Mems vibratory gyroscope simulation and sensitivity analysis kanwar 2015

24
A Project Report On MEMS Vibratory Gyroscope Simulation and Sensitivity Analysis SUBMITTED TO: ASST PROF SACHIN U. BELGAMWAR MECHANICAL ENGINEERING BITS PILANI, PILANI CAMPUS BY NEMISH KANWAR 2012A4PS305P

Transcript of Mems vibratory gyroscope simulation and sensitivity analysis kanwar 2015

A Project Report On

MEMS Vibratory Gyroscope Simulation and Sensitivity

Analysis

SUBMITTED TO:

ASST PROF SACHIN U. BELGAMWAR

MECHANICAL ENGINEERING

BITS PILANI, PILANI CAMPUS

BY

NEMISH KANWAR

2012A4PS305P

A REPORT

ON

MEMS Vibratory Gyroscope Simulation and Sensitivity Analysis By

Nemish Kanwar

2012A4PS305P

Prepared in the partial fulfilment of

Study Oriented Project

(ME F266)

Under the guidance of

Asst Prof SACHIN U. BELGAMWAR

(MECHANICAL ENGINEERING)

BITS PILANI, PILANI CAMPUS

June, 2015

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN)

1

CERTIFICATE

This is to certify that the work embodied in this report has been undertaken by: BITS ID:

2012A4PS305P, Nemish Kanwar, under my supervision, for the course ME F266 titled Study

Project at BITS Pilani, Pilani Campus references made to the authors of the original work.

Asst Prof Sachin U. Belgamwar

Mechanical Engineering

BITS Pilani, Pilani Campus

2

ACKNOWLEDGEMENTS

I want to sincerely thank Mr. SACHIN U. BELGAMWAR, Professor, Mechanical Engineering

Department, BITS Pilani, Pilani Campus for giving us an opportunity to make this esteemed

project on the topic: β€œMEMS Vibratory Gyroscope Simulation and Sensitivity Analysis”

under his guidance and support.

I would also like to extend my sincere thanks to Dr. Ankush Jain, scientist at CEERI Pilani for

finding out time from his busy schedule to assist and guide me in this project. This project

wouldn’t have been possible without him.

At last but not the least I would like to thank my other two group members, Varun Sharma and

Akershit Agarwal, with whom I used to discuss all the doubts and most of the times got my

doubts cleared.

Nemish Kanwar 2012A4PS305P

3

ABSTRACT

MEMS based gyroscopes have gained in popularity for use as rotation rate sensors in

commercial products like cars and game consoles because of their cheap cost and small sized

compared to traditional gyroscopes. The MEMS gyroscope consists of the basic mechanical

structure an electronic transducer to excite the system as well as an electronic sensor to detect the

change in the mechanical structures modal shape. Among various MEMS sensors, a rate

gyroscope is one of the most complex sensors from design point of view. The gyroscope consists

of a proof mass suspended by an assembly of cantilever beams, allowing system to vibrate in 2

transverse modes. In this paper, simplified lumped parameter model of tuning fork gyroscope is

modeled, and simulated using MATLAB. The structure of Gyroscope was analyzed for drive

frequency to gain maximum amplitude. The device was then simulated for various angular rates

for derived frequency to obtain the sensitivity of device.

4

TABLE OF CONTENTS CERTIFICATE ............................................................................................................................... 2

ACKNOWLEDGEMENTS ............................................................................................................ 3

ABSTRACT .................................................................................................................................... 4

TABLE OF CONTENTS ................................................................................................................ 5

TABLE OF FIGURE ...................................................................................................................... 6

LIST OF TABLE ............................................................................................................................ 6

1.GYROSCOPE .............................................................................................................................. 7

2.HISTORY .................................................................................................................................... 7

3.PRINCIPLE ................................................................................................................................. 7

4.DIMENSIONS OF GYROSCOPE .............................................................................................. 8

5.MASS CALCULATIONS ........................................................................................................... 9

6.SPRING CALCULATIONS ........................................................................................................ 9

7.DAMPING CALCULATIONS ................................................................................................... 9

7.1.FOR SLIDE FILM DAMPING ........................................................................................... 10

7.2.FOR SQUEEZE FILM DAMPING .................................................................................... 10

8.DRIVING FORCE ..................................................................................................................... 12

9.NATURAL FREQUENCY ....................................................................................................... 13

10.DAMPING RATIO .................................................................................................................. 13

11.EQUATION OF MOTION ...................................................................................................... 15

11.1DRIVE AXIS (Z-AXIS) ..................................................................................................... 15

11.2SENSE AXIS (Z-AXIS) ..................................................................................................... 15

11.3.OUTPUT (CURRENT) ..................................................................................................... 16

12.RESULTS ................................................................................................................................ 17

13.BIBLIOGRAPHY .................................................................................................................... 20

14.APPENDIX .............................................................................................................................. 21

14.1.CODE ................................................................................................................................ 21

5

TABLE OF FIGURE Figure 1: Gyroscope ........................................................................................................................ 8 Figure 2: beta convergence plot .................................................................................................... 11 Figure 3: Comb drive .................................................................................................................... 12 Figure 4: Code for BETA convergence ........................................................................................ 21 Figure 5: Code for MEMS device initialization ........................................................................... 22 Figure 6: Code for MEMS device Vibration analysis .................................................................. 22 Figure 7: Drive frequency v/s Amplitude response in sense direction ......................................... 17 Figure 8: Comparison of Sense Amplitude for same and different natural frequencies in drive and sense directions ............................................................................................................................. 18 Figure 9: Sense Response v/s Angular rate ................................................................................... 18 Figure 10: Sense Current v/s Angular rate .................................................................................... 19

LIST OF TABLE Table 1: List of Constants ............................................................................................................. 13

6

GYROSCOPE Gyroscopes are Physical sensors used to measure Angular rate of an object relative to inertial frame of reference[1]. The term gyroscope is attributed to French physicist Leon Foucault. Gyroscopes can track an objects angular rate and orientation and enable Heading Reference System (AHRS).

Combining 3 gyroscopes and 3 accelerometers in a 6-axis Inertial Measurement Unit (IMU) enables Inertial Navigation Systems (INS) for navigation and guidance.

Gyroscopes are divided into

1. Rate Gyroscopes which measures the angular rate of object 2. Angle gyroscopes which measures angular position

Essentially all existing Micro-Electro-Mechanical-Systems (MEMS) gyroscopes are of the rate measuring type and are typically employed for motion detection. When rate gyroscope is used to track orientation, its output signal is integrated over time to give orientation angle

Micromachined inertial sensors, consisting of accelerometers and gyroscopes, are one of the most important types of silicon- based sensors.[2] Microaccelerometers alone have the second largest sales volume after pressure sensors. It is believed that gyroscopes will soon be mass-produced at similar volumes once manufacturers are able to meet a $10 price target

HISTORY As early as the 1700s, spinning devices[3] were being used for sea navigation in foggy conditions. The more traditional spinning gyroscope was invented in the early 1800s, and the French scientist Jean Bernard Leon Foucault coined the term gyroscope in 1852. In the late 1800s and early 1900Γ­s gyroscopes were patented for use on ships. Around 1916, the gyroscope found use in aircraft where it is still commonly used today. Throughout the 20th century improvements were made on the spinning gyroscope. In the 1960s, optical gyroscopes using lasers were first introduced and soon found commercial success in aeronautics and military applications. In the last ten to fifteen years, MEMS gyroscopes have been introduced and advancements have been made to create mass-produced successful products with several advantages over traditional macro-scale devices.

PRINCIPLE The underlying physical principle is that a vibrating object tends to continue vibrating in the same plane as its support rotates. In the engineering literature, this type of device is also known as a Coriolis vibratory gyro because as the plane of oscillation is rotated, the response detected by the transducer results from the Coriolis term in its equations of motion.

𝐹𝐹 = 2π‘šπ‘šΞ© Γ— 𝑣𝑣 [1]

7

Where Ξ© and 𝑣𝑣 are the angular velocity and velocity of the device. It is observed that Coriolis force is perpendicular to drive velocity. So, motion in the force direction can be used to calculate Angular rate of the device

DIMENSIONS OF GYROSCOPE

FIGURE 1: GYROSCOPE

Proof Mass Dimensions, π‘Žπ‘Ž Γ— 𝑏𝑏 Γ— β„Ž = 1000πœ‡πœ‡π‘šπ‘š Γ— 1000πœ‡πœ‡π‘šπ‘š Γ— 5πœ‡πœ‡π‘šπ‘š

Clearance from base plate, β„Ž0 = 5πœ‡πœ‡π‘šπ‘š

Clearance between comb drives, 𝑔𝑔 = 2πœ‡πœ‡π‘šπ‘š

Number of combs, 𝑛𝑛 = 10

Beam dimensions, 𝐿𝐿 Γ— 𝑀𝑀 Γ— 𝑑𝑑 = 300πœ‡πœ‡π‘šπ‘š Γ— 15πœ‡πœ‡π‘šπ‘š Γ— 5πœ‡πœ‡π‘šπ‘š

Substrate Properties:

Silicon Single Crystal: Density, 𝜌𝜌 = 2330π‘˜π‘˜π‘”π‘”/π‘šπ‘š3

Young’s Modulus, 𝐸𝐸 = 1.79 Γ— 1011π‘ƒπ‘ƒπ‘Žπ‘Ž

Surrounding properties:

Nitrogen: Pressure, 𝑝𝑝 = 760𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Viscosity, πœ‡πœ‡ = 1.791 Γ— 10βˆ’5π‘˜π‘˜π‘”π‘”/π‘šπ‘šπ‘šπ‘š

8

Dielectric constant, πœ–πœ–π‘Ÿπ‘Ÿ =1.0053

MASS CALCULATIONS Mass equals density times volume

π‘šπ‘š = 𝜌𝜌 Γ— π‘Žπ‘Ž Γ— 𝑏𝑏 Γ— β„Ž = 1.1650 Γ— 10βˆ’8π‘˜π‘˜π‘”π‘”

SPRING CALCULATIONS According to Hooke’s Law, Force required to extend a spring by a distance,π‘₯π‘₯ Force, 𝐹𝐹required is directly proportional to stiffness. This law is named after 17th century British physicist Robert Hooke.

𝐹𝐹 = βˆ’π‘˜π‘˜π‘₯π‘₯

Each beam behaves as a cantilever beam in both drive and sense axis, spring constant for a cantilever beam can be found out [4]

Spring Constant for a cantilever beam π‘˜π‘˜ =

6𝐸𝐸𝐸𝐸𝐿𝐿3

[2]

𝐸𝐸π‘₯π‘₯ =1

12𝑀𝑀3𝑑𝑑 =

112

βˆ— (15𝑒𝑒 βˆ’ 6)3 βˆ— (5𝑒𝑒 βˆ’ 6) = 1.4063 Γ— 10βˆ’21π‘šπ‘š4

π‘˜π‘˜ =6𝐸𝐸𝐸𝐸π‘₯π‘₯𝐿𝐿3

For single beam π‘˜π‘˜π‘₯π‘₯ = 55.9375𝑁𝑁/π‘šπ‘š, since, there are 4 beams, 𝐀𝐀𝐱𝐱𝐱𝐱𝐱𝐱𝐱𝐱 = 𝟐𝟐𝟐𝟐𝟐𝟐.πŸ•πŸ•πŸ•πŸ•πŸ•πŸ•/𝐦𝐦

Similarly,𝐸𝐸𝑧𝑧 = 112𝑑𝑑3𝑀𝑀 = 1.5625 Γ— 10βˆ’22π‘šπ‘š4 𝐀𝐀𝐳𝐳𝐱𝐱𝐱𝐱𝐱𝐱 = 𝟐𝟐𝟐𝟐.πŸ–πŸ–πŸ–πŸ–πŸ–πŸ–πŸ–πŸ–πŸ•πŸ•/𝐦𝐦

DAMPING CALCULATIONS The air enclosing the proof mass will damp the system decreasing its potential amplitude.

In kinetic theory the mean free path of a particle, such as a molecule, is the average distance the particle travels between collisions with other moving particles.

Mean free path,πœ†πœ† = 𝑝𝑝 Γ— 5.1 Γ— 10βˆ’5 (p in torr) = 0.0388π‘šπ‘š

[3]

The Knudsen number 𝐾𝐾𝑛𝑛 is a dimensionless number defined as the ratio of the molecular mean free path length to a representative physical length scale. This length scale is the clearance between base plate and proof mass. The number is named after Danish physicist Martin Knudsen.

9

Knudsen number,𝐾𝐾𝑛𝑛 = πœ†πœ†β„Ž0

= 7752 [4]

Slide and squeeze film damping models play important role in the dynamics of the micro-electro-mechanical systems (MEMS) devices as they are important design parameters, which significantly affect the frequency-domain behavior and the quality factor (Q-factor) of the vibrating MEMS devices for both lateral and vertical motions.

For slide film Damping In our model the flow of fluid below will be a case of couette flow. In fluid dynamics, Couette flow is the laminar flow of a viscous fluid in the space between two parallel plates, one of which is moving relative to the other. The flow is driven by virtue of viscous drag force acting on the fluid and the applied pressure gradient parallel to the plates. This type of flow is named in honor of Maurice Marie Alfred Couette.

The effective coefficient of viscosity can be determined[5]

πœ‡πœ‡π‘’π‘’π‘’π‘’π‘’π‘’π‘₯π‘₯ =πœ‡πœ‡

1 + 2𝐾𝐾𝑛𝑛 + 0.2𝐾𝐾𝑛𝑛0.788π‘’π‘’βˆ’πΎπΎπΎπΎ10

[5]

= 1.1551 Γ— 10βˆ’9π‘˜π‘˜π‘”π‘”/π‘šπ‘šπ‘šπ‘š

To determine Damping Coefficient[6]

Area of Plate, 𝐴𝐴 = 1000πœ‡πœ‡π‘šπ‘š2

Damping coefficient, 𝐜𝐜𝐱𝐱 = πœ‡πœ‡π‘’π‘’π‘’π‘’π‘’π‘’π‘₯π‘₯ Γ— π΄π΄β„Ž0

= 𝟐𝟐.πŸπŸπŸ–πŸ–πŸ‘πŸ‘πŸπŸ Γ— πŸ–πŸ–πŸ‘πŸ‘βˆ’πŸ–πŸ–πŸ‘πŸ‘πŸ•πŸ• βˆ’ 𝐬𝐬/𝐦𝐦

For squeeze film damping Squeeze film effects naturally occur in dynamic MEMS structures because most of these structures employ parallel plates or beams that trap a very thin film of air or some other gas between the structure and the fixed substrate. An accurate estimate of the effect of squeeze film is important for predicting the dynamic performance of such devices. To determine damping coefficent[7][8] πœ‡πœ‡π‘’π‘’π‘’π‘’π‘’π‘’π‘§π‘§ =

πœ‡πœ‡1 + 9.638𝐾𝐾𝑛𝑛1.159 [6]

πœ‡πœ‡π‘’π‘’π‘’π‘’π‘’π‘’π‘§π‘§ = 5.7713 Γ— 10βˆ’11π‘˜π‘˜π‘”π‘”/π‘šπ‘šπ‘šπ‘š

10

𝒄𝒄𝒛𝒛 = πœ‡πœ‡π‘§π‘§ Γ— π‘Žπ‘Ž ×𝑏𝑏3

β„Ž03𝛽𝛽(1)

[7]

Where 𝛽𝛽(1) = οΏ½1 βˆ’ 192πœ‹πœ‹5βˆ‘ 1

𝐾𝐾5tanh οΏ½πΎπΎπœ‹πœ‹

2� ∞

𝐾𝐾=1,3,5 οΏ½ = πŸ‘πŸ‘.𝟐𝟐𝟐𝟐

FIGURE 2: BETA CONVERGENCE PLOT

Squeeze film damping coefficient was calculated = πŸ–πŸ–.πŸ—πŸ—πŸπŸπŸ—πŸ—πŸπŸ Γ— πŸ–πŸ–πŸ‘πŸ‘βˆ’πŸ•πŸ•πŸ•πŸ• βˆ’ 𝐬𝐬/𝐦𝐦

11

DRIVING FORCE The force required to drive the proof mass in constant motion is provided by comb drive as shown below. The fingers on the comb drive and the side of the proof mass increase the surface area of the capacitor, which increases the capacitance

FIGURE 3: COMB DRIVE

Capacitance of one finger of the proof mass is given by

𝐢𝐢 =2πœ–πœ–π‘Ÿπ‘Ÿπœ–πœ–0π‘™π‘™β„Ž

𝑔𝑔 [8]

Where 𝑙𝑙 is initial overlap between fingers of proof mass is, β„Ž is the height of gyroscope and 𝑔𝑔 is the gap between the fingers. πœ–πœ–0 and πœ–πœ–π‘Ÿπ‘Ÿ are absolute permittivity and dielectric constant

Electrostatic Force [9] on proof mass is given by

Energy stored in Capacitor 𝐸𝐸 =12𝐢𝐢𝑉𝑉2

𝐹𝐹 =

𝑑𝑑𝐸𝐸𝑑𝑑π‘₯π‘₯

=π‘›π‘›πœ–πœ–π‘Ÿπ‘Ÿπœ–πœ–0π‘™π‘™β„Ž

𝑔𝑔Δ𝑉𝑉2

𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 π‘’π‘’π‘‘π‘‘π‘›π‘›π‘šπ‘šπ‘‘π‘‘π‘Žπ‘Žπ‘›π‘›π‘‘π‘‘, πœ–πœ–0 = 8.854 Γ— 10βˆ’12 Fmβˆ’1

DC Voltage applied to the anchor of the proof mass, while an AC current is supplied to drive electrode[9]

𝐹𝐹 =π‘›π‘›πœ–πœ–π‘Ÿπ‘Ÿπœ–πœ–0π‘™π‘™β„Ž

𝑔𝑔(𝑉𝑉𝐷𝐷𝐷𝐷 + 𝑉𝑉𝐴𝐴𝐷𝐷)2

𝑉𝑉𝐴𝐴𝐷𝐷 = 𝑉𝑉0 sin(πœ”πœ”π‘‘π‘‘)

12

𝐹𝐹 =2π‘›π‘›πœ–πœ–π‘Ÿπ‘Ÿπœ–πœ–0β„Ž

𝑔𝑔𝑉𝑉𝐷𝐷𝐷𝐷𝑉𝑉0 sin(πœ”πœ”π‘‘π‘‘) [9]

𝐅𝐅 = 𝟐𝟐.πŸπŸπŸ•πŸ•πŸ‘πŸ‘πŸ•πŸ• Γ— πŸ–πŸ–πŸ‘πŸ‘βˆ’πŸ–πŸ– πŸ•πŸ•

NATURAL FREQUENCY The frequency with which undamped system vibrates

πŽπŽπ’™π’™ = οΏ½οΏ½π‘˜π‘˜π‘₯π‘₯π‘’π‘’π‘’π‘’π‘’π‘’π‘šπ‘š

οΏ½ = 1.3859 Γ— 105π‘‘π‘‘π‘Žπ‘Žπ‘‘π‘‘π‘šπ‘š

= πŸπŸπŸπŸπŸ‘πŸ‘πŸ–πŸ–πŸ•πŸ•πŸπŸπ’›π’›

πŽπŽπ’›π’› = οΏ½οΏ½π‘˜π‘˜π‘§π‘§π‘’π‘’π‘’π‘’π‘’π‘’π‘šπ‘š

οΏ½ = 4.6195 Γ— 104π‘‘π‘‘π‘Žπ‘Žπ‘‘π‘‘/π‘šπ‘š = πŸ•πŸ•πŸπŸπŸ•πŸ•πŸ•πŸ•πŸπŸπ’›π’›

DAMPING RATIO The damping ratio is a dimensionless measure describing how oscillations in a system decay after a disturbance. The damping ratio provides a mathematical means of expressing the level of damping in a system relative to critical damping. For a damped harmonic oscillator with mass m, damping coefficient c, and spring constant k, it can be defined as the ratio of the damping coefficient in the system's differential equation to the critical damping coefficient

𝜁𝜁 =𝑒𝑒𝑒𝑒𝑐𝑐

, 𝑒𝑒𝑐𝑐 = 2βˆšπ‘˜π‘˜π‘šπ‘š

πœ»πœ»π’™π’™ =𝑒𝑒π‘₯π‘₯

2οΏ½π‘˜π‘˜π‘₯π‘₯π‘šπ‘š= πŸ–πŸ–.πŸ–πŸ–πŸ–πŸ–πŸ•πŸ• Γ— πŸ–πŸ–πŸ‘πŸ‘βˆ’πŸ–πŸ–πŸπŸ

πœ»πœ»π’›π’› =𝑒𝑒𝑧𝑧

2οΏ½π‘˜π‘˜π‘§π‘§π‘šπ‘š= πŸ•πŸ•.πŸπŸπŸ–πŸ–πŸ–πŸ–πŸ–πŸ– Γ— πŸ–πŸ–πŸ‘πŸ‘βˆ’πŸ–πŸ–πŸ–πŸ–

TABLE 1: LIST OF CONSTANTS

S.no Property x-direction z-direction

1 Mass (π‘˜π‘˜π‘”π‘”) 1.1650 Γ— 10βˆ’8 1.1650 Γ— 10βˆ’8

2 Spring constant (𝑁𝑁/π‘šπ‘š) 223.75 24.8611

3 Damping Coefficient(𝑁𝑁 βˆ’ π‘šπ‘š/π‘šπ‘š) 2.3102 Γ— 10βˆ’10 1.9392 Γ— 10βˆ’7

4 Damping ratio 1.865 Γ— 10βˆ’13 5.2181 Γ— 10βˆ’11

5 Natural frequency (𝐻𝐻𝐻𝐻) 22067 7355

13

The system can be assumed to be a simple lumped mass model, with the system properties equivalent to as mentioned above.

FIGURE 4: LUMPED MASS MODEL

Using Newton’s Law F = ma, mathematical model can be made in the form of differential equations and solution can be obtained.

14

EQUATION OF MOTION Drive Axis (z-axis) The equation for damped system-mass system

π‘šπ‘šπ‘‘π‘‘2π‘₯π‘₯𝑑𝑑𝑑𝑑2

+ 𝑒𝑒π‘₯π‘₯𝑑𝑑π‘₯π‘₯𝑑𝑑𝑑𝑑

+ π‘˜π‘˜π‘₯π‘₯π‘₯π‘₯ = 𝐹𝐹

π‘šπ‘šπ‘‘π‘‘2π‘₯π‘₯𝑑𝑑𝑑𝑑2

+ 𝑒𝑒π‘₯π‘₯𝑑𝑑π‘₯π‘₯𝑑𝑑𝑑𝑑

+ π‘˜π‘˜π‘₯π‘₯π‘₯π‘₯ =2π‘›π‘›πœ–πœ–0β„Žπ‘”π‘”

𝑉𝑉𝑑𝑑𝑐𝑐𝑣𝑣0 sin(πœ”πœ”π‘‘π‘‘π‘‘π‘‘)

π‘šπ‘šπ‘‘π‘‘2π‘₯π‘₯𝑑𝑑𝑑𝑑2

+ 𝑒𝑒π‘₯π‘₯𝑑𝑑π‘₯π‘₯𝑑𝑑𝑑𝑑

+ π‘˜π‘˜π‘₯π‘₯π‘₯π‘₯ = 𝐴𝐴 sin(πœ”πœ”π‘‘π‘‘π‘‘π‘‘)

Using the natural frequency of the simple harmonic oscillator and damping ratio, we can rewrite this equation as

𝑑𝑑2π‘₯π‘₯𝑑𝑑𝑑𝑑2

+ 2𝜁𝜁π‘₯π‘₯πœ”πœ”πΎπΎπ‘₯π‘₯𝑑𝑑π‘₯π‘₯𝑑𝑑𝑑𝑑

+ πœ”πœ”πΎπΎπ‘₯π‘₯2 π‘₯π‘₯ = 𝐴𝐴 sinπœ”πœ”π‘‘π‘‘π‘‘π‘‘ [10]

Where,

𝑨𝑨 = πŸπŸπŸπŸπππŸ‘πŸ‘πππ’“π’“π’‰π’‰π’Žπ’Žπ’Žπ’Ž

π‘½π‘½π’…π’…π’„π’„π’—π’—πŸ‘πŸ‘ [11]

Displacement in x-direction,

As General solution tends to 0 for over damped case, therefore, neglecting it. Taking particular solution of

π‘₯π‘₯ = 𝐴𝐴 sinπœ”πœ”π‘‘π‘‘ + 𝐡𝐡 cosπœ”πœ”π‘‘π‘‘ which can also be written as x = X cos(Ο‰dt βˆ’ Ο•)[10]

Where 𝑋𝑋 =𝐴𝐴

οΏ½(πœ”πœ”πΎπΎπ‘₯π‘₯2 βˆ’ πœ”πœ”π‘‘π‘‘2)2 + (2𝜁𝜁π‘₯π‘₯πœ”πœ”πΎπΎπ‘₯π‘₯πœ”πœ”π‘‘π‘‘)2

; tanπœ™πœ™ =2πœπœπœ”πœ”πΎπΎπ‘₯π‘₯πœ”πœ”π‘‘π‘‘

πœ”πœ”πΎπΎπ‘₯π‘₯2 βˆ’ πœ”πœ”π‘‘π‘‘2 [12]

Sense Axis (z-axis) Due to angular rate of device in y-axis, a Coriolis force is induced in z-axis. The force can be

given as 𝐹𝐹 = 2π‘šπ‘šΞ© Γ— 𝑑𝑑π‘₯π‘₯𝑑𝑑𝑑𝑑

Where Ξ© is the angular velocity of device in y-axis

The equation of motion is similar to Drive equation

π‘šπ‘šπ‘‘π‘‘2𝐻𝐻𝑑𝑑𝑑𝑑2

+ 𝑒𝑒𝑦𝑦𝑑𝑑𝐻𝐻𝑑𝑑𝑑𝑑

+ π‘˜π‘˜π»π» = 2π‘šπ‘šΞ©dxdt

This can be rewritten as

15

𝑑𝑑2𝐻𝐻𝑑𝑑𝑑𝑑2

+ 2πœπœπ‘§π‘§πœ”πœ”πΎπΎπ‘§π‘§π‘‘π‘‘π»π»π‘‘π‘‘π‘‘π‘‘

+ πœ”πœ”πΎπΎπ‘§π‘§2 𝐻𝐻 = 𝐡𝐡 cos(πœ”πœ”π‘‘π‘‘π‘‘π‘‘) ,𝐁𝐁 =πŸπŸπ›šπ›šπππ›€π›€π›€π›€

οΏ½οΏ½π›šπ›šπ§π§π±π±πŸπŸ βˆ’ π›šπ›šππ

𝟐𝟐�𝟐𝟐 + (πŸπŸπ›‡π›‡π±π±π›šπ›šπ§π§π±π±π›šπ›šππ)𝟐𝟐

Where 𝐙𝐙 =𝐁𝐁

οΏ½οΏ½π›šπ›šπ§π§π³π³πŸπŸ βˆ’ π›šπ›šππ

𝟐𝟐�𝟐𝟐 + (πŸπŸπ›‡π›‡π³π³π›šπ›šπππ›šπ›šπ§π§π³π³)𝟐𝟐; 𝐭𝐭𝐭𝐭𝐧𝐧𝛅𝛅 =

πŸπŸπ›‡π›‡π›šπ›šπ§π§π³π³π›šπ›šππ

π›šπ›šπ§π§π³π³πŸπŸ βˆ’ π›šπ›šππ

𝟐𝟐 [13]

Output (Current) By measuring the current 𝑒𝑒 from sense mode transducer[9], the displacement of proof mass in sense direction can be found out by following relation

Since, Q, electric charge can be expressed as 𝐢𝐢𝑉𝑉𝑑𝑑𝑐𝑐, Current can be calculated by taking time derivative. Electric current can be written as

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=𝑑𝑑𝑑𝑑𝑑𝑑

(𝐢𝐢𝑉𝑉𝑑𝑑𝑐𝑐)

Since, 𝑉𝑉𝑑𝑑𝑐𝑐is constant

𝑒𝑒 = 𝑉𝑉𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝐢𝐢

[14]

Where 𝐢𝐢 =

2π‘›π‘›πœ–πœ–0πœ–πœ–π‘Ÿπ‘Ÿβ„Žπ‘”π‘”

(𝑙𝑙0 + π‘₯π‘₯) [15]

Therefore 𝑒𝑒 =

𝐢𝐢0β„Ž0𝑉𝑉𝑑𝑑𝑐𝑐

𝑑𝑑𝐻𝐻𝑑𝑑𝑑𝑑

i =C0h0

Vdcωdzamp [16]

16

RESULTS Amplitude v/s frequency response was plotted; Maximum Amplitude was obtained at lower natural frequency of the x and z directions. (πœ”πœ”π‘§π‘§ =7355𝐻𝐻𝐻𝐻)

Device was simulated at πœ”πœ”π‘‘π‘‘ = 7355𝐻𝐻𝐻𝐻

Response of amplitude v/s Angular rate was compared between square beam and rectangular beam with dimensions 5πœ‡πœ‡π‘šπ‘š and 5πœ‡πœ‡π‘šπ‘š π‘Žπ‘Žπ‘›π‘›π‘‘π‘‘ 15πœ‡πœ‡π‘šπ‘š respectively.

FIGURE 4: DRIVE FREQUENCY V/S AMPLITUDE RESPONSE IN SENSE DIRECTION

Omega=7355

17

FIGURE 5: COMPARISON OF SENSE AMPLITUDE FOR SAME AND DIFFERENT NATURAL FREQUENCIES IN DRIVE AND SENSE DIRECTIONS

If 𝑑𝑑 = 𝑀𝑀, therefore, natural frequency for sense and drive mode will be same

Having same natural frequency for drive and sense mode increased amplitude of device manifold, which is unsafe for device

So, design was changed to a rectangular cantilever beam from a square beam.

Dimensions of the beam were set to 5πœ‡πœ‡π‘šπ‘š Γ— 15πœ‡πœ‡π‘šπ‘š

FIGURE 6: SENSE RESPONSE V/S ANGULAR RATE

18

Transducers are used in sense axis which uses current output to measure the sense displacement

By [17] Current v/s Angular velocity was plotted to get the sensitivity of the device.

Sensitivity is defined as 𝑆𝑆 = π‘π‘β„Žπ‘Žπ‘ŽπΎπΎπ‘Žπ‘Žπ‘’π‘’ 𝑖𝑖𝐾𝐾 π‘π‘π‘π‘π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘’π‘’πΎπΎπ‘‘π‘‘ π‘šπ‘šπ‘Žπ‘Žπ‘Žπ‘ŽπΎπΎπ‘–π‘–π‘‘π‘‘π‘π‘π‘‘π‘‘π‘’π‘’π‘π‘β„Žπ‘Žπ‘ŽπΎπΎπ‘Žπ‘Žπ‘’π‘’ 𝑖𝑖𝐾𝐾 π‘Žπ‘ŽπΎπΎπ‘Žπ‘Žπ‘π‘π‘Žπ‘Žπ‘Žπ‘Žπ‘Ÿπ‘Ÿ π‘£π‘£π‘’π‘’π‘Žπ‘Žπ‘£π‘£π‘π‘π‘–π‘–π‘‘π‘‘π‘¦π‘¦

which is equal to slope the curve.

Sensitivity of this device was found out to be 𝟐𝟐.𝟐𝟐 Γ— πŸ–πŸ–πŸ‘πŸ‘βˆ’πŸ–πŸ– 𝛀𝛀/ οΏ½π«π«π­π­πππ¬π¬οΏ½βˆ’πŸ–πŸ–

FIGURE 7: SENSE CURRENT V/S ANGULAR RATE

19

BIBLIOGRAPHY

[1] A. A. Trusov, β€œOverview of MEMS Gyroscopesβ€―: History , Principles of Operations , Types of Measurements,” Irvine,CA,USA, 2011.

[2] S. Nasiri and S. Clara, β€œA Critical Review of MEMS Gyroscopes Technology and Commercialization Status,” Avaliable online http//invensense.com/mems/gyro/documents/whitepapers/MEMSGyroComp. pdf (accessed 25 May 2012), p. 8, 2009.

[3] A. Burg, A. Meruani, A. Sandheinrich, and M. Wickmann, β€œMEMS Gyroscopes and their Applications,” Introd. to Microelectromechanical Syst., 2011.

[4] J. E. Shigley, C. R. Mischke, R. G. Budynas, and K. J. Nisbett, Mechanical Engineering Design, 8th ed. New York: McGraw-Hill, 2010.

[5] H. K. Sharma, A. Jain, and R. Gopal, β€œEstimation of slide film damping in laterally moving microstructures using FEM simulations,” in National Conference on Innovations in Microelectronics, Signal and Communication Technologies, 2014.

[6] J. A. Fay, Introduction to Fluid Mechanics. New Delhi: PHI Learning Private Limited, 2012.

[7] H. K. Sharma, A. Jain, and R. Gopal, β€œFEM simulations for estimating squeeze film damping in microstructures,” in International Conference on Advance Trends in Engineering and Technology, 2013, pp. 112–114.

[8] M. Bao and H. Yang, β€œSqueeze film air damping in MEMS,” Sensors Actuators, A Phys., vol. 136, no. 1, pp. 3–27, 2007.

[9] A. Bristow, T. Barton, and S. Nary, β€œMEMS Tuning-Fork Gyroscope Final Report.”

[10] H. Dong and X. Xiong, β€œDesign and Analysis of a MEMS Comb Vibratory Gyroscope,” in UB - NE ASEE 2009 Conference, 2009, p. 12.

20

APPENDIX Code 𝛽𝛽 Equation was solved in MATLAB file beta1.m

rat=1; c=0; for i=1:100 g=2*i-1; beta=1-(192/3.14^5)*c/rat; b1 = (1/g^5)*tanh(g*3.14*rat/2); y(i)=beta; x(i)=i; c=b1+c; end

FIGURE 8: CODE FOR BETA CONVERGENCE

21

Code for MEMS Gyroscope Vibration simulation was solved in MATLAB file Memsgyro.m

clear clc rho=2330;%kg/m^3 E=179e9;%Pa p=760;%torr lambda=p*5.1e-5;%mean free path mu=1.791e-5;%kg/ms %dim of proof mass a=1000e-6; b=1000e-6; h=5e-6; h0=5e-6; A=a*b; m=rho*A*h; %spring coefficient x t=5e-6; w=5e-6; L=300e-6; Ix=1/12 *w^3* t; kx=6*E*Ix/L^3 ; ksx=4*kx;%4 springs Iz=1/12*w*t^3; kz=6*E*Iz/L^3; ksz=4*kz; %Damping Kn=lambda/h0; mu_x=mu/(1+2*Kn+0.2*(Kn^0.788)*exp(-Kn/10)); mu_z=mu/(1+9.638*Kn^1.159); cx=mu x*A/h0;

FIGURE 9: CODE FOR MEMS DEVICE INITIALIZATION

22

zx=cx/2*sqrt(ksx*m); zz=cz/2*sqrt(ksz*m); %natural freq nfx=sqrt(ksx/m); nfz=sqrt(ksz/m); %force n=10; ep=8.854e-12*1.0053; Vdc=10; V0=10; g=2e-6; %gap bw combs F=2*n*ep*h*Vdc*V0/g; ohm=2; for p=1:108000 f(p)=p/(2*3.14); Ax(p)=abs(F/(m*sqrt((nfx^2-p^2)^2+(2*zx*p)^2))); Az(p)=abs(2*ohm*p*Ax(p)/sqrt((nfz^2-p^2)+(2*zz*p)^2)); end plot(f,Az) anfx=nfx/(2*3.14); anfz=nfz/(2*3.14); aaaz=max(Az); aaanf=find(Az==aaaz)/(2*3.14); %Capacitance C0=ep*a*b/h0; clear ohm p for p=1:101 ohm(p)=p-1; fd=aaanf*2*3.14; Axd(p)=abs(F/(m*sqrt((nfx^2-fd^2)^2+(2*zx*fd)^2))); Azd(p)=abs(2*ohm(p)*fd*Axd(p)/sqrt((nfz^2-fd^2)+(2*zz*fd)^2)); Current(p)=(C0/h0)*fd*Azd(p)*Vdc; end plot(ohm,Azd) phi=2*zx*nfx*fd/(nfx^2-fd^2); del=2*zz*nfz*fd/(nfz^2-fd^2); tphi=atand(phi); tdel=atand(del);

FIGURE 10: CODE FOR MEMS DEVICE VIBRATION ANALYSIS

23