Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems,...

49
Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International School-Seminar The Actual Problems of Microworld Physics Gomel, Belarus, July 22 - August 2, 2013

Transcript of Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems,...

Page 1: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Mechanisms of Terahertz Radiation Generation in Graphene Structures

Institute for Nuclear Problems, Belarus State University, Belarus

The XII-th International School-Seminar 

The Actual Problems of Microworld Physics

Gomel, Belarus, July 22 - August 2, 2013

Page 2: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

1. Motivation;2. Some facts about some graphene structures;3. Demand for new Terahertz sources;4. Brief review of ideas and achievements in the field of

graphene based terahertz sources;5. Our ideas and proposals;6. Conclusion

Page 3: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Graphene

Graphene, a 2-dimensional flat monolayer of carbon atoms arranged in a honeycomb lattice , is a promising candidate to be the basic building material for nanoscale electronic applications. Due to the hexagonal lattice structure of graphene, an interesting and elegant electronic structure arises, namely that of a gapless semi-metal with a linear dispersion relation in the vicinity of the Fermi level at the K-points in the Brillouin zone. Graphene was discovered experimentally in 2004 [K.S. Novoselov et al., Science 306, 666 (2004)].

Page 4: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Some interesting facts about graphene

CERN on one’s desk:

Dirac electrons

Klein tunnelling:

Experimental confirmation of the Klein tunnelling:Stander, Huard &Goldhaber-Gordon, 2009; Young & Kim, 2009

Quantum Hall and other quantum effectsNovoselov et. al. Nature, 2005

Page 5: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Very high room-temperature electron mobility 2.5 x 105 cm2V-1 s-1 and possibility to increase mobility to the value 2·106 cm²·V−1·s−1

Ability to sustain extremely high densities of electric current (a million timeshigher than copper)

Moser, J., Barreiro, A. & Bachtold, A. Appl. Phys. Lett. 91, 163513 (2007).

Optical absorption of exactly πα≈2.3%

Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

Page 6: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Graphene bilayer

Page 7: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Unrolled circumferential vectors c for a (4,4) armchair nanotube (blackarrow), a (4,0) zigzag nanotube (blue arrow) and a chiral (4,2) nanotube (red arrow) areshown on a graphene plane. a1 and a2 are the unit cell vectors of graphene. The chiralangle and the translational periodicity vector ` of the (4,2) nanotube (green arrow)are also shown. Dashed lines indicate the area spanned by c and l which correspondsto the unrolled unit cell of the (4,2) nanotube.

Page 8: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

CARBON NANOTUBE –quasi-one-dimensional carbon macromolecula

Graphene crystalline lattice SWCNT (m,n)

Rc=ma1+na2(m,0) for zigzag CNT(m,m) for armchair CNT

The typical CNT radius ~ 1-20 nm, CNT length ~ 10 nm- few cm

Page 9: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

FIG. a) A typical structure of nanoribbons. A solid circle stands for a carbon atom with one electron, while an open circle for a different atom such as a hydrogen. A closed area represents a unit cell. It is possible to regard the lattice made of solid circles as a part of a honeycomb lattice. b) A nanoribbon is constructed froma chain of m connected carbon hexagons, as depicted in dark gray, and by translating this chain by the translational vector T=qa+b, q<m. A nanoribbonis indexed by a set of two integers (p,q) with p=m−q.

Motohiko Ezawa PHYSICAL REVIEW B 73, 045432 2006.

(p,0) zigzag nanoribbons; (p,1) armchair nanoribbons.

Page 10: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

THz: Unexplored Territory

Page 11: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Applications?

•THz spectroscopy/imaging•Radar•Biology, medicine•Communications•Signal processing•High speed computers …?

Page 12: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.
Page 13: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

• Plasmon amplificationA.Bostwick, T. Ohta, T. Seyller, Karsten Horn, E. Rotenberg,

Nature, 3, 36, (2007); Rana F. Graphene terahertz plasmon oscillators. IEEE Trans. NanoTechnol. 7, 91–99 (2008)

• Cherenkov-type emissions in nanotubes and graphene

• Harmonic generation, Rabi oscillations and Rabi-waves.

Page 14: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Rana F. Graphene terahertz plasmon oscillators. IEEE Trans. NanoTechnol. 7, 91–99

(2008)Experimental observation Taiichi Otsuji1, Hiromi Karasawa1, Tsuneyoshi Komori1, Takayuki Watanabe and Victor Ryzhii 2010.

Electron-hole injection

O. V. Kibis, M. Rosenau da Costa, M. E. Portnoi, Generation of Terahertz Radiation by Hot Electrons in Carbon Nanotubes NanoLetters, 7 (11), 3414,(2006).

Page 15: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

If a fast electron moves in a periodic potential , its momentum and velocity oscillates in time with the frequency The frequency of radiation

can be tuned in these devices by varying the accelerating voltage which determines the electron. S. A. Mikhailov, Graphene-based voltage-tunable coherent terahertz emitter. Phys. Rev. B 87, 115405 (2013).

Dispersion law in graphene

Graphene stripes

Ubitron-type generator

Page 16: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

CHERENKOV LASING IN CNT

K. G. Batrakov, P. P. Kuzhir, S. A. Maksimenko, Proc.SPIE 6328, 63280Z (2006).K.G. Batrakov, O.V. Kibis, Polina P. Kuzhir, M. R. Costa, and M. E. Portnoi, Terahertz processes in carbon nanotubes. Journal of Nanophotonics, Vol. 4, 041665 (2010).K.G. Batrakov, P. P. Kuzhir, S. A. Maksimenko, Physica B: Condensed Matter, 405 3050 (2010).K. G. Batrakov, P. P. Kuzhir, S. A. Maksimenko and C. Tomsen, Phys. Rev. B 79, 125408 (2009).K. G. Batrakov, P. P. Kuzhir, and S. A. Maksimenko, Physica E 40, 1065 2008).K. G. Batrakov, P. P. Kuzhir, and S. A. Maksimenko, Physica E 40, 2370 (2008).

Page 17: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

The basis of generation in nanotubes and graphene

1) Very large current density (up to A/cm2 ) [M. Radosavljevi´c, J. Lefebvre, and A. T. Johnson, “High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes”, Phys. Rev. B 64, 241 307® (2001);S.-B. Lee, K. B. K. Teo, L. A. W. Robinson, A. S. Teh, M. Chhowalla,et al., J. Vac. Sci. Technol. B 20, 2773 (2002)];

1010

2) Ballistic electron transport (up to 10 μm ) [C. Berger, P. Poncharal, Y. Yi, W. A. de Heer,Ballistic Conduction in Multiwalled Carbon Nanotubes,J. Nanosci. Nanotechn., 3, 171 (2003)];

3) The possibility of strong electromagnetic wave slowing down [G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. Yevtushenko,A. V. Gusakov, Phys. Rev. B 60, 17136 (1999)].

Page 18: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Interaction between electron beam and produced electromagnetic wave leads to electron beam modulation. This process can be described by self-consistent system:

and for electrons:

Self-consistent equations

for electromagnetic field:

Page 19: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Dispersion equation

Emission term

Absorptionterm

electron group velocity in nanotube

Page 20: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

If width of emission line exceeds the magnitude ofquantum recoil. then traditional form of second-order Cherenkov resonance is realized:

Otherwise, quantum recoil contributes to resonance condition and dispersion equation has the form

Page 21: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Gain is extremely large as compared with the gain

per unit length for macro-devices Boundary conditions on nanotube tips

and dispersion equations give threshold condition and instability increment

Threshold current and instability increment of generation

Page 22: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Generationis already possible at the current stage of nanotechnologies

development.

K. G. Batrakov, P. P. Kuzhir, S. A. Maksimenko, Proc.SPIE 6328, 63280Z (2006).

K. G. Batrakov, P. P. Kuzhir, S. A. Maksimenko and C. Tomsen, Phys. Rev. B 79, 125408 (2009).

K.G. Batrakov, O.V. Kibis, Polina P. Kuzhir, M. R. Costa, and M. E. Portnoi, Terahertz processes in carbon nanotubes. Journal of Nanophotonics, Vol. 4, 041665 (2010).K.G. Batrakov, P. P. Kuzhir, S. A. Maksimenko, Physica B: Condensed Matter, 405 3050 (2010).

Page 23: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Method for the instability control

The points of maximum group velocity and respectively low excitation energy can be advantageous for lasing. In the point of group velocity extremum the negative influence of the beam energy spread is smaller, and therefore more electrons interact with the wave: the radiation effectiveness can be increased. It is also possible to intensify the effect of radiation instability in nanotube due to the generation in the region of small effective mass of quasiparticle.

Page 24: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Compensation of electron beam spread

Extremum of group velocity

Dispersion equation

Then, expansion near this point gives

So, negative influence of beam spread can be reduced.

Page 25: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

)()(~ 2211 RR |)()(~| 2211 RR

For long wavelength ( is the distance between nanotube layers), frequenciesmay be approximately presented as:

d d

Phase velocity corresponding to frequency , can be significantly less,than phase velocities corresponding to single walled nanotubes with radii !!!

Estimated wave retardation in two-wall carbon nanotube reach ~ 150 times. K. G. Batrakov, P. P. Kuzhir, and S. A. Maksimenko, Electrical and Computer Engineering Series archive,Proceedings of the 1st WSEAS internationalconference on Nanotechnology table of contents,Cambridge, UK,2009, pp. 96–100.

However , therefore decreasing of phase velocity in two-wall nanotube is limited.

Bilayer graphene has no such drawback.

kvph / iR

)()( 2211 RR

Advantage of using two-layer or multilayer nanotube or graphene for emission

Estimated wave retardation in single walled nanotube reach 50 times (G. Slepyan, A. Lakhtakia, S. Maksimenko…)

Page 26: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Graphene bilayer

Page 27: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

The basic equations

4 e2 1,2

k2s2

k1s1

k 1s1 | r, |k 2s2 Ek2s2 Ek1s1

0 bk2s2

0 bk2s2

0 bk1s1

0 bk1s1

0 0

0,,0 trtre

Resulting self-consistent equation for potential has the form:

bkst iEksbkst ie k 1s1

ks| r, t|k1s1 bk 1s1

bkm t iEksbkst ie

k 1s1

k1s1 | r, t|ksbk 1s1

r, t ksbks

are the wave functions of graphene bilayer

Page 28: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

B. Partoens and F. M. Peeters, PHYSICAL REVIEW B 74, 075404 2006

Page 29: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.
Page 30: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

irreduciblepolarizability

Page 31: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

The root with minus “-” corresponds to antiphase (acoustic) oscillation.

If kd<<1, then the phase velocity of antiphase oscillation is more less of usual one!!!

Page 32: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

spatially separated double-layer graphene

It can be can be fabricated by folding an single layer graphene over substrate.

H. Schmidt, T. Ludtke, P. Barthold, E. McCann, V. I. Fal’ko, and R. J. Haug, Appl. Phys. Lett. 93, 172108 (2008).

In spatially separated double-layer graphene electron tunneling between graphene planes can be eliminated. However, the plasmon modification still exists if kd<<1.

Konstantin G. Batrakov ; Vasily A. Saroka ; Sergey A. Maksimenko ; Christian Thomsen, J. Plasmon polariton deceleration in graphene structures. Nanophoton. 6(1), 061719 (Dec 05, 2012). doi:10.1117/1.JNP.6.061719

Page 33: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

The electromagnetic wave frequency (1/s) versus wave vector k (1/cm).

Page 34: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Harmonic generation in terahertz range

Odd harmonics generation

Page 35: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

One-photon andmulti-photon Rabioscillation

Page 36: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Rabi oscillation and harmonic generation in AB-stacked bilayer graphene

Page 37: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

The effect of trigonal warping on the electronic structure of bilayer graphene

McCann & Falko (2006)and McCann, Abergel & Falko (2007)

Cross-section of the dispersion surface

General view of thedispersion surface

Page 38: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

In the presence of electric field the Hamiltonian has the form:

After second quantization :

In the Heisenberg representation dynamics is described by equation:

H.K.Avettissian, G.F.Mkrtchian, K.G.Batrakov, S.A.Maksimenko, Nonlinear Interactions of Coherent Radiation with Bilayer Graphene and High Harmonic Generation, Physics, Chemistry and application of Nanostructures, p.195-198, 2013.

Page 39: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Dynamics of density matrix:

The method of characteristic is used for transition from partial to ordinary differential equations .The characteristic coincides to the classical electron dynamics in the electron field:

Page 40: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Parameter which characterizes electromagnetic field-graphene electron interaction

Condition of n-photon process , where

1) -one photon excitation, the multiphoton effects are suppressed;

2) - multiphoton excitation.

Page 41: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Particle distribution function after the interaction during the 32 wave oscillationperiods,χ=0.1,( a) and (b) present Dirac sea excitation of two different graphene valleys, ω=0.9 meV, (c) and (d) is for the wave frequency ω=5 meV.

Page 42: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Particle distribution function after 32 wave periods for different parameters χ:(a) χ=0.2, (b) χ=0.3,(c) χ=0.4,(d) χ=0.5, ω=10 meV , T/ω=0.01.

Page 43: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Temperature dependence: ω=8 meV , χ=0.5, (a) T/ω=3, (b) T/ω=1, (c) T/ω=0.1,(d) T/ω=0.01

Page 44: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Harmonics generation

The emission rate of the n-th harmonic is proportional to the n-th Fourier components of the field-induced current:

Page 45: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Harmonic emission rate at the multiphoton excitation in bilayer graphene for different parameters χ:(a) χ=0.2, (b) χ=0.3,(c) χ=0.4,(d) χ=0.5, ω=1 meV.

Page 46: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Required IntensitiesThe wave intensity can be expressed through the χ parameter as:

Therefore for THz photons (wavelengths from 30 μm to 3 mm), multiphoton interaction regime can be achieved at the intensities 10 – 105 W cm-2 . So,with radiation fields of moderate intensities 3 kW cm∼ −2 in the THz domain one can observe multiphoton excitation of Fermi-Dirac sea and efficient generation of moderately high harmonics in the bilayer graphene.

Page 47: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

•Graphene structure is very perspective material for terahertz nanoelectronics.

Conclusion

Page 48: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

БРФФИ № Ф06Р-101,

БРФФИ № Ф08Р-009 ,

БРФФИ № Ф11АРМ-006,

EU FP7 TerACan project FP7-230778,

BMBF(Germany) project BLR 08/001,

EU FP7 CACOMEL project FP7-247007,

EU FP7 BY-NanoERA project FP7-266529, Call ID FP7-INCO-2010-6, 2010-2013..

Acknowledgments

Page 49: Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.

Thank you for attention