection and Alarm System:

The fire alarm should have inbuilt voice evacuation system.

The system should be intelligent, addressable, self-diagnostic, and shall generate automatic reports based on requirements.

DESIGN CONCEPT REPORT 77 M.E.P.

SERVICES

Page 78: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

The zoning will be done based on several aspects mentioned below:

For each guest room.

Public area or common area like Food outlet, etc.

Staircase area.

Kitchen and other utilities or back house level of requirement.

Control rooms like plant room should also be notified for zones.

Service area and service room.

Trouble Condition:

Display at the local fire alarm control panel graphic LCD display, the origin of the trouble condition report.

Activate trouble audible and visual signals at the control panel and as indicated on the drawings.

Audible signals shall be silenced from the fire alarm control panel by a trouble acknowledge switch.

Trouble reports for primary system power failure to the master control shall be optionally delayed for a period of time not greater than 200 seconds. Trouble conditions that have been restored to normal shall be automatically removed from the trouble display queue and nor require operator intervention. This feature shall be software selectable and shall not preclude the logging of trouble events to the historical file.

Security Condition:

The Local Fire Panel shall be “UL” listed for safety purposes.

Vendors should also provide reference of installed site database.

DESIGN CONCEPT REPORT 78 M.E.P.

SERVICES

Page 79: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Fire Alarm System should minimally provide:

Individual alarm zone is required along with LCD display for indication of device details and other required information.System should be capable enough to ascertain its device status and conditions.Panel should also provide indication if there is any trouble or fault in any devices.Addressable input circuits for monitoring purpose.

Addressable output circuits for monitoring and controlling purpose.

Audio and Visual alarm at the panel.

System should also trigger commands to sprinkler system in case of fire.

System shall have capabilities for live voice evacuation.

Live voice instruction shall override preset alarm messages.

System should be capable enough to position fire dampers in mentioned area.

Amplifiers and Zone switches based on system requirement.

System should have capacity to expand to other sub panels.

Override of background music system during message transmittal.

Automatic elevator retrieval during alarm conditions.

Equipment Requirements:

Smoke and Heat Detectors:

At least it should comply with LPCB/NFPA/UL requirements, addressable, self-diagnostic, system line powered, photoelectric with LED for status indicator like normal operation, alarm and trouble.

Detectors provided in Guest rooms should have audible base for alarm conditions.

The smoke detector shall be an intelligent digital multi criteria detector. Detectors shall be listed for use as open area protective coverage, in duct installation and sampling assembly installation and shall be insensitive to air

DESIGN CONCEPT REPORT 79 M.E.P.

SERVICES

Page 80: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

velocity changes. The detector communications shall allow the detector to provide alarm input to the system and alarm output from the system within four (4) seconds.

Manual Call Point:

Manual call stations should be provided in all emergency exit routes. Other station should be located in required exit areas of room, area or buildings.

Manual stations shall contain the intelligence for reporting address, identity, alarm and trouble to the fire alarm control panel.

The manual station communications shall allow the station to provide alarm input to the system and alarm output from the system.The manual station shall be equipped with terminal strip and pressure style screw terminals for the connection of field wiring. Surface mounted stations where indicated on the drawings shall be mounted using a manufacturer's prescribed matching red enamel outlet box.

Audio / Visual Sounders for warning conditions:

The Horn or horn/strobe appliance as indicated on the drawings shall be a synchronized temporal horn with a synchronized strobe light with multiple candela taps to meet the intended application. The appliance shall be red or white as indicated on the drawings. The strobe light taps shall be adjustable for 15/75, 30/75, 75, and 110 candelas. The appliance shall be red for wall mounted and white for ceiling mounted. Ceiling mounted appliances shall be rated for that application.

Alarm sounding devices should have various options for high or low dB of output. Provided speakers should produce minimum of 77dB of outputs. Internal and external areas should have difference of 15dB sound level to convey clear alarm message.

DESIGN CONCEPT REPORT 80 M.E.P.

SERVICES

Page 81: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Installation of these devices should be done common areas, corridors, kitchen, food lounge, specialty rooms, parking and other areas.

Each guest room, should have minimally of 60dB output sounder or audible device for warning.

Power Supply and Battery Requirement:

Battery supply should be provided with panel such that it should allow 2 hours of minimum passive state and 30 minutes in alarm mode.

Building Evacuation Requirements:

In case of alarm, automatic evacuation message should be broadcasted to defined areas of the building. With prior permission, this system may be incorporated with background music system.Speakers and Amplifiers ratings should also take in the account while designing system. Background music should be override when any incident occurs.System should be capable enough to select any zone and/or group of zones based on Zone selection switch.Live evacuation messages facility should be provided. This paging will override all other messages.System should have capability to give pre alarm notification.

Alarms tones should be followed by evacuation messages. The message shall advice all building occupants to leave building immediately in orderly manner. Customized messages should also be possible to broadcast. The sequence should be repeated after regular interval till system has been reset.

Emergency evacuation and voice system should have amplification capacity of extra 25% in each channel.

1.6 Major Item List

DESIGN CONCEPT REPORT 81 M.E.P.

SERVICES

Page 82: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

1. Main Fire alarm control panel Analog addressable, networkable, capacity with battery & charger, Printer 2. Automatic spot type Analogue addressable Multi criteria detector 3. Automatic spot type Analogue addressable heat detector 4. Addressable Manual call points 5. Electronic Hooters 6. Flashers / strobes 7. Monitor modules 8. Control modules 9. Remote response indicators 10. Short Circuit Isolators 11. Duct detectors 12. Repeater panel 13. PC workstation with software for display and control of system devices

DESIGN CONCEPT REPORT 82 M.E.P.

SERVICES

Page 83: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

- CCTV AND ACCESS CONTROL SYSTEMS -

DESIGN CONCEPT REPORT 83 M.E.P.

SERVICES

Page 84: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

1.0 General Description:

The Integrated Access Control System’s (ACS) primary function should be to regulate access through specific doors, gates or barriers to secured areas of the facility. The objective is to provide overall building security and authorization of defined areas. Our goal is to provide reliable and highly secure infrastructure required to enhance the communications experience of staff and guests.

1.1Purpose behind Security Systems: To control and restrict unauthorized entry to guest and staff employee.To maintain records of movement of every employee.For continuous surveillance of desired areas. Video recordings often provide indisputable evidence in court in case of theft, employee pilferage or forced entry.A system, which will acts as repellent for prospective intruders.

1.2 Design Requirements:

Security system should be PC based for perimeter protection, access control and closed circuit television monitoring integrated with various type of sensors, fulfilling the operational need for security.

A world class secure infrastructure based on highly resilient Security system. The nature and extent of the security systems should cover all areas of building including perimeter, interior, common areas like parking etc. Perimeter protection system will take care of walls, fences, and gateways. To provide access control based security for authorization of different access points and closed circuit television monitoring for surveillance purpose.

All security system should be provided with emergency power backup for 2 hours.Centralized monitoring and controlling from the main security center.

Cameras to connect on IP network as shown below. All these IP connected cameras will be connected to PC via WAN or video matrix.

DESIGN CONCEPT REPORT 84 M.E.P.

SERVICES

Page 85: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Closed circuit television should provide full coverage for all desired and required areas. It should be interfaced to allow programmable control for constant monitoring, motion based monitoring etc.

Location of CCTV should be strategic so it also prevents loss prevention. The following mention areas should minimum covered by CCTV:

Back of House.Public Areas.Food and beverage storing areas.Main reception and common seating areas.Cashiers office and safe area.Employee entry and exits.Parking areas.Public areas like corridors, lift, library etc.

External cameras should have weatherproof housing for protection. Lighting requirement to various locations also to be considered for camera design.

Interior cameras should provide clear images under normal lighting conditions.CCTV function should be controllable from one central location.

To view images one color monitor of proper screen size should be provided.

Motion detection is required to save images only if undefined motion has appeared in screen.

The access control system should be microprocessor based. Authorized person will hold the card, upon presenting this card; door will allow access to the particular door. The system will take note of entry and exit of each entry.

Also Controlled Access Parking is required to enter and exit to parking areas.

DESIGN CONCEPT REPORT 85 M.E.P.

SERVICES

Page 86: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

In case of fire, all doors should be unlock or lock depending on area requirement.

Fire exit doors should remain in latched position with electrical power. Power cut will make these doors unlatched.

All doors should be centrally controllable and programmable depending on requirement.

The main security center will have both access and closed circuit television monitoring system installed. Depending upon building area requirement arming/disarming of the doors as well as camera should be possible.

This security cabin/center will also have other life safety systems such as fire detection, Utility systems like building management system or any other utilities, which provides coverage to building property.

1.3 Perimeter Protection System:

In perimeter protection, any intrusion attempt is immediately identified by real time presentation of alarms and video picture by automatic “Pre-Set” PTZ – synchronized camera movement.

Walls should be provided full security coverage.Gateways should be provided at locations determined by security in charge. Lighting should also be provided in apparent manner, or where requirements allows.

1.4 Vehicle Monitoring System:

In lieu of increasing terrorist attack threat, Hotel industry today requires vehicle-scanning system. The building must have to protect from unwanted and hazardous materials in the building area.

Scanner will scan and records the underside of vehicle in building entry with high-resolution images. Underside vehicle images can be “matched” with color vehicle photos and license plates for image control, audit and security.

DESIGN CONCEPT REPORT 86 M.E.P.

SERVICES

Page 87: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

All data imagery should be archived for operator retrieval and analysis by license plate number. Images then should be reviewed with for extensive inspection and control purpose.

System should match the underside of the vehicle to confirm access by comparing the underside of the current vehicle with the previously saved image. Electrically operated barriers should be deployed at entry to have initial point of access to the building.

- INTEGRATED BUILDING MANAGEMENT -

It is envisaged to provide a state of the art Building Management System for the services and utilities being supplied in the building in order to ensure:

Thermal comfort for the customer.Security & Safety comfort for the customer.Technical comfort for the customer and the hotel maintenance teamCost reduction for the hotel managerEnergy optimization.

The primary services considered under the ambit of Integrated Building Automation shall be monitored and controlled centrally. The operating philosophy for these services shall be primarily focusing on energy optimization – especially considering that the facility is looking for green building certification; the Integrated BMS Solution proposed shall be designed for following systems:

Chiller plant Monitoring and Control. Pumping System Monitoring and Control TFA / Common area AHU monitoring & control. Ventilation system Monitoring and Control.

DESIGN CONCEPT REPORT 87 M.E.P.

SERVICES

Page 88: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

Guest Room HVAC monitoring (If required). Energy monitoring & auditing.

Soft /Hard wired Integration of other mechanical / Electrical utilities. Intelligent Lighting systems for Apartment and Hotel Fire Alarm System & Evacuation system Integration for alarms. Lift status monitoring. Kitchen refrigeration system. Maintaining Indoor air quality. Monitoring and control via Internet & Intranet. Data exchange to Property Management Systems.

1.0 Building Management

1.1 BMS workstation:

Building automation system to monitor & control utilities from the BMS work stations from Engineering office / Communication room & Security office. The BMS work stations to connect to standalone freely configurable DDC controllers. BMS network shall allow peer-to-peer communication. Building Automation system should have bi-directional capability with following open standards:

BACnet. LOnmark. EIB. OPC.

BMS workstation must provide bi-directional data communication & control via real time data exchange.

BMS workstation to transfer energy consumption related data to 3rd party maintenance software.

DESIGN CONCEPT REPORT 88 M.E.P.

SERVICES

Page 89: Mep Dbr Compilation

DESIGN BRIEF ON MEP SERVICES FOR UPCOMING 5 STAR HOTEL AT VARANASI

BMS workstation shall have minimum following features:

Color graphical floor plan & schematics display for mechanical / electrical systems. Protected Access. Shall have capability of monitoring & controlling via Internet / intranet. Alarm management & routing via e-mail / SMS / Fax. Shall have capability of online & offline trending of data points.

BMS workstation to schedule systematic preventative maintenance of all mechanical / electrical equipments.

1.2 DDC controllers:

DDC controllers shall have following features:

Must support open protocol communication (Bacnet / Lonmark) Must support “Peer to Peer” communication between controllers. Shall be latest offering of manufacturer’s range. Shall have inbuilt memory to store programs & data. Shall have Inbuilt Real time clock. Shall have inbuilt logic blocks to support control logic.

DESIGN CONCEPT REPORT 89 M.E.P.

SERVICES