Mechanics of Materials Solutions Chapter10 Probs47 58

44
7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58 http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 1/44  Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that  permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 10.47 The simply supported beam shown in Fig. P10.47 consists of a W410 × 60 structural steel wide-flange shape [  E  = 200 GPa;  I  = 216 × 10 6  mm 4 ]. For the loading shown, determine: (a) the beam deflection at point B. (b) the beam deflection at point . (c) the beam deflection at point D. Fig. P10.47 Solution (a) Beam deflection at point  B Consider concentrated moment. [Appendix C, SS beam with concentrated moment at one end.]  Relevant equation from Appendix C: 2 2 (2 3 ) 6  B  Mx v L Lx x  LEI = +  (elastic curve) Values:  M  = 180 kN-m, L = 6 m, x = 1.5 m,  EI = 4.32 × 10 4  kN-m 2  Computation: 2 2 2 2 4 2 (2 3 ) 6 ( 180 kN-m)(1.5 m) 2(6 m) 3(6 m)(1.5 m) (1.5 m) 0.008203 m 6(6 m)(4.32 10 kN-m )  B  Mx v L Lx x  LEI = + = + = ×  Consider concentrated load. [Appendix C, SS beam with concentrated load not at midspan.]   Relevant equation from Appendix C: 2 2 2 ( ) 6  B  Pab v L a b  LEI =  Values:  P  = 70 kN, L = 6 m, a = 1.5 m, b = 4.5 m,  EI = 4.32 × 10 4  kN-m 2  Computation: 2 2 2 2 2 2 4 2 ( ) 6 (70 kN)(1.5 m)(4.5 m) (6 m) (1.5 m) (4.5 m) 0.004102 m 6(6 m)(4.32 10 kN-m )  B  Pab v L a b  LEI = = = ×  Consider uniformly distributed load. [Appendix C, SS beam with uniformly distributed load over a portion of the span.]  Relevant equation from Appendix C: 2 3 2 2 2 2 (2 6 4 ) 24  B wa v x Lx ax Lx aL  LEI = + +  Values: w = 80 kN/m, L = 6 m, a = 3 m, x = 4.5 m,  EI = 4.32 × 10 4  kN-m 2  

description

Mechanics of Materials Solutions Chapter10 Probs47 58

Transcript of Mechanics of Materials Solutions Chapter10 Probs47 58

Page 1: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 1/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.47 The simply supported beam shown inFig. P10.47 consists of a W410 × 60

structural steel wide-flange shape [ E  = 200

GPa;  I   = 216 × 106  mm

4]. For the loading

shown, determine:

(a) the beam deflection at point B.

(b) the beam deflection at point C .

(c) the beam deflection at point D.

Fig. P10.47

Solution

(a) Beam deflection at point  B 

Consider concentrated moment.  [Appendix C, SS beam with concentrated moment at one end.]  Relevant equation from Appendix C:

2 2(2 3 )6

 B

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = −180 kN-m, L = 6 m, x = 1.5 m,

 EI = 4.32 × 10

4

 kN-m

2

 Computation:

2 2

2 2

4 2

(2 3 )6

( 180 kN-m)(1.5 m)2(6 m) 3(6 m)(1.5 m) (1.5 m) 0.008203 m

6(6 m)(4.32 10 kN-m )

 B

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Consider concentrated load.  [Appendix C, SS beam with concentrated load not at midspan.] 

 Relevant equation from Appendix C:

2 2 2( )6

 B

 Pabv L a b

 LEI = − − −  

Values:  P  = 70 kN, L = 6 m, a = 1.5 m, b = 4.5 m,

 EI = 4.32 × 104 kN-m

Computation:

2 2 2

2 2 2

4 2

( )6

(70 kN)(1.5 m)(4.5 m)(6 m) (1.5 m) (4.5 m) 0.004102 m

6(6 m)(4.32 10 kN-m )

 B

 Pabv L a b

 LEI = − − −

⎡ ⎤= − − − = −⎣ ⎦×

 

Consider uniformly distributed load.

[Appendix C, SS beam with uniformly distributed load over a portion of the span.]  Relevant equation from Appendix C:

23 2 2 2 2(2 6 4 )

24 B

wav x Lx a x L x a L

 LEI = − − + + −  

Values: w = 80 kN/m, L = 6 m, a = 3 m, x = 4.5 m,

 EI = 4.32 × 104 kN-m

Page 2: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 2/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Computation:2

3 2 2 2 2

23 2 2 2 2

4 2

(2 6 4 )24

(80 kN/m)(3 m)2(4.5) 6(6)(4.5) (3) (4.5) 4(6) (4.5) (3) (6)

24(6.0 m)(4.32 10 kN-m )

0.010156 m

 B

wav x Lx a x L x a L

 LEI = − − + + −

⎡ ⎤= − − + + −⎣ ⎦×

= −  

Beam deflection at  B 

0.008203 m 0.004102 m 0.010156 m 0.006055 m 6.06 mm Bv   = − − = − = ↓   Ans. 

(b) Beam deflection at point C  Consider concentrated moment.  [Appendix C, SS beam with concentrated moment at one end.] 

 Relevant equation from Appendix C:

2 2(2 3 )6

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values: 

 M  =−

180 kN-m, L = 6 m, x = 3.0 m, EI = 4.32 × 104 kN-m

Computation:

2 2

2 2

4 2

(2 3 )6

( 180 kN-m)(3.0 m)2(6 m) 3(6 m)(3.0 m) (3.0 m) 0.009375 m

6(6 m)(4.32 10 kN-m )

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Consider concentrated load.  [Appendix C, SS beam with concentrated load not at midspan.] 

 Relevant equation from Appendix C:2 2 2( )

6C 

 Pbxv L b x

 LEI = − − −   (elastic curve)

Values:  P  = 70 kN, L = 6 m, x = 3.0 m, b = 1.5 m,

 EI = 4.32 × 104 kN-m

Computation:

2 2 2

2 2 24 2

( )6

(70 kN)(1.5 m)(3.0 m) (6 m) (1.5 m) (3.0 m) 0.005013 m6(6 m)(4.32 10 kN-m )

 Pbxv L b x

 LEI = − − −

⎡ ⎤= − − − = −⎣ ⎦×

 

Page 3: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 3/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Consider uniformly distributed load.

[Appendix C, SS beam with uniformly distributed load over a portion of the span.]  Relevant equation from Appendix C:

32 2(4 7 3 )

24C 

wav L aL a

 LEI = − − +  

Values: w = 80 kN/m, L = 6 m, a = 3 m,

 EI = 4.32 × 10

4

 kN-m

2

 

Computation:3

2 2

32 2

4 2

(4 7 3 )24

(80 kN/m)(3 m)4(6 m) 7(3 m)(6 m) 3(3 m) 0.015625 m

24(6.0 m)(4.32 10 kN-m )

wav L aL a

 LEI = − − +

⎡ ⎤= − − + = −⎣ ⎦× 

Beam deflection at C  

0.009375 m 0.005013 m 0.015625 m 0.011263 m 11.26 mmC v   = − − = − = ↓   Ans. 

(c) Beam deflection at point  D Consider concentrated moment.  [Appendix C, SS beam with concentrated moment at one end.] 

 Relevant equation from Appendix C:

2 2(2 3 )6

 D

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = −180 kN-m, L = 6 m, x = 4.5 m,

 EI = 4.32 × 104 kN-m

Computation:2 2

2 2

4 2

(2 3 )6

( 180 kN-m)(4.5 m)2(6 m) 3(6 m)(4.5 m) (4.5 m) 0.005859 m

6(6 m)(4.32 10 kN-m )

 D

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Consider concentrated load.  [Appendix C, SS beam with concentrated load not at midspan.] 

 Relevant equation from Appendix C:

2 2 2( )6

 D

 Pbxv L b x

 LEI = − − −   (elastic curve)

Values:  P  = 70 kN, L = 6 m, x = 1.5 m, b = 1.5 m,

 EI = 4.32 × 104 kN-m

Page 4: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 4/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Computation:

2 2 2

2 2 2

4 2

( )6

(70 kN)(1.5 m)(1.5 m)(6 m) (1.5 m) (1.5 m) 0.003190 m

6(6 m)(4.32 10 kN-m )

 D

 Pbxv L b x

 LEI = − − −

⎡ ⎤= − − − = −⎣ ⎦×

 

Consider uniformly distributed load.

[Appendix C, SS beam with uniformly distributed load over a portion of the span.]  Relevant equation from Appendix C:

3 2 2 2 2 2 3 4( 4 2 4 4 )24

 D

wxv Lx aLx a x a L a L a

 LEI = − − + + − +

Values: w = 80 kN/m, L = 6 m, a = 3 m, x = 1.5 m,

 EI = 4.32 × 104 kN-m

Computation:

3 2 2 2 2 2 3 4

3 2 2 2 2 2 3 4

4 2

( 4 2 4 4 )

24(80 kN/m)(1.5 m)

(6)(1.5) 4(3)(6)(1.5) 2(3) (1.5) 4(3) (6) 4(3) (6) (3)24(6.0 m)(4.32 10 kN-m )

0.012109 m

 D

wxv Lx aLx a x a L a L a

 LEI 

= − − + + − +

⎡ ⎤= − − + + − +⎣ ⎦×

= −  

Beam deflection at  D 

0.005859 m 0.003190 m 0.012109 m 0.009440 m 9.44 mm Dv   = − − = − = ↓   Ans.

Page 5: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 5/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.48 The simply supported beam shown inFig. P10.48 consists of a W530 × 66 structural

steel wide-flange shape [ E  = 200 GPa; I = 351

× 106  mm

4]. For the loading shown,

determine:

(a) the beam deflection at point A.

(b) the beam deflection at point C .

(c) the beam deflection at point E .

Fig. P10.48

Solution

(a) Beam deflection at point  A 

Determine cantilever deflection due to concentrated load on overhang  AB. [Appendix C, Cantilever beam with concentrated load.]  Relevant equation from Appendix C:

3

3 A

 PLv

 EI = −   (assuming fixed support at B)

Values: 

 P  = 35 kN, L = 4 m, EI = 7.02 × 10

4

 kN-m

2

 Computation:

3 3

4 2

(35 kN)(4 m)0.0106363 m

3 3(7.02 10 kN-m ) A

 PLv

 EI = − = − = −

× 

Consider deflection at  A  resulting from rotation at  B  caused by concentrated load on overhang

 AB. [Appendix C, SS beam with concentrated moment.] 

 Relevant equation from Appendix C:

3 B

 L

 EI θ    =   (slope magnitude)

Values:  M  = (35 kN)(4 m) = 140 kN-m, L = 8 m,

 EI = 7.02 × 104 kN-m

Computation:

4 2

(140 kN-m)(8 m)0.0053181 rad

3 3(7.02 10 kN-m )

(4 m)(0.0053181 rad) 0.0212726 m

 B

 A

 ML

 EI 

v

θ    = = =×

= − = −

 

Consider uniformly distributed loads between C  and  D. [Appendix C, SS beam with uniformly distributed load over portion of span.]  

 Relevant equations from Appendix C:2

2 2(2 )24

 B

wa L a

 LEI θ    = −   (slope magnitude)

Values: w = 80 kN/m, L = 8 m, a = 4 m,

 EI = 7.02 × 104 kN-m

Page 6: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 6/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Computation:2 2

2 2 2 2

4 2

(80 kN/m)(4 m)(2 ) 2(8 m) (4 m) 0.0106363 rad

24 24(8 m)(7.02 10 kN-m )

(4 m)(0.0106363 rad) 0.0425451 m

 B

 A

wa L a

 LEI 

v

θ    ⎡ ⎤= − = − =⎣ ⎦×

= =

 

Consider deflection at  A resulting from rotation at  B caused by uniform load on overhang  DE .

[Appendix C, SS beam with concentrated moment.] 

 Relevant equation from Appendix C:

6 B

 L

 EI θ    =   (slope magnitude)

Values:  M  = (80 kN/m)(2 m)(1 m) = 160 kN-m,

 L = 8 m, EI = 7.02 × 104 kN-m

Computation:

4 2

(160 kN-m)(8 m)0.0030389 rad

6 6(7.02 10 kN-m )

(4 m)(0.0030389 rad) 0.0121557 m

 B

 A

 ML

 EI 

v

θ    = = =×

= − = −

 

Beam deflection at  A 

0.0106363 m 0.0212726 m 0.0425451 m 0.0121557 m

0.0015195 m 1.520 mm

 Av   = − − + −

= − = ↓   Ans. 

(b) Beam deflection at point C  

Consider concentrated moment from overhang  AB.

[Appendix C, SS beam with concentrated moment.] 

 Relevant equation from Appendix C:

2 2(2 3 )6

C  M xv L Lx x LEI 

= − − + (elastic curve)

Values:  M  = (35 kN)(4 m) = −140 kN-m, L = 8 m,

 x = 4 m, EI = 7.02 × 104 kN-m

Computation:

2 2

2 2

4 2

(2 3 )6

( 140 kN-m)(4 m)

2(8 m) 3(8 m)(4 m) (4 m) 0.0079772 m6(8 m)(7.02 10 kN-m )

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×  

Page 7: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 7/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Consider uniformly distributed loads between C  and  D. [Appendix C, SS beam with uniformly distributed load over portion of span.]  

 Relevant equations from Appendix C:3

2 2(4 7 3 )24

wav L aL a

 LEI = − − +  

Values: w = 80 kN/m, L = 8 m, a = 4 m,

 EI = 7.02 × 10

4

 kN-m

2

 

Computation:3

2 2

32 2

4 2

(4 7 3 )24

(80 kN/m)(4 m)4(8 m) 7(4 m)(8 m) 3(4 m) 0.0303894 m

24(8 m)(7.02 10 kN-m )

wav L aL a

 LEI = − − +

⎡ ⎤= − − + = −⎣ ⎦× 

Consider concentrated moment from overhang  DE .

[Appendix C, SS beam with concentrated moment.] 

 Relevant equation from Appendix C:2 2(2 3 )

6C 

 M xv L Lx x

 LEI = − − +  (elastic curve)

Values:  M  = (80 kN/m)(2 m)(1 m) = 160 kN-m,

 L = 8 m, x = 4 m, EI = 7.02 × 104 kN-m

Computation:

2 2

2 2

4 2

(2 3 )6

( 160 kN-m)(4 m) 2(8 m) 3(8 m)(4 m) (4 m) 0.0091168 m6(8 m)(7.02 10 kN-m )

 M xv L Lx x

 LEI = − − +

− ⎡ ⎤= − − + =⎣ ⎦× 

Beam deflection at C  

0.0079772 m 0.0303894 m 0.0091168 m 0.0132954 m 13.30 mmC v   = − + = − = ↓   Ans. 

(c) Beam deflection at point  E  

Consider deflection at  E   resulting from rotation at  D  caused by concentrated load on overhang

 AB. [Appendix C, SS beam with concentrated moment.] 

 Relevant equation from Appendix C:

6 D

 L EI 

θ    =   (slope magnitude)

Values:  M  = (35 kN)(4 m) = 140 kN-m, L = 8 m,

 EI = 7.02 × 104 kN-m

Computation:

Page 8: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 8/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

4 2

(140 kN-m)(8 m)0.0026591 rad

6 6(7.02 10 kN-m )

(2 m)(0.0026591 rad) 0.0053181 m

 D

 E 

 ML

 EI 

v

θ    = = =×

= − = −

 

Consider uniformly distributed loads between C  and  D. [Appendix C, SS beam with uniformly distributed load over portion of span.]  

 Relevant equations from Appendix C:

2 2(2 )24

 D

wa  L a LEI 

θ    = −   (slope magnitude)

Values: w = 80 kN/m, L = 8 m, a = 4 m,

 EI = 7.02 × 104 kN-m

Computation:

[ ]2 2

22

4 2

(80 kN/m)(4 m)(2 ) 2(8 m) (4 m) 0.0136752 rad

24 24(8 m)(7.02 10 kN-m )

(2 m)(0.0136752 rad) 0.0273504 m

 D

 E 

wa L a

 LEI 

v

θ    = − = − =×

= =

 

Consider deflection at  E  resulting from rotation at  D caused by uniform load on overhang  DE .

[Appendix C, SS beam with concentrated moment.] 

 Relevant equation from Appendix C:

3 D

 L

 EI θ    =   (slope magnitude)

Values:  M  = (80 kN/m)(2 m)(1 m) = 160 kN-m,

 L = 8 m, EI = 7.02 × 104 kN-m

Computation:

4 2

(160 kN-m)(8 m)0.0060779 rad

3 3(7.02 10 kN-m )

(2 m)(0.0060779 rad) 0.0121557 m

 D

 E 

 ML

 EI 

v

θ    = = =

×

= − = −

 

Determine cantilever deflection due to uniformly distributed load on overhang  DE . [Appendix C, Cantilever beam with distributed load.] 

 Relevant equation from Appendix C:4

8 E 

wLv

 EI = −   (assuming fixed support at D)

Values: w = 80 kN/m, L = 2 m, EI = 7.02 × 10

4 kN-m

Computation:4 4

4 2

(80 kN/m)(2 m)0.0022792 m

8 8(7.02 10 kN-m ) E 

wLv

 EI = − = − = −

× 

Beam deflection at  E  

0.0053181 m 0.0273504 m 0.0121557 m 0.0022792 m

0.0075974 m 7.60 mm

 E v   = − + − −

= = ↑   Ans. 

Page 9: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 9/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.49 The simply supported beam shown inFig. P10.49 consists of a W16 × 40

structural steel wide-flange shape [ E  =

29,000 ksi;  I   = 518 in.4]. For the loading

shown, determine:

(a) the beam deflection at point B.

(b) the beam deflection at point C .

(c) the beam deflection at point F .

Fig. P10.49

Solution

(a) Beam deflection at point  B 

Consider 40-kip concentrated load at  B. [Appendix C, SS beam with concentrated load not at midspan.]  Relevant equation from Appendix C:

2 2 2( )6

 B

 Pabv L a b

 LEI = − − −  

Values: 

 P  = 40 kips, L = 18 ft, a = 4 ft, b = 14 ft, EI = 1.5022 × 107 kip-in.

Computation:

2 2 2

32 2 2

7 2

( )6

(40 kips)(4 ft)(14 ft)(12 in./ft)(18 ft) (4 ft) (14 ft) 0.267213 in.

6(18 ft)(1.5022 10 kip-in. )

 B

 Pabv L a b

 LEI = − − −

⎡ ⎤= − − − = −⎣ ⎦×

 

Consider 30-kip concentrated load at  D. 

[Appendix C, SS beam with concentrated load not at midspan.]  Relevant equation from Appendix C:

2 2 2( )6

 B

 Pbxv L b x

 LEI = − − −   (elastic curve)

Values:  P  = 30 kips, L = 18 ft, x = 4 ft, b = 6 ft,

 EI = 1.5022 × 107 kip-in.

Computation:

2 2 2

32 2 2

7 2

( )6

(30 kips)(6 ft)(4 ft)(12 in./ft)(18 ft) (6 ft) (4 ft) 0.208590 in.

6(18 ft)(1.5022 10 kip-in. )

 B

 Pbxv L b x

 LEI = − − −

⎡ ⎤= − − − = −⎣ ⎦×

 

Page 10: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 10/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Consider 20-kip concentrated load at F .  [Appendix C, SS beam with concentrated moment.] 

 Relevant equation from Appendix C:

2 2(2 3 )6

 B

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = −(20 kips)(6 ft) = −120 kip-ft, L = 18 ft,

 x = 14 ft, EI = 1.5022 × 107 kip-in.

Computation:

2 2

32 2

7 2

(2 3 )6

( 120 kip-ft)(14 ft)(12 in./ft)2(18 ft) 3(18 ft)(14 ft) (14 ft) 0.157465 in.

6(18 ft)(1.5022 10 kip-in. )

 B

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Beam deflection at  B 

0.267213 in. 0.208590 in. 0.157465 in. 0.318338 in. 0.318 in. Bv   = − − + = − = ↓   Ans. 

(b) Beam deflection at point C  Consider 40-kip concentrated load at  B. [Appendix C, SS beam with concentrated load not at midspan.] 

 Relevant equation from Appendix C:

2 2 2( )6

 Pbxv L b x

 LEI = − − −   (elastic curve)

Values:  P  = 40 kips, L = 18 ft, b = 4 ft, x = 10 ft,

 EI = 1.5022 × 107 kip-in.

Computation:

2 2 2

32 2 2

7 2

( )6

(40 kips)(4 ft)(10 ft)(12 in./ft)(18 ft) (4 ft) (10 ft) 0.354467 in.

6(18 ft)(1.5022 10 kip-in. )

 Pbxv L b x

 LEI = − − −

⎡ ⎤= − − − = −⎣ ⎦×

 

Consider 30-kip concentrated load at  D. [Appendix C, SS beam with concentrated load not at midspan.]  Relevant equation from Appendix C:

2 2 2( )

6

 Pbxv L b x

 LEI 

= − − −   (elastic curve)

Values:  P  = 30 kips, L = 18 ft, b = 6 ft, x = 8 ft,

 EI = 1.5022 × 107 kip-in.

Page 11: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 11/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Computation:

2 2 2

32 2 2

7 2

( )6

(30 kips)(6 ft)(8 ft)(12 in./ft)(18 ft) (6 ft) (8 ft) 0.343560 in.

6(18 ft)(1.5022 10 kip-in. )

 Pbxv L b x

 LEI = − − −

⎡ ⎤= − − − = −⎣ ⎦×

 

Consider 20-kip concentrated load at F .  [Appendix C, SS beam with concentrated moment.] 

 Relevant equation from Appendix C:2 2(2 3 )

6C 

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = −(20 kips)(6 ft) = −120 kip-ft, L = 18 ft,

 x = 10 ft, EI = 1.5022 × 107 kip-in.

Computation:

2 2

32 2

7 2

(2 3 )6

( 120 kip-ft)(10 ft)(12 in./ft)2(18 ft) 3(18 ft)(10 ft) (10 ft) 0.265850 in.

6(18 ft)(1.5022 10 kip-in. )

 M xv L Lx x

 LEI = − − +

− ⎡ ⎤= − − + =⎣ ⎦×

 

Beam deflection at C  

0.354467 in. 0.343560 in. 0.265850 in. 0.432177 in. 0.432 in.C v   = − − + = − = ↓   Ans. 

(c) Beam deflection at point F  

Consider 40-kip concentrated load at  B. [Appendix C, SS beam with concentrated load not at midspan.] 

 Relevant equation from Appendix C:2 2( )

6 E 

 Pa L a

 LEI θ 

  −=   (slope magnitude)

Values:  P  = 40 kips, L = 18 ft, a = 4 ft,

 EI = 1.5022 × 107 kip-in.

Computation:2 2 2

2 2

7 2

( ) (40 kips)(4 ft)(12 in./ft)(18 ft) (4 ft) 0.0043740 rad

6 6(18 ft)(1.5022 10 kip-in. )

(6 ft)(12 in./ft)(0.0043740 rad) 0.314930 in.

 E 

 F 

 Pa L a

 LEI 

v

θ   −

⎡ ⎤= = − =⎣ ⎦×

= =

 

Page 12: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 12/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Consider 30-kip concentrated load at  D. [Appendix C, SS beam with concentrated load not at midspan.] 

 Relevant equation from Appendix C:2 2( )

6 E 

 Pa L a

 LEI θ 

  −=   (slope magnitude)

Values:  P  = 30 kips, L = 18 ft, x = 8 ft, a = 12 ft,

 EI = 1.5022 × 10

7

 kip-in.

2

 

Computation:2 2 2

2 2

7 2

( ) (30 kips)(12 ft)(12 in./ft)(18 ft) (12 ft) 0.0057516 rad

6 6(18 ft)(1.5022 10 kip-in. )

(6 ft)(12 in./ft)(0.0057516 rad) 0.414113 in.

 E 

 F 

 Pa L a

 LEI 

v

θ   −

⎡ ⎤= = − =⎣ ⎦×

= =

 

Consider deflection at F  resulting from rotation at  E  caused by 20-kip load on overhang  EF .

[Appendix C, SS beam with concentrated moment.] 

 Relevant equation from Appendix C:

3 E   L

 EI θ    =   (slope magnitude)

Values:  M  = (20 kips)(6 ft) = 120 kip-ft, L = 18 ft,

 EI = 1.5022 × 107 kip-in.

Computation:2

7 2

(120 kip-ft)(18 ft)(12 in./ft)0.0069019 rad

3 3(1.5022 10 kip-in. )

(6 ft)(12 in./ft)(0.0069019 rad) 0.496935 in.

 E 

 F 

 ML

 EI 

v

θ    = = =×

= − = −

 

Determine cantilever deflection due to concentrated load on overhang  EF . [Appendix C, Cantilever beam with concentrated load.] 

 Relevant equation from Appendix C:3

3 F 

 PLv

 EI = −   (assuming fixed support at E )

Values:  P  = 20 kips, L = 6 ft, EI = 1.5022 × 10

7 kip-in.

Computation:3 3 3

7 2

(20 kips)(6 ft) (12 in./ft)0.165645 in.

3 3(1.5022 10 kip-in. ) F 

 PLv

 EI = − = − = −

×

 

Beam deflection at F  

0.314930 in. 0.414113 in. 0.496935 in. 0.165645 in.

0.066463 in. 0.0665 in.

 F v   = + − −

= = ↑   Ans. 

Page 13: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 13/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.50 The cantilever beam shown in Fig.P10.50 consists of a rectangular structural

steel tube shape [ E   = 200 GPa;  I   = 170 ×

106  mm

4]. For the loading shown,

determine:

(a) the beam deflection at point A.

(b) the beam deflection at point B.

Fig. P10.50

Solution

(a) Beam deflection at point  A 

Consider uniformly distributed load. [Appendix C, Cantilever beam with uniformly distributed load.] 

 Relevant equation from Appendix C:4

8 A

wLv

 EI = −  

Values: w = −65 kN/m, L = 6 m, EI = 3.4 × 10

4 kN-m

Computation:4 4

4 2

( 65 kN/m)(6 m)0.309706 m

8 8(3.4 10 kN-m ) A

wLv

 EI 

−= − = − =

× 

Consider 90-kN concentrated load at  A.  [Appendix C, Cantilever beam with concentrated load at tip.]  Relevant equations from Appendix C:

3

3 A

 PLv

 EI = −  

Values:  P  = 90 kN, L = 6 m, EI = 3.4 × 10

4 kN-m

Computation:3 3

4 2

(90 kN)(6 m)0.190588 m

3 3(3.4 10 kN-m ) A

 PLv

 EI = − = − = −

× 

Consider 30-kN concentrated load at  B.  [Appendix C, Cantilever beam with concentrated load at tip.] 

 Relevant equations from Appendix C:

3 2

and3 2

 B B

 PL PLv

 EI EI θ = − =  (magnitude)

Values:  P  = 30 kN, L = 3.5 m, EI = 3.4 × 10

4 kN-m

Page 14: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 14/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Computation:3 3

4 2

(30 kN)(3.5 m)0.012610 m

3 3(3.4 10 kN-m ) B

 PLv

 EI = − = − = −

×  (a)

2 2

4 2

(30 kN)(3.5 m)0.0054044 rad

2 2(3.4 10 kN-m )

0.012610 m (2.5 m)(0.0054044 rad) 0.026121 m

 B

 A

 PL

 EI 

v

θ    = = =×

= − − = −  

Consider 225 kN-m concentrated moment at  B. [Appendix C, Cantilever beam with concentrated moment at tip.]  Relevant equations from Appendix C:

2

and2

 B B

 L MLv

 EI EI θ = − =   (slope magnitude)

Values:  M  = 225 kN-m, L = 3.5 m, EI = 3.4 × 10

4 kN-m

Computation:2 2

4 2

(225 kN-m)(3.5 m)0.040533 m

2 2(3.4 10 kN-m ) B

 MLv

 EI = − = − = −

×  (b)

4 2

(225 kN-m)(3.5 m)0.0231618 rad

(3.4 10 kN-m )

0.040533 m (2.5 m)(0.0231618 rad) 0.098438 m

 B

 A

 ML

 EI 

v

θ    = = =×

= − − = −  

Beam deflection at  A 

0.309706 m 0.190588 m 0.026121 m 0.098438 m 0.005441 m 5.44 mm Av   = − − − = − = ↓   Ans. 

(b) Beam deflection at point  B 

Consider uniformly distributed load. [Appendix C, Cantilever beam with uniformly distributed load.] 

 Relevant equation from Appendix C:2

2 2(6 4 )24

 B

wxv L Lx x

 EI = − − +   (elastic curve)

Values: w = −65 kN/m, L = 6 m, x = 3.5 m,

 EI = 3.4 × 104 kN-m

Computation:2

2 2

22 2

4 2

(6 4 )24

( 65 kN/m)(3.5 m)6(6 m) 4(6 m)(3.5 m) (3.5 m) 0.140759 m

24(3.4 10 kN-m )

 B

wxv L Lx x

 EI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Page 15: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 15/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Consider 90-kN concentrated load at  A.  [Appendix C, Cantilever beam with concentrated load at tip.] 

 Relevant equations from Appendix C:2

(3 )6

 B

 Pxv L x

 EI = − −   (elastic curve)

Values:  P  = 90 kN, L = 6 m, x = 3.5 m,

 EI = 3.4 × 104 kN-m

Computation:

[ ]2 2

4 2

(90 kN)(3.5 m)(3 ) 3(6 m) (3.5 m) 0.078364 m

6 6(3.4 10 kN-m ) B

 Pxv L x

 EI = − − = − − = −

× 

Consider 30-kN concentrated load at  B. Previously calculated in Eq. (a).

Consider 225 kN-m concentrated moment at  B. Previously calculated in Eq. (b).

Beam deflection at  B 

0.140759 m 0.078364 m 0.012610 m 0.040533 m 0.009252 m 9.25 mm Bv   = − − − = = ↑   Ans. 

Page 16: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 16/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.51 The simply supported beam shown inFig. P10.51 consists of a rectangular 

structural steel tube shape [ E  = 200 GPa;  I =

350 × 106  mm

4]. For the loading shown,

determine:

(a) the beam deflection at point B.

(b) the beam deflection at point C .(c) the beam deflection at point E .

Fig. P10.51

Solution

(a) Beam deflection at point  B 

Consider 315 kN-m concentrated moment. [Appendix C, SS beam with concentrated moment at one end.]  Relevant equation from Appendix C:

2 2(2 3 )6

 B

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values: 

 M  =−

315 kN-m, L = 9 m, x = 3 m, EI = 7.0 × 10

4 kN-m

Computation:

2 2

2 2

4 2

(2 3 )6

( 315 kN-m)(3 m)2(9 m) 3(9 m)(3 m) (3 m) 0.022500 m

6(9 m)(7.0 10 kN-m )

 B

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Consider 120 kN/m uniformly distributed load.

[Appendix C, SS beam with uniformly distributed load over a portion of the span.]  Relevant equation from Appendix C:

32 2(4 7 3 )

24 B

wav L aL a

 LEI = − − +  

Values: w = 120 kN/m, L = 9 m, a = 3 m,

 EI = 7.0 × 104 kN-m

Computation:3

2 2

32 2

4 2

(4 7 3 )

24

(120 kN/m)(3 m)4(9 m) 7(3 m)(9 m) 3(3 m) 0.034714 m

24(9 m)(7.0 10 kN-m )

 B

wav L aL a

 LEI 

= − − +

⎡ ⎤= − − + = −⎣ ⎦× 

Page 17: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 17/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Consider 100-kN concentrated load.  [Appendix C, SS beam with concentrated load not at midspan.] 

 Relevant equation from Appendix C:

2 2 2( )6

 B

 Pbxv L b x

 LEI = − − −   (elastic curve)

Values:  P  = 100 kN, L = 9 m, b = 3 m, x = 3 m,

 EI = 7.0 × 104 kN-m

Computation:

2 2 2

2 2 2

4 2

( )6

(100 kN)(3 m)(3 m)(9 m) (3 m) (3 m) 0.015000 m

6(9 m)(7.0 10 kN-m )

 B

 Pbxv L b x

 LEI = − − −

⎡ ⎤= − − − = −⎣ ⎦×

 

Consider 60 kN/m uniformly distributed load on overhang  DE . [Appendix C, SS beam with concentrated moment.]  Relevant equation from Appendix C:

2 2(2 3 )6

 B  M xv L Lx x LEI = − − +   (elastic curve)

Values:  M  = −(60 kN/m)(3 m)(1.5 m) = −270 kN-m,

 L = 9 m, x = 6 m, EI = 7.0 × 104 kN-m

Computation:

2 2

2 2

4 2

(2 3 )6

( 270 kN-m)(6 m)2(9 m) 3(9 m)(6 m) (6 m) 0.015429 m

6(9 m)(7.0 10 kN-m )

 B

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =

⎣ ⎦×

 

Beam deflection at  B 

0.022500 m 0.034714 m 0.015000 m 0.015429 m 0.011785 m 11.79 mm Bv   = − − + = − = ↓   Ans. 

(b) Beam deflection at point C  

Consider 315 kN-m concentrated moment. [Appendix C, SS beam with concentrated moment at one end.] 

 Relevant equation from Appendix C:

2 2(2 3 )6

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = −315 kN-m, L = 9 m, x = 6 m,

 EI = 7.0 × 104 kN-m

Page 18: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 18/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Computation:

2 2

2 2

4 2

(2 3 )6

( 315 kN-m)(6 m)2(9 m) 3(9 m)(6 m) (6 m) 0.018000 m

6(9 m)(7.0 10 kN-m )

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Consider 120 kN/m uniformly distributed load.

[Appendix C, SS beam with uniformly distributed load over a portion of the span.]  Relevant equation from Appendix C:

23 2 2 2 2(2 6 4 )

24C 

wav x Lx a x L x a L

 LEI = − − + + −  

Values: w = 120 kN/m, L = 9 m, a = 3 m, x = 6 m,

 EI = 7.0 × 104 kN-m

Computation:2

3 2 2 2 2

23 2 2 2 2

4 2

(2 6 4 )24

(120 kN/m)(3 m)2(6 m) 6(9 m)(6 m) (3 m) (6 m) 4(9 m) (6 m) (3 m) (9 m)

24(9 m)(7.0 10 kN-m )

0.028929 m

wav x Lx a x L x a L

 LEI = − − + + −

⎡ ⎤= − − + + −⎣ ⎦×

= −  

Consider 100-kN concentrated load.  [Appendix C, SS beam with concentrated load not at midspan.]  Relevant equation from Appendix C:

2 2 2( )6

 Pabv L a b

 LEI = − − −  

Values: 

 P  = 100 kN, L = 9 m, a = 6 m, b = 3 m, EI = 7.0 × 104 kN-m

Computation:

2 2 2

2 2 2

4 2

( )6

(100 kN)(6 m)(3 m)(9 m) (6 m) (3 m) 0.017143 m

6(9 m)(7.0 10 kN-m )

 Pabv L a b

 LEI = − − −

⎡ ⎤= − − − = −⎣ ⎦×

 

Consider 60 kN/m uniformly distributed load on overhang  DE . [Appendix C, SS beam with concentrated moment.] 

 Relevant equation from Appendix C:2 2(2 3 )

6C 

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = −(60 kN/m)(3 m)(1.5 m) = −270 kN-m, L = 9 m, x = 3 m, EI = 7.0 × 10

4 kN-m

Page 19: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 19/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Computation:

2 2

2 2

4 2

(2 3 )6

( 270 kN-m)(3 m)2(9 m) 3(9 m)(3 m) (3 m) 0.019286 m

6(9 m)(7.0 10 kN-m )

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Beam deflection at C  

0.018000 m 0.028929 m 0.017143 m 0.019286 m 0.008786 m 8.79 mmC v   = − − + = − = ↓   Ans. 

(c) Beam deflection at point  E  

Consider 315 kN-m concentrated moment. [Appendix C, SS beam with concentrated moment at one end.] 

 Relevant equation from Appendix C:

6 D

 L

 EI θ    =   (slope magnitude)

Values:  M  = −315 kN-m, L = 9 m,

 EI = 7.0 × 104

 kN-m2

 

Computation:

4 2

( 315 kN-m)(9 m)0.0067500 rad

6 6(7.0 10 kN-m )

(3 m)( 0.0067500 rad) 0.020250 m

 D

 E 

 ML

 EI 

v

θ   −

= = = −×

= − = −

 

Consider 120 kN/m uniformly distributed load.

[Appendix C, SS beam with uniformly distributed load over a portion of the span.] 

 Relevant equation from Appendix C:2

2 2(2 )24

 D

wa L a

 LEI θ    = −   (slope magnitude)

Values: w = 120 kN/m, L = 9 m, a = 3 m,

 EI = 7.0 × 104 kN-m

Computation:2 2

2 2 2 2

4 2

(120 kN/m)(3 m)(2 ) 2(9 m) (3 m) 0.0109286 rad

24 24(9 m)(7.0 10 kN-m )

(3 m)(0.0109286 rad) 0.032786 m

 D

 E 

wa L a

 LEI 

v

θ    ⎡ ⎤= − = − =⎣ ⎦×

= = 

Page 20: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 20/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Consider 100-kN concentrated load.  [Appendix C, SS beam with concentrated load not at midspan.] 

 Relevant equation from Appendix C:2 2( )

6 D

 Pa L a

 LEI θ 

  −=   (slope magnitude)

Values:  P  = 100 kN, L = 9 m, a = 6 m,

 EI = 7.0 × 104 kN-m

Computation:2 2

2 2

4 2

( ) (100 kN)(6 m)(9 m) (6 m) 0.0071429 rad

6 6(9 m)(7.0 10 kN-m )

(3 m)(0.0071429 rad) 0.021429 m

 D

 E 

 Pa L a

 LEI 

v

θ   −

⎡ ⎤= = − =⎣ ⎦×

= =

 

Consider 60 kN/m uniformly distributed load on overhang  DE . [Appendix C, SS beam with concentrated moment.] 

 Relevant equation from Appendix C:

3 D

 L

 EI 

θ    =   (slope magnitude)

Values:  M  = −(60 kN/m)(3 m)(1.5 m) = −270 kN-m,

 L = 9 m, EI = 7.0 × 104 kN-m

Computation:

4 2

(270 kN-m)(9 m)0.0115714 rad

3 3(7.0 10 kN-m )

(3 m)(0.0115714 rad) 0.034714 m

 D

 E 

 ML

 EI 

v

θ    = = =×

= − = −

 

Determine cantilever deflection due to 60 kN/m uniformly distributed load on overhang  DE . [Appendix C, Cantilever beam with concentrated load.]  Relevant equation from Appendix C:

4

8 E 

wLv

 EI = −   (assuming fixed support at D)

Values: w = 60 kN/m, L = 3 m, EI = 7.0 × 10

4 kN-m

Computation:4 4

4 2

(60 kN-m)(3 m)0.008679 m

8 8(7.0 10 kN-m ) E 

wLv

 EI = − = − = −

×

 

Beam deflection at  E  

0.020250 m 0.032786 m 0.021429 m 0.034714 m 0.008679 m

0.009429 m 9.43 mm

 E v   = − + + − −

= − = ↓   Ans. 

Page 21: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 21/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.52 The cantilever beam shown in Fig.P10.52 consists of a rectangular structural

steel tube shape [ E  = 200 GPa; I  = 95 × 106

mm4]. For the loading shown, determine:

(a) the beam deflection at point B.

(b) the beam deflection at point C .

Fig. P10.52

Solution

(a) Beam deflection at point  B 

Consider the downward 50 kN/m uniformly distributed load acting over span  AB.

[Appendix C, Cantilever beam with uniformly distributed load.]  Relevant equation from Appendix C:

4

8 B

wLv

 EI = −  

Values: w = 50 kN/m, L = 2 m, EI = 1.9 × 10

4 kN-m

Computation:4 4

4 2

(50 kN/m)(2 m)0.0052632 m

8 8(1.9 10 kN-m ) B

wLv

 EI = − = − = −

×  (a)

Consider an upward 25 kN/m uniformly distributed load acting over entire 5-m span.

[Appendix C, Cantilever beam with uniformly distributed load.] 

 Relevant equation from Appendix C:2

2 2(6 4 )24

 B

wxv L Lx x

 EI = − − +   (elastic curve)

Values: w = −25 kN/m, L = 5 m, x = 2 m,

 EI = 1.9 × 104 kN-m

Computation:2

2 2

22 2

4 2

(6 4 )24

( 25 kN/m)(2 m)6(5 m) 4(5 m)(2 m) (2 m) 0.0250000 m

24(1.9 10 kN-m )

 B

wxv L Lx x

 EI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Consider a downward 25 kN/m uniformly distributed load acting over span  AB.

[Appendix C, Cantilever beam with uniformly distributed load.]  Relevant equation from Appendix C:4

8 B

wLv

 EI = −  

Values: w = 25 kN/m, L = 2 m, EI = 1.9 × 10

4 kN-m

Page 22: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 22/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Computation:4 4

4 2

(25 kN/m)(2 m)0.0026316 m

8 8(1.9 10 kN-m ) B

wLv

 EI = − = − = −

×  (b)

Consider 20-kN concentrated load at  B.  [Appendix C, Cantilever beam with concentrated load at tip.]  Relevant equations from Appendix C:

3

3 B

 PLv

 EI = −  

Values:  P  = −20 kN, L = 2 m, EI = 1.9 × 10

4 kN-m

Computation:3 3

4 2

( 20 kN)(2 m)0.0028070 m

3 3(1.9 10 kN-m ) B

 PLv

 EI 

−= − = − =

×  (c)

Consider 50-kN concentrated load at C .  [Appendix C, Cantilever beam with concentrated load at tip.] 

 Relevant equations from Appendix C:2

(3 )6 B

 Pxv L x EI = − −   (elastic curve)

Values:  P  = 50 kN, L = 5 m, x = 2 m, EI = 1.9 × 10

4 kN-m

2

 Computation:

[ ]2 2

4 2

(50 kN)(2 m)(3 ) 3(5 m) (2 m) 0.0228070 m

6 6(1.9 10 kN-m ) B

 Pxv L x

 EI = − − = − − = −

× 

Beam deflection at  B 

0.0052632 m 0.0250000 m 0.0026316 m 0.0028070 m 0.0228070 m

0.0028947 m 2.89 mm

 Bv   = − + − + −

= − = ↓   Ans. 

Page 23: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 23/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

(b) Beam deflection at point C  

Consider the downward 50 kN/m uniformly distributed load acting over span  AB.

[Appendix C, Cantilever beam with uniformly distributed load.]  Relevant equation from Appendix C:

3

6 B

wL

 EI θ    =   (slope magnitude)

Values: w = 50 kN/m, L = 2 m, EI = 1.9 × 10

4 kN-m

Computation: [v B previously calculated in Eq. (a)]3 3

4 2

(50 kN/m)(2 m)0.0035088 rad

6 6(1.9 10 kN-m )

0.0052632 m (3 m)(0.0035088 rad) 0.0157895 m

 B

wL

 EI 

v

θ    = = =×

= − − = −

 

Consider an upward 25 kN/m uniformly distributed load acting over entire 5-m span.

[Appendix C, Cantilever beam with uniformly distributed load.] 

 Relevant equation from Appendix C:

4

8C 

wLv EI 

= −  

Values: w = −25 kN/m, L = 5 m, EI = 1.9 × 10

4 kN-m

Computation:4 4

4 2

( 25 kN/m)(5 m)0.1027961 m

8 8(1.9 10 kN-m )C 

wLv

 EI 

−= − = − =

× 

Consider a downward 25 kN/m uniformly distributed load acting over span  AB.

[Appendix C, Cantilever beam with uniformly distributed load.]  Relevant equation from Appendix C:

3

6 B

wL

 EI θ    =   (slope magnitude)

Values: w = 25 kN/m, L = 2 m, EI = 1.9 × 10

4 kN-m

Computation: [v B previously calculated in Eq. (b)]3 3

4 2

(25 kN)(2 m)0.0017544 rad

6 6(1.9 10 kN-m )0.0026316 m (3 m)(0.0017544 rad) 0.0078948 m

 B

wL

 EI v

θ    = = =×

= − − = − 

Page 24: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 24/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Consider 20-kN concentrated load at  B.  [Appendix C, Cantilever beam with concentrated load at tip.] 

 Relevant equations from Appendix C:2

2 B

 PL

 EI θ    =  

Values:  P  = 20 kN, L = 2 m, EI = 1.9 × 10

4 kN-m

Computation: [v B previously calculated in Eq. (c)] 2 2

4 2

(20 kN)(2 m)0.0021053 rad

2 2(1.9 10 kN-m )

0.0028070 m (3 m)(0.0021053 rad) 0.0091228 m

 B

 PL

 EI 

v

θ    = = =×

= + =

 

Consider 50-kN concentrated load at C .  [Appendix C, Cantilever beam with concentrated load at tip.] 

 Relevant equations from Appendix C:3

3C 

 PLv

 EI = −  

Values:  P  = 50 kN, L = 5 m, EI = 1.9 × 104 kN-m2 

Computation:3 3

4 2

(50 kN)(5 m)0.1096491 m

3 3(1.9 10 kN-m )C 

 PLv

 EI = − = − = −

× 

Beam deflection at C  

0.0157895 m 0.1027961 m 0.0078948 m 0.0091228 m 0.1096491 m

0.0214145 m 21.4 mm

C v   = − + − + −

= − = ↓   Ans. 

Page 25: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 25/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.53 The simply supported beam shownin Fig. P10.53 consists of a W10 × 30

structural steel wide-flange shape [ E  =

29,000 ksi;  I   = 170 in.4]. For the loading

shown, determine:

(a) the beam deflection at point A.

(b) the beam deflection at point C .(c) the beam deflection at point D.

Fig. P10.53

Solution

(a) Beam deflection at point  A 

Consider cantilever beam deflection of 85 kip-ft concentrated moment. [Appendix C, Cantilever beam with concentrated moment at one end.]  Relevant equation from Appendix C:

2

2 A

 Lv

 EI = −  

Values: 

 M  = 85 kip-ft, L = 3 ft, EI = 4.93 × 106

 kip-in.2

 

Computation:2 2 3

6 2

(85 kip-ft)(3 ft) (12 in./ft)0.134069 in.

2 2(4.93 10 kip-in. ) A

 MLv

 EI = − = − = −

× 

Consider rotation at  B caused by 85 kip-ft concentrated moment. [Appendix C, SS beam with concentrated moment at one end.]  Relevant equation from Appendix C:

3 B

 L

 EI 

θ    =   (slope magnitude)

Values:  M  = 85 kip-ft, L = 15 ft, EI = 4.93 × 10

6 kip-in.

Computation:2

6 2

(85 kip-ft)(15 ft)(12 in./ft)0.0124138 rad

3 3(4.93 10 kip-in. )

(3 ft)(12 in./ft)(0.0124138 rad) 0.446897 in.

 B

 A

 ML

 EI 

v

θ    = = =×

= − = −

 

Consider cantilever beam deflection of 5 kips/ft uniformly distributed load. 

[Appendix C, Cantilever beam with uniformly distributed load.]  Relevant equation from Appendix C:

4

8 A

wLv

 EI = −  

Values: w = 5 kips/ft, L = 3 ft, EI = 4.93 × 10

6 kip-in.

Page 26: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 26/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Computation:4 4 3

6 2

(5 kips/ft)(3 ft) (12 in./ft)0.017744 in.

8 8(4.93 10 kip-in. ) A

wLv

 EI = − = − = −

× 

Consider rotation at  B caused by 5 kips/ft uniformly distributed load. [Appendix C, SS beam with concentrated moment at one end.]  Relevant equation from Appendix C:

3 B  L

 EI θ    =   (slope magnitude)

Values:  M  = (5 kips/ft)(3 ft)(1.5 ft) = 22.5 kip-ft, L = 15 ft, EI = 4.93 × 10

6 kip-in.

Computation:2

6 2

(22.5 kip-ft)(15 ft)(12 in./ft)0.0032860 rad

3 3(4.93 10 kip-in. )

(3 ft)(12 in./ft)(0.0032860 rad) 0.118296 in.

 B

 A

 ML

 EI 

v

θ    = = =×

= − = −

 

Consider 5 kips/ft uniformly distributed load on segment  BC .[Appendix C, SS beam with uniformly distributed load over a portion of the span.] 

 Relevant equation from Appendix C:2

2(2 )24

 B

wa L a

 LEI θ    = −   (slope magnitude)

Values: w = 5 kips/ft, L = 15 ft, a = 5 ft,

 EI = 4.93 × 106 kip-in.

Computation:

[ ]2 2 2

22

6 2(5 kips/ft)(5 ft) (12 in./ft)(2 ) 2(15 ft) (5 ft) 0.0063387 rad

24 24(15 ft)(4.93 10 kip-in. )

(3 ft)(12 in./ft)(0.0063387 rad) 0.228195 in.

 B

 A

wa  L a LEI 

v

θ    = − = − =×

= =

 

Consider 25-kip concentrated load.  [Appendix C, SS beam with concentrated load not at midspan.]  Relevant equation from Appendix C:

2 2( )

6 B

 Pb L b

 LEI θ 

  −=   (slope magnitude)

Values:  P  = 25 kips, L = 15 ft, b = 5 ft,

 EI = 4.93 × 106 kip-in.2 

Computation:2 2 2

2 2

6 2

( ) (25 kips)(5 ft)(12 in./ft)(15 ft) (5 ft) 0.0081136 rad

6 6(15 ft)(4.93 10 kip-in. )

(3 ft)(12 in./ft)(0.0081136 rad) 0.292089 in.

 B

 A

 Pb L b

 LEI 

v

θ   −

⎡ ⎤= = − =⎣ ⎦×

= =

 

Page 27: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 27/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Beam deflection at  A 

0.134069 in. 0.446897 in. 0.017744 in. 0.118296 in. 0.228195 in. 0.292089 in.

0.196722 in. 0.1967 in.

 Av   = − − − − + +

= − = ↓   Ans. 

(b) Beam deflection at point C  

Consider 85 kip-ft concentrated moment. [Appendix C, SS beam with concentrated moment at one end.] 

 Relevant equation from Appendix C:2 2(2 3 )

6C 

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = −85 kip-ft, L = 15 ft, x = 5 ft, EI = 4.93 × 10

6 kip-in.

Computation:

2 2

3 2 2

6 2

(2 3 )6

( 85 kip-ft)(5 ft)(12 in./ft) 2(15 ft) 3(15 ft)(5 ft) (5 ft) 0.413793 in.6(15 ft)(4.93 10 kip-in. )

 M xv L Lx x

 LEI = − − +

− ⎡ ⎤= − − + =⎣ ⎦× 

Consider moment at  B caused by 5 kips/ft uniformly distributed load on overhang  AB. [Appendix C, SS beam with concentrated moment at one end.] 

 Relevant equation from Appendix C:

2 2(2 3 )6

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = −(5 kips/ft)(3 ft)(1.5 ft) = −22.5 kip-ft,

 L = 15 ft, x = 5 ft, EI = 4.93 × 106

 kip-in.2

 

Computation:

2 2

32 2

6 2

(2 3 )6

( 22.5 kip-ft)(5 ft)(12 in./ft)2(15 ft) 3(15 ft)(5 ft) (5 ft) 0.109533 in.

6(15 ft)(4.93 10 kip-in. )

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Consider 5 kips/ft uniformly distributed load on segment  BC .

[Appendix C, SS beam with uniformly distributed load over a portion of the span.] 

 Relevant equation from Appendix C:3

2 2(4 7 3 )24

wav L aL a

 LEI = − − +  

Values: w = 5 kips/ft, L = 15 ft, a = 5 ft,

 EI = 4.93 × 106 kip-in.

Page 28: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 28/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Computation:3

2 2

3 32 2

6 2

(4 7 3 )24

(5 kips/ft)(5 ft) (12 in./ft)4(15 ft) 7(5 ft)(15 ft) 3(5 ft) 0.273834 in.

24(15 ft)(4.93 10 kip-in. )

wav L aL a

 LEI = − − +

⎡ ⎤= − − + = −⎣ ⎦× 

Consider 25-kip concentrated load.  [Appendix C, SS beam with concentrated load not at midspan.] 

 Relevant equation from Appendix C:

2 2 2( )6

 Pbxv L b x

 LEI = − − −   (elastic curve)

Values:  P  = 25 kips, L = 15 ft, b = 5 ft, x = 5 ft,

 EI = 4.93 × 106 kip-in.2 

Computation:

2 2 2

32 2 2

6 2

( )6

(25 kips)(5 ft)(5 ft)(12 in./ft)(15 ft) (5 ft) (5 ft) 0.425963 in.

6(15 ft)(4.93 10 kip-in. )

 Pbxv L b x

 LEI = − − −

⎡ ⎤= − − − = −⎣ ⎦×

 

Beam deflection at C  

0.413793 in. 0.109533 in. 0.273834 in. 0.425963 in.

0.176471 in. 0.1765 in.

C v   = + − −

= − = ↓   Ans. 

(c) Beam deflection at point  D 

Consider 85 kip-ft concentrated moment. 

[Appendix C, SS beam with concentrated moment at one end.]  Relevant equation from Appendix C:

2 2(2 3 )6

 D

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = −85 kip-ft, L = 15 ft, x = 10 ft, EI = 4.93 × 10

6 kip-in.

Computation:

2 2

32 2

6 2

(2 3 )6

( 85 kip-ft)(10 ft)(12 in./ft)2(15 ft) 3(15 ft)(10 ft) (10 ft) 0.331034 in.

6(15 ft)(4.93 10 kip-in. )

 D

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Page 29: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 29/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Consider moment at  B caused by 5 kips/ft uniformly distributed load on overhang  AB. [Appendix C, SS beam with concentrated moment at one end.]  Relevant equation from Appendix C:

2 2(2 3 )6

 D

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = −(5 kips/ft)(3 ft)(1.5 ft) = −22.5 kip-ft,

 L = 15 ft, x = 10 ft, EI = 4.93 × 106 kip-in.

Computation:

2 2

32 2

6 2

(2 3 )6

( 22.5 kip-ft)(10 ft)(12 in./ft)2(15 ft) 3(15 ft)(10 ft) (10 ft) 0.087627 in.

6(15 ft)(4.93 10 kip-in. )

 D

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Consider 5 kips/ft uniformly distributed load on segment  BC .

[Appendix C, SS beam with uniformly distributed load over a portion of the span.] 

 Relevant equation from Appendix C:23 2 2 2 2(2 6 4 )

24 D

wav x Lx a x L x a L

 LEI = − − + + −  

Values: w = 5 kips/ft, L = 15 ft, a = 5 ft, x = 10 ft,

 EI = 4.93 × 106 kip-in.

Computation:2

3 2 2 2 2

2 33 2 2 2 2

6 2

(2 6 4 )24

(5 kips/ft)(5 ft) (12 in./ft) 2(10 ft) 6(15 ft)(10 ft) (5 ft) (10 ft) 4(15 ft) (10 ft) (5 ft) (15 ft)24(15 ft)(4.93 10 kip-in. )

0.228195 in.

 D

wav x Lx a x L x a L

 LEI = − − + + −

⎡ ⎤= − − + + −⎣ ⎦×

= −

 

Consider 25-kip concentrated load.  [Appendix C, SS beam with concentrated load not at midspan.]  Relevant equation from Appendix C:

2 2 2( )6

 D

 Pabv L a b

 LEI = − − −  

Values:  P  = 25 kips, L = 15 ft, a = 10 ft, b = 5 ft,

 EI = 4.93 × 106 kip-in.2 

Page 30: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 30/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Computation:

2 2 2

32 2 2

6 2

( )6

(25 kips)(10 ft)(5 ft)(12 in./ft)(15 ft) (10 ft) (5 ft) 0.486815 in.

6(15 ft)(4.93 10 kip-in. )

 D

 Pabv L a b

 LEI = − − −

⎡ ⎤= − − − = −⎣ ⎦×

 

Beam deflection at  D 

0.331034 in. 0.087627 in. 0.228195 in. 0.486815 in.

0.296349 in. 0.296 in.

 Dv   = + − −

= − = ↓   Ans. 

Page 31: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 31/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.54 The simply supported beam shown inFig. P10.54 consists of a W10 × 30 structural

steel wide-flange shape [ E   = 29,000 ksi;  I  =

170 in.4]. For the loading shown, determine:

(a) the beam deflection at point A.

(b) the beam deflection at point C .

Fig. P10.54

Solution

(a) Beam deflection at point  A 

Consider cantilever beam deflection of linearly distributed load on overhang  AB. [Appendix C, Cantilever beam with linearly distributed load.] 

 Relevant equation from Appendix C:4

0

30 A

w Lv

 EI = −  

Values: w0 = 8 kips/ft, L = 9 ft, EI = 4.93 × 10

6 kip-in.

Computation:4 4 3

0

6 2

(8 kips/ft)(9 ft) (12 in./ft)0.613247 in.

30 30(4.93 10 kip-in. ) A

w Lv

 EI = − = − = −

× 

Consider rotation at  B caused by linearly distributed load on overhang  AB. [Appendix C, SS beam with concentrated moment at one end.] 

 Relevant equation from Appendix C:

3 B

 L

 EI θ    =   (slope magnitude)

Values:  M  = ½(8 kips/ft)(9 ft)(3 ft) = 108 kip-ft, L = 18 ft, EI = 4.93 × 10

6 kip-in.

Computation:2

6 2

(108 kip-ft)(18 ft)(12 in./ft)0.0189274 rad

3 3(4.93 10 kip-in. )

(9 ft)(12 in./ft)(0.0189274 rad) 2.044157 in.

 B

 A

 ML

 EI 

v

θ    = = =×

= − = −

 

Page 32: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 32/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Consider linearly distributed load from 8 kips/ft to 0 kips/ft over span  BD. [Appendix C, SS beam with linearly distributed load.]  Relevant equation from Appendix C:

3

0

45 B

w L

 EI θ    =   (slope magnitude)

Values: w0 = 8 kips/ft, L = 18 ft, EI = 4.93 × 10

6 kip-in.

Computation:3 3 2

0

6 2

(8 kips/ft)(18 ft) (12 in./ft)0.0302838 rad

45 45(4.93 10 kip-in. )

(9 ft)(12 in./ft)(0.0302838 rad) 3.270652 in.

 B

 A

w L

 EI 

v

θ    = = =×

= =

 

Consider 4 kips/ft uniformly distributed load on segment CD.

[Appendix C, SS beam with uniformly distributed load over a portion of the span.]  Relevant equation from Appendix C:

22 2(2 )

24 B

wa L a

 LEI θ    = −   (slope magnitude)

Values: w = 4 kips/ft, L = 18 ft, a = 9 ft,

 EI = 4.93 × 106 kip-in.

Computation:2

2 2

2 22 2

6 2

(2 )24

(4 kips/ft)(9 ft) (12 in./ft)2(18 ft) (9 ft) 0.0124211 rad

24(18 ft)(4.93 10 kip-in. )

(9 ft)(12 in./ft)(0.0124211 rad) 1.341478 in.

 B

 A

wa L a

 LEI 

v

θ    = −

⎡ ⎤= − =⎣ ⎦×

= =  

Beam deflection at  A 

0.613247 in. 2.044157 in. 3.270652 in. 1.341478 in. 1.954726 in. 1.955 in. Av   = − − + + = = ↑   Ans. 

(b) Beam deflection at point C  

Consider moment at  B caused by linearly distributed load on overhang  AB. [Appendix C, SS beam with concentrated moment at one end.] 

 Relevant equation from Appendix C:

2 2(2 3 )6

C   M xv L Lx x LEI = − − +  

Values:  M  = −½(8 kips/ft)(9 ft)(3 ft) = −108 kip-ft,

 L = 18 ft, x = 9 ft, EI = 4.93 × 106 kip-in.

Page 33: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 33/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Computation:

2 2

32 2

6 2

(2 3 )6

( 108 kip-ft)(9 ft)(12 in./ft)2(18 ft) 3(18 ft)(9 ft) (9 ft) 0.766559 in.

6(18 ft)(4.93 10 kip-in. )

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Consider linearly distributed load from 8 kips/ft to 0 kips/ft over span  BD. 

[Appendix C, SS beam with linearly distributed load.]  Relevant equation from Appendix C:

4 2 2 40 (7 10 3 )360

w xv L L x x

 LEI = − − +  

Values: w0 = 8 kips/ft, L = 18 ft, x = 9 ft,

 EI = 4.93 × 106 kip-in.

Computation:

4 2 2 40

34 2 2 4

6 2

(7 10 3 )360

(8 kips/ft)(9 ft)(12 in./ft)7(18 ft) 10(18 ft) (9 ft) 3(9 ft) 1.916398 in.

360(18 ft)(4.93 10 kip-in. )

w xv L L x x

 LEI = − − +

⎡ ⎤= − − + = −⎣ ⎦× 

Consider 4 kips/ft uniformly distributed load on segment CD.

[Appendix C, SS beam with uniformly distributed load over a portion of the span.] 

 Relevant equation from Appendix C:3

2 2(4 7 3 )24

wav L aL a

 LEI = − − +  

Values: w = 4 kips/ft, L = 18 ft, a = 9 ft,

 EI = 4.93 × 106 kip-in.

Computation:3

2 2

3 32 2

6 2

(4 7 3 )24

(4 kips/ft)(9 ft) (12 in./ft)4(18 ft) 7(9 ft)(18 ft) 3(9 ft) 0.958199 in.

24(18 ft)(4.93 10 kip-in. )

wav L aL a

 LEI = − − +

⎡ ⎤= − − + = −⎣ ⎦× 

Beam deflection at C  0.766559 in. 1.916398 in. 0.958199 in. 2.108037 in. 2.11 in.C v   = − − = − = ↓   Ans. 

Page 34: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 34/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.55  The simply supported beam shownin Fig. P10.55 consists of a W21 × 44

structural steel wide-flange shape [ E  =

29,000 ksi;  I   = 843 in.4]. For the loading

shown, determine:

(a) the beam deflection at point A.

(b) the beam deflection at point C .

Fig. P10.55

Solution

(a) Beam deflection at point  A 

Consider cantilever beam deflection of downward  4 kips/ft uniform load over  AB. [Appendix C, Cantilever beam with uniformly distributed load.]

 Relevant equation from Appendix C:4

8 A

wLv

 EI = −  

Values: 

w = 4 kips/ft, L = 12 ft, EI = 2.4447 × 107

 kip-in.2

 

Computation:4 4 3

7 2

(4 kips/ft)(12 ft) (12 in./ft)0.732847 in.

8 8(2.4447 10 kip-in. ) A

wLv

 EI = − = − = −

× 

Consider cantilever beam deflection of upward  4 kips/ft uniform load over 6-ft segment. [Appendix C, Cantilever beam with uniformly distributed load.]  Relevant equation from Appendix C:

4 3

and8 6

wL wL

v  EI EI θ = − = (slope magnitude)

Values: w = −4 kips/ft, L = 6 ft, EI = 2.4447 × 10

7 kip-in.

Computation:4 4 3

7 2

3 3 2

7 2

( 4 kips/ft)(6 ft) (12 in./ft)0.045803 in.

8 8(2.4447 10 kip-in. )

(4 kips/ft)(6 ft) (12 in./ft)0.0008482 rad

6 6(2.4447 10 kip-in. )

0.045803 in. (6 ft)(12 in./ft)(0.0008482 rad) A

wLv

 EI 

wL

 EI 

v

θ 

−= − = − =

×

= = =×

= + 0.106873 in.=

 

Page 35: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 35/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Consider rotation at  B caused by downward 4 kips/ft uniform load. [Appendix C, SS beam with concentrated moment at one end.]  Relevant equation from Appendix C:

3 B

 L

 EI θ    =   (slope magnitude)

Values:  M  = (4 kips/ft)(6 ft)(9 ft) = 216 kip-ft,

 L = 24 ft, EI = 2.4447 × 107 kip-in.

Computation:2

7 2

(216 kip-ft)(24 ft)(12 in./ft)0.0101784 rad

3 3(2.4447 10 kip-in. )

(12 ft)(12 in./ft)(0.0101784 rad) 1.465693 in.

 B

 A

 ML

 EI 

v

θ    = = =×

= − = −

 

Consider 42-kip concentrated load.  [Appendix C, SS beam with concentrated load not at midspan.]  Relevant equation from Appendix C:

2 2( )

6

 B

 Pb L b

 LEI 

θ   −

=   (slope magnitude)

Values:  P  = 42 kips, L = 24 ft, b = 18 ft,

 EI = 2.4447 × 107 kip-in.

Computation:2 2 2

2 2

7 2

( ) (42 kips)(18 ft)(12 in./ft)(24 ft) (18 ft) 0.0077929 rad

6 6(24 ft)(2.4447 10 kip-in. )

(12 ft)(12 in./ft)(0.0077929 rad) 1.122172 in.

 B

 A

 Pb L b

 LEI 

v

θ   −

⎡ ⎤= = − =⎣ ⎦×

= =

 

Consider 4 kips/ft uniformly distributed load on 6-ft segment near  D.[Appendix C, SS beam with uniformly distributed load over a portion of the span.]  Relevant equation from Appendix C:

22 2(2 )

24 B

wa L a

 LEI θ    = −   (slope magnitude)

Values: w = 4 kips/ft, L = 24 ft, a = 6 ft,

 EI = 2.4447 × 107 kip-in.

Computation:2 2 2

2 2 2 27 2(4 kips/ft)(6 ft) (12 in./ft)(2 ) 2(24 ft) (6 ft) 0.0016434 rad

24 24(24 ft)(2.4447 10 kip-in. )

(12 ft)(12 in./ft)(0.0016434 rad) 0.236648 in.

 B

 A

wa  L a LEI 

v

θ    ⎡ ⎤= − = − =⎣ ⎦×

= =

 

Beam deflection at  A 

0.732847 in. 0.106873 in. 1.465693 in. 1.122172 in. 0.236648 in.

0.732847 in. 0.733 in.

 Av   = − + − + +

= − = ↓   Ans. 

Page 36: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 36/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

(b) Beam deflection at point C  

Consider moment at  B caused by downward 4 kips/ft uniform load. [Appendix C, SS beam with concentrated moment at one end.]  Relevant equation from Appendix C:

2 2(2 3 )6

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = −(4 kips/ft)(6 ft)(9 ft) = −216 kip-ft, L = 24 ft, x = 12 ft, EI = 2.4447 × 107 kip-in.2 

Computation:

2 2

32 2

7 2

(2 3 )6

( 216 kip-ft)(12 ft)(12 in./ft)2(24 ft) 3(24 ft)(12 ft) (12 ft) 0.549635 in.

6(24 ft)(2.4447 10 kip-in. )

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Consider 42-kip concentrated load.  [Appendix C, SS beam with concentrated load not at midspan.] 

 Relevant equation from Appendix C:2 2 2( )

6C 

 Pbxv L b x

 LEI = − − −   (elastic curve)

Values:  P  = 42 kips, L = 24 ft, b = 6 ft, x = 12 ft, EI = 2.4447 × 10

7 kip-in.

Computation:

2 2 2

3

2 2 2

7 2

( )6

(42 kips)(6 ft)(12 ft)(12 in./ft) (24 ft) (6 ft) (12 ft) 0.587804 in.6(24 ft)(2.4447 10 kip-in. )

 Pbxv L b x

 LEI = − − −

⎡ ⎤= − − − = −⎣ ⎦×

 

Consider 4 kips/ft uniformly distributed load on 6-ft segment near  D.

[Appendix C, SS beam with uniformly distributed load over a portion of the span.] 

 Relevant equation from Appendix C:2

3 2 2 2 2(2 6 4 )24

wav x Lx a x L x a L

 LEI = − − + + −  

(elastic curve)

Values: 

w = 4 kips/ft, L = 24 ft, a = 6 ft, x = 12 ft, EI = 2.4447 × 10

7 kip-in.

Page 37: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 37/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Computation:2

3 2 2 2 2

2 33 2 2 2 2

7 2

(2 6 4 )24

(4 kips/ft)(6 ft) (12 in./ft)2(12 ft) 6(24 ft)(12 ft) (6 ft) (12 ft) 4(24 ft) (12 ft) (6 ft) (24

24(24 ft)(2.4447 10 kip-in. )

0.175578 in.

wav x Lx a x L x a L

 LEI = − − + + −

⎡ = − − + + −⎣ ×

= −

  2 2 22 2 2 2

7 2

(4 kips/ft)(6 ft) (12 in./ft)(2 ) 2(24 ft) (6 ft) 0.0016434 rad

24 24(24 ft)(2.4447 10 kip-in. )

(12 ft)(12 in./ft)(0.0016434 rad) 0.236648 in.

 B

 A

wa L a

 LEI 

v

θ    ⎡ ⎤= − = − =⎣ ⎦×

= =

 

Beam deflection at C  

0.549635 in. 0.587804 in. 0.175578 in. 0.213747 in. 0.214 in.C v   = − − = − = ↓   Ans. 

Page 38: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 38/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.56 The simply supported beam shownin Fig. P10.56 consists of a W530 × 66

structural steel wide-flange shape [ E  = 200

GPa;  I  = 351 × 106 mm

4]. For the loading

shown, determine:

(a) the beam deflection at point B.

(b) the beam deflection at point C .

Fig. P10.56

Solution

(a) Beam deflection at point  B 

Consider 300 kN-m concentrated moment. [Appendix C, SS beam with concentrated moment at one end.]  Relevant equation from Appendix C:

2 2(2 3 )6

 B

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = −300 kN-m, L = 9 m, x = 4 m, EI = 7.02 × 104 kN-m2 

Computation:

2 2

2 2

4 2

(2 3 )6

( 300 kN-m)(4 m)2(9 m) 3(9 m)(4 m) (4 m) 0.022159 m

6(9 m)(7.02 10 kN-m )

 B

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Consider 85 kN/m uniformly distributed load on segment  AB.

[Appendix C, SS beam with uniformly distributed load over a portion of the span.]  Relevant equation from Appendix C:

32 2(4 7 3 )

24 B

wav L aL a

 LEI = − − +  

Values: w = 85 kN/m, L = 9 m, a = 4 m,

 EI = 7.02 × 104 kN-m

Computation:3

2 2

32 2

4 2

(4 7 3 )24

(85 kN/m)(4 m)4(9 m) 7(4 m)(9 m) 3(4 m) 0.043052 m

24(9 m)(7.02 10 kN-m )

 B

wav L aL a

 LEI = − − +

⎡ ⎤= − − + = −⎣ ⎦× 

Page 39: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 39/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Consider 140-kN concentrated load.  [Appendix C, SS beam with concentrated load not at midspan.] 

 Relevant equation from Appendix C:

2 2 2( )6

 B

 Pbxv L b x

 LEI = − − −   (elastic curve)

Values:  P  = 140 kN, L = 9 m, b = 3 m, x = 4 m,

 EI = 7.02 × 104 kN-m

Computation:

2 2 2

2 2 2

4 2

( )6

(140 kN)(3 m)(4 m)(9 m) (3 m) (4 m) 0.024818 m

6(9 m)(7.02 10 kN-m )

 B

 Pbxv L b x

 LEI = − − −

⎡ ⎤= − − − = −⎣ ⎦×

 

Consider 175 kN-m concentrated moment. [Appendix C, SS beam with concentrated moment at one end.]  Relevant equation from Appendix C:

2 2(2 3 )6

 B  M xv L Lx x LEI = − − +   (elastic curve)

Values:  M  = −175 kN-m, L = 9 m, x = 5 m,

 EI = 7.02 × 104 kN-m

Computation:

2 2

2 2

4 2

(2 3 )6

( 175 kN-m)(5 m)2(9 m) 3(9 m)(5 m) (5 m) 0.012003 m

6(9 m)(7.02 10 kN-m )

 B

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦

×

 

Beam deflection at  B 

0.022159 m 0.043052 m 0.024818 m 0.012003 m 0.033708 m 33.7 mm Bv   = − − + = − = ↓   Ans. 

Page 40: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 40/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

(b) Beam deflection at point C  

Consider 300 kN-m concentrated moment. [Appendix C, SS beam with concentrated moment at one end.]  Relevant equation from Appendix C:

2 2(2 3 )6

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = −300 kN-m, L = 9 m, x = 6 m, EI = 7.02 × 104 kN-m2

 

Computation:

2 2

2 2

4 2

(2 3 )6

( 300 kN-m)(6 m)2(9 m) 3(9 m)(6 m) (6 m) 0.017094 m

6(9 m)(7.02 10 kN-m )

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Consider 85 kN/m uniformly distributed load on segment  AB.

[Appendix C, SS beam with uniformly distributed load over a portion of the span.] 

 Relevant equation from Appendix C:2

3 2 2 2 2(2 6 4 )24

wav x Lx a x L x a L

 LEI = − − + + −  

Values: w = 85 kN/m, L = 9 m, a = 4 m, x = 6 m,

 EI = 7.02 × 104 kN-m

Computation:2

3 2 2 2 2

23 2 2 2 2

4 2

(2 6 4 )24

(85 kN/m)(4 m)2(6 m) 6(9 m)(6 m) (4 m) (6 m) 4(9 m) (6 m) (4 m) (9 m)

24(9 m)(7.02 10 kN-m )

0.034441 m

wav x Lx a x L x a L

 LEI = − − + + −

⎡ ⎤= − − + + −⎣ ⎦×

= −  

Consider 140-kN concentrated load.  [Appendix C, SS beam with concentrated load not at midspan.]  Relevant equation from Appendix C:

2 2 2( )6

 Pabv L a b

 LEI = − − −  

Values: 

 P  = 140 kN, L = 9 m, a = 6 m, b = 3 m, EI = 7.02 × 10

4 kN-m

Page 41: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 41/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Computation:

2 2 2

2 2 2

4 2

( )6

(140 kN)(6 m)(3 m)(9 m) (6 m) (3 m) 0.023932 m

6(9 m)(7.02 10 kN-m )

 Pabv L a b

 LEI = − − −

⎡ ⎤= − − − = −⎣ ⎦×

 

Consider 175 kN-m concentrated moment. 

[Appendix C, SS beam with concentrated moment at one end.]  Relevant equation from Appendix C:

2 2(2 3 )6

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = −175 kN-m, L = 9 m, x = 3 m,

 EI = 7.02 × 104 kN-m

Computation:

2 2

2 2

4 2

(2 3 )

6( 175 kN-m)(3 m)

2(9 m) 3(9 m)(3 m) (3 m) 0.012464 m6(9 m)(7.02 10 kN-m )

 M xv L Lx x

 LEI 

= − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Beam deflection at C  

0.017094 m 0.034441 m 0.023932 m 0.012464 m 0.028814 m 28.8 mmC 

v   = − − + = − = ↓   Ans. 

Page 42: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 42/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.57 A 25-ft-long soldier beam is used as a keycomponent of an earth retention system at an

excavation site. The soldier beam is subjected to a

uniformly distributed soil loading of 260 lb/ft, asshown in Fig. P10.57. The soldier beam can be

idealized as a cantilever with a fixed support at  A.

Added support is supplied by a tieback anchor at  B,which exerts a force of 4,000 lb on the soldier beam.

Determine the horizontal deflection of the soldier  beam at point C . Assume EI  = 5 × 10

8lb-in.

2.

Fig. P10.57

Solution

Consider 260 lb/ft uniformly distributed load. [Appendix C, Cantilever beam with uniformly distributed load.] 

 Relevant equation from Appendix C:4

8C 

wLv

 EI = −  

Values: w = 260 lb/ft, L = 25 ft, EI = 5.0 × 10

8 lb-in.

2

Computation:4 4 3

8 2

(260 lb/ft)(25 ft) (12 in./ft)43.875 in.

8 8(5.0 10 lb-in. )C 

wLv

 EI = − = − = −

× 

Consider 4,000-lb concentrated load.  [Appendix C, Cantilever beam with concentrated load.]  Relevant equations from Appendix C:

3 2

and3 2

 B B

 PL PLv

 EI EI θ = =   (slope magnitude)

Values:  P  = 4,000 lb, L = 18 ft, EI = 5.0 × 10

8 lb-in.

Computation:3 3 3

8 2

2 2 2

8 2

(4,000 lb)(18 ft) (12 in./ft)26.873856 in.

3 3(5.0 10 lb-in. )(4,000 lb)(18 ft) (12 in./ft)

0.1866240 rad2 2(5.0 10 lb-in. )

26.873856 in. (7 ft)(12 in./ft)(0.1866240 rad) 42.550

 B

 B

 PLv

 EI  PL

 EI 

v

θ 

= = =

×

= = =×

= + = 272 in.

 

Beam deflection at C  

43.875 in. 42.550272 in. 1.324728 in. 1.325 in.C v   = − + = − = →   Ans. 

Page 43: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 43/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.58 A 25-ft-long soldier beam is used as a keycomponent of an earth retention system at an

excavation site. The soldier beam is subjected to

a soil loading that is linearly distributed from520 lb/ft to 260 lb/ft, as shown in Fig. P10.58.

The soldier beam can be idealized as a

cantilever with a fixed support at  A. Addedsupport is supplied by a tieback anchor at  B,

which exerts a force of 5,000 lb on the soldier  beam. Determine the horizontal deflection of the

soldier beam at point C . Assume EI  = 5 × 108lb-

in.2.

Fig. P10.58

Solution

Consider 260 lb/ft uniformly distributed load. [Appendix C, Cantilever beam with uniformly distributed load.] 

 Relevant equation from Appendix C:4

8C 

wLv

 EI = −  

Values: w = 260 lb/ft, L = 25 ft, EI = 5.0 × 10

8 lb-in.

Computation:4 4 3

8 2

(260 lb/ft)(25 ft) (12 in./ft)43.875 in.

8 8(5.0 10 lb-in. )C 

wLv

 EI = − = − = −

× 

Consider a linearly distributed load that varies from 260 lb/ft at  A to 0 lb/ft at  B. [Appendix C, Cantilever beam with linearly distributed load.] 

 Relevant equation from Appendix C:4

0

30C 

w Lv

 EI = −  

Values: w0 = 260 lb/ft, L = 25 ft, EI = 5.0 × 108 lb-in.2 

Computation:4 4 3

0

8 2

(260 lb/ft)(25 ft) (12 in./ft)11.700 in.

30 30(5.0 10 lb-in. )C 

w Lv

 EI = − = − = −

× 

Page 44: Mechanics of Materials Solutions Chapter10 Probs47 58

7/21/2019 Mechanics of Materials Solutions Chapter10 Probs47 58

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs47-58 44/44

 

Consider 5,000-lb concentrated load.  [Appendix C, Cantilever beam with concentrated load.]  Relevant equations from Appendix C:

3 2

and3 2

 B B

 PL PLv

 EI EI θ = =   (slope magnitude)

Values:  P  = 5,000 lb, L = 18 ft, EI = 5.0 × 10

8 lb-in.

2

Computation:3 3 3

8 2

2 2 2

8 2

(5,000 lb)(18 ft) (12 in./ft)33.592320 in.

3 3(5.0 10 lb-in. )

(5,000 lb)(18 ft) (12 in./ft)0.2332800 rad

2 2(5.0 10 lb-in. )

33.592320 in. (7 ft)(12 in./ft)(0.2332800 rad) 53.187

 B

 B

 PLv

 EI 

 PL

 EI 

v

θ 

= = =×

= = =×

= + = 840 in.

 

Beam deflection at C  

43.875 in. 11.700 in. 53.187840 in. 2.387160 in. 2.39 in.C v   = − − + = − = →   Ans.