Measurements*of strongphaseinD Kπdecayandy...

24
Miami 2013 DEC/2013 Hajime Muramatsu U of Minnesota 1 Measurements of strong phase in D 0 Kπ decay and y CP via quantumcorrela>ons at BESIII Hajime Muramatsu, University of Minnesota (for the BESIII collabora>on) Strong phase in D 0 Kπ decay y CP measurement

Transcript of Measurements*of strongphaseinD Kπdecayandy...

Page 1: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota 1

Measurements  ofstrong  phase  in  D0  ➝  Kπ  decay  and  yCPvia  quantum-­‐correla>ons  at  BESIII

Hajime  Muramatsu,  University  of  Minnesota(for  the  BESIII  collabora>on)

-­‐  Strong  phase  in  D0  ➝  Kπ  decay-­‐  yCP  measurement

Page 2: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Beijing  Electron  Positron  Collider  (BEPC-­‐II)-­‐ A  symmetric  e+e-­‐  collider,    opera>ng  at  Ecm  ~  2.0  ~4.6  GeV  (Charm  factory!).

-­‐ It’s  in  Beijing:  Easy  access  to  the  downtown  area  of  Beijing  with  a  nearby  subway  sta>on!

2

LinacStorage  ring

Where  I  sleep:Next  to  a  Chinese  restaurantCoun>ng  room:

where  I  take  shi\s

BESIII  detector

Page 3: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

BESIII  detector• A  powerful  general  purpose  detector.

• Excellent  neutral  and  charged  par8cle  detec8on  and  iden8fica8on  with  a  large  coverage.

3

The BESIII detector

Xiao-Rui Lu @ Charm 2013 6 6

The new BESIII detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

NIM A614, 345 (2010)

Magnet: 1 T Super conducting MDC: small cell & He gas xy=130 m sp/p = 0.5% @1GeV dE/dx=6%

TOF: T = 90 ps Barrel 110 ps Endcap

Muon ID: 8~9 layer RPC RΦ=1.4 cm~1.7 cm

EMCAL: CsI crystal E/E = 2.5% @1 GeV φ,z = 0.5~0.7 cm/E

Trigger: Tracks & Showers Pipelined; Latency = 6.4 s

Data Acquisition: Event rate = 3 kHz Throughput ~ 50 MB/s

Page 4: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Data  samples  we  have

4

-­‐ @  J/ψ  peak                  :  1.2  B  J/ψ  decays                                                                    and  some  scan  in  the  vicinity  of  the  peak.

-­‐ @  ψ(3686)  peak  :  0.5  B  ψ(3686)  decays                                                                  and  some  scan  in  the  vicinity  of  the  peak.

-­‐ Above  DDP  threshold:  0.5/Q  @  Ecm  =  4.009  GeV,                                                                                    1.9/a  @  Ecm  =  4.26  GeV,                                                                                    0.5/a  @  Ecm  =  4.36  GeV,                                                                                    plus  some  scan  samples  as  well.

The  above  samples  have  been  producing  very  rich  Physics  resultssuch  as  hadron  spectroscopy  of  Charmonia  (e.g.,  hc/ηc)and  of  Charmonium-­‐like  states  (X/Y/Z).

-­‐ Today,  I  report  recent  results  from  BESIII  based  on  a  sample  that  was  taken  near  DDj  threshold:                                                                                        2.92/a  @Ecm  =  3.773  GeV

Page 5: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Sample  at  Ecm  =  3.773  GeV

-­‐ The  total  integrated  luminosity  of  2.92  Q-­‐1  at  this  energy  point  is  the  largest  in  the  world  to  date.

-­‐      In  the  selected  hadronic  events  (mul8ple  reconstructed  charged/    neutral  hadrons  or  tracks),  they  are  dominated  by;

           e+e-­‐  ➝  γ*  ➝  ψ(3770)  and  e+e-­‐  ➝  γ*  ➝  (qq̅)  light  hadrons  in  which      σ(e+e-­‐  ➝  ψ(3770)  ➝  hadrons)/σ(e+e-­‐  ➝  NR  ➝  hadrons)  ~  1/2.

-­‐  Once  ψ(3770)  is  produced,  it  predominantly  decays  into  a  DDP  pair.For  instance,  we  have  ~21  M  D0  (or  DP0)  decays  in  this  sample.

-­‐  Rela8vely  clean  event  environment.

-­‐  When  the  two  D  mesons  are  reconstructed,  the  sample  becomes  almost  background  free.

5

Page 6: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Things  can  be  done  with  the  sample  taken  at  or  around  Ecm  =  3.773  GeV

-­‐ There  are  many  interes8ng  possible  topics  to  study  in  D  (weak)  decays  based  on  our  sample,  such  as;

-­‐  pure  leptonic  decays(e.g.,  extrac8on  of  |Vcd|  and/or  its  decay  constant,  fD).

-­‐  Semi-­‐leptonic  decays(e.g.,  extrac8on  of  their  form  factors,  and  then  compare  them  vs  B  meson  case).

-­‐  With  the  largest  sample  of  D  mesons  taken  at  the  near  threshold,  one  should  look  for  rare/forbidden  decays  (e.g.,  FCNC,  LNV,  LFV).

-­‐  or  even  ψ(3770)  itself  such  as  ψ(3770)  ➝  non-­‐DDP  final  states.-­‐    But  today,  I  report  our  ahempt  to  measure  some  of  the  parameters  of  DDP  mixing  using  the  unique  characteris8cs  of  our  ψ(3770)  data  set  taken  at  Ecm  =  3.773  GeV.

6

Page 7: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Introduc>on-­‐ DDP  mixing  is  highly  suppressed  by  the  GIM  mechanism  and  by  the  CKM  matrix  elements  

within  the  Standard  Model.

-­‐ Observa8on  of  DDP  mixing,  first  seen  by  theB  factories  (HFAG:  arXiv  1207.1158)  and  now  observedby  LHCb:    PRL110,  101802  (2013).

-­‐ Improving  the  constraints  on  the  charm  mixingparameter  is  important  for  tes8ng  the  SM,such  as  long  distance  effects.

-­‐ DDP  mixing  is  conven8onally  described  by  two  parameters:                                  x  =  2(M1-­‐M2)/(𝚪1+𝚪2),  y  =  (𝚪1-­‐𝚪2)/(𝚪1+𝚪2),where  M1,2  and  𝚪1,2  are  the  masses  and  widths  of  the  neutral  D  meson  mass  eigenstates.(Flavor  eigenstates,  D0/DP0,  are  not  the  same  as  mass  eigenstates,  D1/D2)Or                        x’  =  x·∙cosδKπ  +  y·∙sinδKπ,  y’  =  y·∙cosδKπ  -­‐  x·∙sinδKπ.

-­‐ δKπ  is  the  strong  phase  difference  between  the  doubly  Cabibbo  suppressed  (DCS)  decay,  DP0  ➝  K-­‐π+  and  the  Cabibbo  favored  (CF)  decay,  D0  ➝  K-­‐π+  or  ⟨K-­‐π+∣DP0⟩/⟨K-­‐π+∣D0⟩  =  -­‐r·∙e-­‐iδ.So  one  can  connect  (x,y)  with  (x’,y’)  via  δKπ.

-­‐ In  this  talk,  I  present  preliminary  results  on  δKπ  and  y  using  the  quantum  correla8onbetween  the  produced  D0  and  DP0  pair  in  data  taken  at  BESIII.

7

The decay time, ti, is the average value in each bin of theRS sample. The fit parameters, !, include the three mixingparameters (RD, y

0, x02) and five nuisance parameters usedto describe the decay time evolution of the secondary Dfraction (!B) and of the peaking background (!p). Thenuisance parameters are constrained to the measured val-ues by the additional !2

B and !2p terms, which account for

their uncertainties including correlations.The analysis procedure is defined prior to fitting the data

for the mixing parameters. Measurements on pseudoex-periments that mimic the experimental conditions of thedata, and where D0 ! "D0 oscillations are simulated, indi-cate that the fit procedure is stable and free of any bias.

The fit to the decay-time evolution of the WS/RS ratio isshown in Fig. 2 (solid line), with the values and uncertain-ties of the parameters RD, y

0 and x02 listed in Table I. Thevalue of x02 is found to be negative but consistent with zero.As the dominant systematic uncertainties are treated withinthe fit procedure (all other systematic effects are negli-gible), the quoted errors account for systematic as well asstatistical uncertainties. When the systematic biases are notincluded in the fit, the estimated uncertainties on RD, y

0,and x02 become, respectively 6%, 10%, and 11% smaller,

showing that the quoted uncertainties are dominated bytheir statistical component. To evaluate the significance ofthis mixing result, we determine the change in the fit !2

when the data are described under the assumption of theno-mixing hypothesis (dashed line in Fig. 2). Under theassumption that the !2 difference, !!2, follows a !2

distribution for two degrees of freedom, !!2 ¼ 88:6 cor-responds to a p-value of 5:7# 10!20, which excludes theno-mixing hypothesis at 9.1 standard deviations. This isillustrated in Fig. 3 where the 1", 3", and 5" confidenceregions for x02 and y0 are shown.As additional cross-checks, we perform the measure-

ment in statistically independent subsamples of the data,selected according to different data-taking periods, andfind compatible results. We also use alternative decay-time binning schemes, selection criteria or fit methods toseparate signal and background, and find no significantvariations in the estimated parameters. Finally, to assessthe impact of events where more than one candidate isreconstructed, we repeat the time-dependent fit on dataafter randomly removing the additional candidates andselecting only one per event; the change in the measuredvalue of RD, y0, and x02 is 2%, 6%, and 7% of theiruncertainty, respectively.In conclusion, we measure the decay time dependence of

the ratio between D0 ! Kþ#! and D0 ! K!#þ decaysusing 1:0 fb!1 of data and exclude the no-mixing hypothe-sis at 9.1 standard deviations. This is the first observation ofD0 ! "D0 oscillations in a single measurement. The mea-sured values of the mixing parameters are compatible withand have substantially better precision than those fromprevious measurements [4,6,23].We express our gratitude to our colleagues in the CERN

accelerator departments for the excellent performance ofthe LHC. We thank the technical and administrative staff atthe LHCb institutes. We acknowledge support from CERNand from the national agencies: CAPES, CNPq, FAPERJ,

TABLE I. Results of the time-dependent fit to the data. Theuncertainties include statistical and systematic sources; ndfindicates the number of degrees of freedom.

Fit typeParameter

Fit result Correlation coefficient(!2=ndf) (10!3) RD y0 x02

Mixing RD 3:52% 0:15 1 !0:954 þ0:882(9:5=10) y0 7:2% 2:4 1 !0:973

x02 !0:09% 0:13 1No mixing RD 4:25% 0:04(98:1=12)

[%]2x'-0.1 -0.05 0 0.05

[%]

y'

-0.5

0

0.5

1

1.5

2

σ5

σ3

σ1

No-mixing

LHCb

FIG. 3. Estimated confidence-level (C.L.) regions in the(x02, y0) plane for 1! C:L: ¼ 0:317 (1"), 2:7# 10!3 (3"),and 5:73# 10!7 (5"). Systematic uncertainties are included.The cross indicates the no-mixing point.

τ/t0 2 4 6 20

R

3

3.5

4

4.5

5

5.5

6

6.5

7

-310×

DataMixing fit

No-mixing fit

LHCb

FIG. 2 (color online). Decay-time evolution of the ratio, R, ofWS D0 ! Kþ#! to RS D0 ! K!#þ yields (points) with theprojection of the mixing allowed (solid line) and no-mixing(dashed line) fits overlaid.

PRL 110, 101802 (2013) P HY S I CA L R EV I EW LE T T E R Sweek ending

8 MARCH 2013

101802-4

Page 8: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

The  decay  rate  of  a  correlated  state‣ For  physical  process  producing  D0DP0  such  as

                                                                 e+e-­‐  ➝  γ*  ➝  ψ(3770)  ➝  D0DP0,                                                                  the  D0DP0  pair    are  in  a  quantum-­‐correlated  state.                                                                The  quantum  number  of  ψ(3770)  is  JPC  =  1-­‐-­‐.                                                              Thus,  the  D0DP0  pair  in  this  process  has  C  =  -­‐.                                                              For  a  correlated  state  with  C  =  -­‐,  the  two  D  mesons  are  an8-­‐symmetric                                                              in  the  limit  of  CP  invariance:

‣ The  two  produced  neutral  mesons  must  have  opposite  CP(i.e.,  see  Goldhaber  and  Rosner,  PRD15,  1254  (1977).  That  is;

‣ Final  states  of  (CP+,  CP+)  or  (CP-­‐,  CP-­‐)  are  forbidden.

‣ Final  states  of  (CP+,  CP-­‐)  are  maximally  enhanced  (doubled).

‣ Final  states  of  CP±  against  inclusive  states  (Single  tag  or  ST)  are  not  affected.

‣ Final  states  of  (K-­‐π+,  CP±)  are  affected  due  to  the  interference  between  CF  and  DCS  (δKπ).

8

Production at threshold

Xiao-Rui Lu @ Charm 2013 3 3

Threshold production at 3.773 GeV Double Tag techniques: (partial-)reconstruct

both D mesons Charm events at threshold are very clean and

unique in studying D decays

Quantum correlation of two D mesons Very clean environment with little to

no non-DDbar background Lots of systematic uncertainties

uncertainties cancel when applying double tag method

Xiao-Rui Lu @ Charm 2013 4

The decay rate of a correlated state

Taking advantage the quantum coherence of DDbar pairs, BESIII can study the charm physics in an unique way • strong phase • mixing parameters • direct CP violation • ...

Page 9: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Extrac>ng  δKπ‣ Neglec8ng  higher  orders  in  the  mixing  parameters  (e.g.,  y2),  one  can  arrive  at  the  following  rela8on:                                                                                2·∙r·∙cosδKπ+y  =  (1+RWS)·∙ACP➝Kπ,where  RWS  ≡  Γ(DP0➝K-­‐π+)/Γ(D0➝K-­‐π+)  and                          ACP➝Kπ  ≡  [B(D2➝K-­‐π+)  -­‐  B(D1➝K-­‐π+)]/B(D2➝K-­‐π+)  +  B(D1➝K-­‐π+)].

‣ We  can  extract  ACP➝Kπ  by  tagging  one  D  (tag  side)  with  exclusive  CP-­‐eigenstates  which  then  defines  the  eigenvalueof  the  other  D  (ACP±  ≡  ⟨K-­‐π+∣D1,2⟩).

‣ Then,  with  the  knowledge  of  r,  y,  and  RWS  from  the  3rd  par8es  (HFAG2013  and  PDG),  we  could  derive  cosδKπ  in  the  end.

‣ The  rest  of  the  analysis  becomes  measurements  of  B(DCP±➝K-­‐π+)  while  simultaneously  reconstruc8ng  the  DCP∓  on  the  tag  side.

9

Accessing strong phase δKπ at threshold

Xiao-Rui Lu @ Charm 2013 10 10

We measure the strong phase difference using quantum correlated production of D-Dbar at the production threshold

based on 2.9 fb-1 ψ(3770) data

When we neglect CPV, CP of the two D mesons are anti-symmetric.

Page 10: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Measuring  B(DCP±➝K-­‐π+)  • Double-­‐Tag  technique:B(DCP±➝Kπ)  =  [B(DCP∓➝  CP∓  states)×B(DCP±➝Kπ)]/B(DCP∓➝  CP∓  states)                                              =  (nKπ,CP∓/nCP∓)·∙(εCP∓/εKπ,CP∓),where      nKπ,CP∓    are  yields  of  “Kπ”  when  CP  states  are                                                            simultaneously  reconstructed  on  the  tag  side                              nCP∓  are  yields  of  CP  states  (independent  of  how  the  other  D  decays)                              εCP∓  and  εKπ,CP∓  are  the  corresponding  reconstruc8on  efficiencies.

• “Yields”  are  extracted  from  Mbc  distribu8ons  :  

• CP  states  on  Tag  side  (8  modes):

where  we  reconstruct  KS➝π+π-­‐,  π0/η➝γγ,  ω➝π+π-­‐π0,  ρ➝π+π-­‐.

• No8ce  that  most  of  systema8cs  on  the  tag  side  get  canceled  in  B(DCP±➝Kπ).The  remaining  systema8cs  (reconstruc8on/simula8on)  of  Kπ  are  also  canceled  in  the  determina8on  of  ACP➝Kπ  .

10

Single tags of CP modes

Xiao-Rui Lu @ Charm 2013 12 12

preliminary preliminary

preliminary preliminary preliminary

preliminary preliminary preliminary

22DbeamBC pEM

unique variable in threshold-production

Type ModeFlavored K−π+, K+π−

CP+ K+K−, π+π−, K0Sπ

0π0, π0π0, ρ0π0

CP− K0Sπ

0, K0Sη, K

0Sω

Table 1: D decay modes reconstructed in the analysis of δKπ.

Here, nCP± (nKπ,CP±) and εCP± (εKπ,CP±) are yields and detection efficiencies of sin-gle tags (ST) of D → CP± (double tags (DT) of D → CP±, D → Kπ), respectively.With external inputs of the parameters of r, y and RWS, we can extract δKπ fromACP→Kπ. Based on a dataset of 818 pb−1 of collision data collected with the CLEO-cdetector at the center of mass

√s = 3.77GeV, the CLEO collaboration measured

cos δKπ = 0.81+0.22+0.07−0.18−0.05 [10]. Using a global fit method with inclusion of the external

mixing parameters, CLEO obtained cos δKπ = 1.15+0.19+0.00−0.17−0.08 [10].

We choose 5 CP -even D0 decay modes and 3 CP -odd modes, as listed in Tab. 1,with π0 → γγ, η → γγ, K0

S → π+π− and ω → π+π−π0. Variable

MBC ≡√E2

0/c4 − |(pD|2/c2

is plotted in Fig. 1 to identify the CP ST signals, where (pD is the total momentumof the D0 candidate and E0 is the beam energy. Yields of the CP ST signals areestimated by maximum likelihood fits to data, in which signal shapes are derivedfrom MC simulation convoluted with a smearing Gaussian function, and backgroundfunctions are modeled with the ARGUS function [11]. In the events of the CP STmodes, we reconstruct the Kπ combinations using the remaining charged tracks withrespect to the ST D candidates. Similar fits are implemented to the distributions ofMBC(D → CP±) in the survived DT events to estimate yields of DT signals. Thefits are shown in Fig. 2.

We get the asymmetry to be

ACP→Kπ = (12.77± 1.31+0.33−0.31)%,

where the first uncertainty is statistical and the second is systematic. To measure thestrong phase δKπ in Eq. (1), we quote the external inputs of RD = r2 = 3.47±0.06‰,y = 6.6±0.9‰, and RWS = 3.80±0.05‰ from HFAG 2013 [12] and PDG [5]. Hence,we obtain

cos δKπ = 1.03± 0.12± 0.04± 0.01,

where the first uncertainty is statistical, the second uncertainty is systematic, and thethird uncertainty is due to the errors introduced by the external input parameters.This result is more precise than CLEO’s measurement and provides the world bestconstrain to δKπ.

3

Page 11: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Yields  of  CP  states  (nCP∓)(reconstruct  only  one  of  the  two  neutral  D)

11

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(1 M

eV/c

0

5000

10000

15000

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(1 M

eV/c

0

5000

10000

15000- K+ K

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(1 M

eV/c

0

500

1000

1500

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(1 M

eV/c

0

500

1000

1500 0π0π

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(1 M

eV/c

0

5000

10000

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(1 M

eV/c

0

5000

100000πS

0 K

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(1 M

eV/c

0

2000

4000

6000

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(1 M

eV/c

0

2000

4000

6000-π+π

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(1 M

eV/c

0

5000

10000

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(1 M

eV/c

0

5000

100000πρ

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(1 M

eV/c

0

500

1000

1500

2000

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(1 M

eV/c

0

500

1000

1500

2000ηS

0 K

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(1 M

eV/c

0

2000

4000

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(1 M

eV/c

0

2000

40000π0πS

0 K

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(1 M

eV/c

0

2000

4000

6000

8000

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(1 M

eV/c

0

2000

4000

6000

8000ωS

0 K

Figure 1: ST MBC distributions of the D → CP± decays and fits to data. Data areshown in points with error bars. The solid lines show the total fits and the dashedlines show the background shapes.

4

- Signal  shape:  MC  shape,  convoluted  with  a  Gaussian  (to  compensate  the  difference  in  resolu>on  between  data  and  MC).

- Background:  ARGUS  background  func>on.Prelimin

aryCP+

CP+

CP-­‐  

Page 12: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Can  also  check  “CP  purity”- When  D0  and  Dj0  are  reconstructed,  final  states  with  the  same  CP  should  yield  zero  

events.

12

Xiao-Rui Lu @ Charm 2013 13

CP purity check of CP-tag modes

preliminary preliminary

preliminary preliminary preliminary

preliminary

events with same-CP decays are consistent with 0

consider as systematic uncertainty

Xiao-Rui Lu @ Charm 2013 13

CP purity check of CP-tag modes

preliminary preliminary

preliminary preliminary preliminary

preliminary

events with same-CP decays are consistent with 0

consider as systematic uncertainty

✴ Consistent  with  zero.

✴ Consider  as  one  of  the  systema>cs.

CP+ CP-­‐

CP+CP+CP-­‐  

Page 13: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Yields  of  Kπ  in  double  tags  (nKπ,CP∓)(reconstruct  CP-­‐final  state  from  one  D  decay,  

with  “Kπ”  from  the  other  D)

13

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(2 M

eV/c

0

500

1000

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(2 M

eV/c

0

500

1000- K+, Kπ K

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(2 M

eV/c

0

20

40

60

80

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(2 M

eV/c

0

20

40

60

800π0π,π K

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(2 M

eV/c

0

200

400

600

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(2 M

eV/c

0

200

400

600 0πS0, Kπ K

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(2 M

eV/c

0

100

200

300

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(2 M

eV/c

0

100

200

300-π+π,π K

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(2 M

eV/c

0

200

400

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(2 M

eV/c

0

200

4000πρ,π K

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(2 M

eV/c

0

50

100

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(2 M

eV/c

0

50

100η

S0, Kπ K

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(2 M

eV/c

0

100

200

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(2 M

eV/c

0

100

200

0π0πS0, Kπ K

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(2 M

eV/c

0

100

200

300

)2(GeV/cBCM1.84 1.86 1.88

)2Ev

ents

/(2 M

eV/c

0

100

200

300 ωS0, Kπ K

Figure 2: DT MBC distributions and the corresponding fits. Data are shown inpoints with error bars. The solid lines show the total fits and the dashed lines showthe background shapes.

5

- Signal  shape:  MC  shape,  convoluted  with  a  Gaussian  (to  compensate  for  the  difference  in  resolu>on  between  data  and  MC).

- Background:  ARGUS  background  func>on.Prelimin

ary

Page 14: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Preliminary  fit  results

- These  yields  allow  us  to  obtain  B(DCP±➝K-­‐π+)  which  then  provides  ACP➝Kπ.- ACP➝Kπ  =  (12.77±1.31(stat.)+0.33-­‐0.31(syst.))%.

14

Xiao-Rui Lu @ Charm 2013 15

Preliminary numerical results

Prelimin

ary

Page 15: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Preliminary  result  on  δKπ- We  have  measured  ACP➝Kπ  =  (12.77±1.31(stat.)+0.33-­‐0.31(syst.))%.- Using  the  rela>on,  2·∙r·∙cosδKπ+y  =  (1+RWS)·∙  ACP➝Kπ,and  with  external  inputs  from  HFAG2013  and  PDG(RD  =  3.47±0.06%,  y=6.6±0.9%,  RWS  =  3.80±0.05%),we  obtain

                       cosδKπ  =  1.03±0.12(stat.)±0.04(syst.)±0.01(external).

- Our  result  is  consistent  with  and  more  precise  than  the  recent  CLEO  result  (PRD86,  112001  (2012)):                        cosδKπ  =  1.15+0.19-­‐0.17(stat.)+0.00-­‐0.08(syst.).

15

Page 16: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Determina>on  of  the  mixing  parameter,  yCP

- yCP  is  defined  as;                            2·∙yCP  =  (|q/p|+|p/q|)·∙y·∙cosφ  -­‐(|q/p|-­‐|p/q|)·∙x·∙sinφ,where  p  and  q  are  mixing  parameters,and  φ  =  arg(q/p)  is  the  weak  phase  difference  of  themixing  amplitudes.No>ce:  for  no  CPV  case,  p  =  q  =  1/√2  and  yCP  ≡  y.

- For  D  decays  into  any  CP-­‐eigenstate,  its  decay  rate  can  be  described  as;                                                              R(D0/Dj0  ➝  CP±)  ∝  |ACP±|2  ·∙  (1∓yCP).

- When  one  D  decays  into  a  CP-­‐eigenstate,  while  the  other  D  decays  semi-­‐leptonically,  the  decay  rate  can  be  given  by;                                    R(D0/Dj0  ➝  CP±,  and  Dj0/D0  ➝  semi-­‐lep  )  ∝  |Al|2  ·∙|ACP±|2.- Semileptonic  decay  width  does  not  depend  on  the  CP  of  its  parent  D.

- Yet,  the  total  width  of  its  parent  D  depends  on  CP.

- Result:  semileptonic  BF  of  D1,2  gets  modified  by  a  factor  of  1±yCP.

- Combining  the  above  two,  and  neglec>ng  terms  with  y2  (or  higher),  one  can  arrive  at

16

Type ModesCP+ K+K−, π+π−, KSπ0π0

CP− K0Sπ

0, K0Sω, K

0Sη

l± Keν, Kµν

Table 2: CP -tag modes and D semileptonic decay modes.

3 Measurement of yCP

For D decays to any CP -eigenstate final states, their decay rates can be formulatedto be

R(D0/D0 → CP±) ∝ |ACP± |2(1∓ yCP ).

When the partner D decays semileptonically in the DD pair production at threshold,double decay rates will be

Rl;CP± = |Al|2|ACP± |2.If we take the ratio of the single decay rate and the double decay rate and neglecthigher order of y2CP, we can extract yCP using the following equation [4]

yCP =1

4(Rl;CP+RCP−

Rl;CP−RCP+− Rl;CP−RCP+

Rl;CP+RCP−).

Similar to the notations in Eq. (3), experimentally we denote the decay rate ratios ofRl;CP±RCP±

to be B± and determine it with the D tagging method

B± =nl;CP±

nCP±· εCP±

εl;CP±.

Hence, yCP = 14 [

B̃+

B̃−− B̃−

B̃+], where B̃± is combinations of different CP -tag mode α

using the least square method

χ2 =∑

α

(B̃± −Bα±)

2

(σα±)2

.CP -tag modes in Tab. 2 are used in this analysis. Similar to the analysis of

δKπ, ST yields are estimated by fits to the MBC distributions, as shown in Fig. 3.Semileptonic decays of D → Keν and D → Kµν are selected with respect to theCP -tagged D candidates in ST events. Due to the undetectable neutrino in the finalstates, variable Umiss is used to distinguish the signals of semileptonic decays frombackgrounds. The definition is given as

Umiss ≡ Emiss − |*pmiss|,

6

Page 17: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

- The  expression  for  yCP  can  be  wri�en  as;

where  B*±  is  the  branching  frac>on,  averaged  over  different  CP  tag  modes,  α,  that  is  obtained  by  minimizing  

- All  branching  frac>ons  are  obtained  in  a  similar  way,  the  double-­‐tag  method.

- When  the  semileptonic  decays  are  reconstructed,  however,  we  use  Umiss  distribu>ons  to  obtain  their  yields,  instead  of  Mbc,                                                                                                                                                                      ,which  peaks  ~  0  if  only  missing  par>cle  is  neutrino.

- Tag  modes:

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Extrac>ng  yCP  in  our  experiment17

Type ModesCP+ K+K−, π+π−, KSπ0π0

CP− K0Sπ

0, K0Sω, K

0Sη

l± Keν, Kµν

Table 2: CP -tag modes and D semileptonic decay modes.

3 Measurement of yCP

For D decays to any CP -eigenstate final states, their decay rates can be formulatedto be

R(D0/D0 → CP±) ∝ |ACP± |2(1∓ yCP ).

When the partner D decays semileptonically in the DD pair production at threshold,double decay rates will be

Rl;CP± = |Al|2|ACP± |2.If we take the ratio of the single decay rate and the double decay rate and neglecthigher order of y2CP, we can extract yCP using the following equation [4]

yCP =1

4(Rl;CP+RCP−

Rl;CP−RCP+− Rl;CP−RCP+

Rl;CP+RCP−).

Similar to the notations in Eq. (3), experimentally we denote the decay rate ratios ofRl;CP±RCP±

to be B± and determine it with the D tagging method

B± =nl;CP±

nCP±· εCP±

εl;CP±.

Hence, yCP = 14 [

B̃+

B̃−− B̃−

B̃+], where B̃± is combinations of different CP -tag mode α

using the least square method

χ2 =∑

α

(B̃± −Bα±)

2

(σα±)2

.CP -tag modes in Tab. 2 are used in this analysis. Similar to the analysis of

δKπ, ST yields are estimated by fits to the MBC distributions, as shown in Fig. 3.Semileptonic decays of D → Keν and D → Kµν are selected with respect to theCP -tagged D candidates in ST events. Due to the undetectable neutrino in the finalstates, variable Umiss is used to distinguish the signals of semileptonic decays frombackgrounds. The definition is given as

Umiss ≡ Emiss − |*pmiss|,

6

Type ModesCP+ K+K−, π+π−, KSπ0π0

CP− K0Sπ

0, K0Sω, K

0Sη

l± Keν, Kµν

Table 2: CP -tag modes and D semileptonic decay modes.

3 Measurement of yCP

For D decays to any CP -eigenstate final states, their decay rates can be formulatedto be

R(D0/D0 → CP±) ∝ |ACP± |2(1∓ yCP ).

When the partner D decays semileptonically in the DD pair production at threshold,double decay rates will be

Rl;CP± = |Al|2|ACP± |2.If we take the ratio of the single decay rate and the double decay rate and neglecthigher order of y2CP, we can extract yCP using the following equation [4]

yCP =1

4(Rl;CP+RCP−

Rl;CP−RCP+− Rl;CP−RCP+

Rl;CP+RCP−).

Similar to the notations in Eq. (3), experimentally we denote the decay rate ratios ofRl;CP±RCP±

to be B± and determine it with the D tagging method

B± =nl;CP±

nCP±· εCP±

εl;CP±.

Hence, yCP = 14 [

B̃+

B̃−− B̃−

B̃+], where B̃± is combinations of different CP -tag mode α

using the least square method

χ2 =∑

α

(B̃± −Bα±)

2

(σα±)2

.CP -tag modes in Tab. 2 are used in this analysis. Similar to the analysis of

δKπ, ST yields are estimated by fits to the MBC distributions, as shown in Fig. 3.Semileptonic decays of D → Keν and D → Kµν are selected with respect to theCP -tagged D candidates in ST events. Due to the undetectable neutrino in the finalstates, variable Umiss is used to distinguish the signals of semileptonic decays frombackgrounds. The definition is given as

Umiss ≡ Emiss − |*pmiss|,

6

Type ModesCP+ K+K−, π+π−, KSπ0π0

CP− K0Sπ

0, K0Sω, K

0Sη

l± Keν, Kµν

Table 2: CP -tag modes and D semileptonic decay modes.

3 Measurement of yCP

For D decays to any CP -eigenstate final states, their decay rates can be formulatedto be

R(D0/D0 → CP±) ∝ |ACP± |2(1∓ yCP ).

When the partner D decays semileptonically in the DD pair production at threshold,double decay rates will be

Rl;CP± = |Al|2|ACP± |2.If we take the ratio of the single decay rate and the double decay rate and neglecthigher order of y2CP, we can extract yCP using the following equation [4]

yCP =1

4(Rl;CP+RCP−

Rl;CP−RCP+− Rl;CP−RCP+

Rl;CP+RCP−).

Similar to the notations in Eq. (3), experimentally we denote the decay rate ratios ofRl;CP±RCP±

to be B± and determine it with the D tagging method

B± =nl;CP±

nCP±· εCP±

εl;CP±.

Hence, yCP = 14 [

B̃+

B̃−− B̃−

B̃+], where B̃± is combinations of different CP -tag mode α

using the least square method

χ2 =∑

α

(B̃± −Bα±)

2

(σα±)2

.CP -tag modes in Tab. 2 are used in this analysis. Similar to the analysis of

δKπ, ST yields are estimated by fits to the MBC distributions, as shown in Fig. 3.Semileptonic decays of D → Keν and D → Kµν are selected with respect to theCP -tagged D candidates in ST events. Due to the undetectable neutrino in the finalstates, variable Umiss is used to distinguish the signals of semileptonic decays frombackgrounds. The definition is given as

Umiss ≡ Emiss − |*pmiss|,

6Type ModesCP+ K+K−, π+π−, KSπ0π0

CP− K0Sπ

0, K0Sω, K

0Sη

l± Keν, Kµν

Table 2: CP -tag modes and D semileptonic decay modes.

3 Measurement of yCP

For D decays to any CP -eigenstate final states, their decay rates can be formulatedto be

R(D0/D0 → CP±) ∝ |ACP± |2(1∓ yCP ).

When the partner D decays semileptonically in the DD pair production at threshold,double decay rates will be

Rl;CP± = |Al|2|ACP± |2.If we take the ratio of the single decay rate and the double decay rate and neglecthigher order of y2CP, we can extract yCP using the following equation [4]

yCP =1

4(Rl;CP+RCP−

Rl;CP−RCP+− Rl;CP−RCP+

Rl;CP+RCP−).

Similar to the notations in Eq. (3), experimentally we denote the decay rate ratios ofRl;CP±RCP±

to be B± and determine it with the D tagging method

B± =nl;CP±

nCP±· εCP±

εl;CP±.

Hence, yCP = 14 [

B̃+

B̃−− B̃−

B̃+], where B̃± is combinations of different CP -tag mode α

using the least square method

χ2 =∑

α

(B̃± −Bα±)

2

(σα±)2

.CP -tag modes in Tab. 2 are used in this analysis. Similar to the analysis of

δKπ, ST yields are estimated by fits to the MBC distributions, as shown in Fig. 3.Semileptonic decays of D → Keν and D → Kµν are selected with respect to theCP -tagged D candidates in ST events. Due to the undetectable neutrino in the finalstates, variable Umiss is used to distinguish the signals of semileptonic decays frombackgrounds. The definition is given as

Umiss ≡ Emiss − |*pmiss|,

6

Page 18: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Yields  of  CP  states  (nCP∓)(reconstruct  only  one  of  the  two  neutral  D)

18

)2(GeV/cBCM1.84 1.86 1.88

2Ev

ents

/0.6

MeV

/c

0

5000

10000

)2(GeV/cBCM1.84 1.86 1.88

2Ev

ents

/0.6

MeV

/c

0

5000

10000- K+K

)2(GeV/cBCM1.84 1.86 1.88

2Ev

ents

/1.0

MeV

/c0

1000

2000

3000

4000

)2(GeV/cBCM1.84 1.86 1.88

2Ev

ents

/1.0

MeV

/c0

1000

2000

3000

4000-π +π

)2(GeV/cBCM1.84 1.86 1.88

2Ev

ents

/ 1.

0 M

eV/c

0

2000

4000

)2(GeV/cBCM1.84 1.86 1.88

2Ev

ents

/ 1.

0 M

eV/c

0

2000

4000

)2(GeV/cBCM1.84 1.86 1.88

2Ev

ents

/1.0

MeV

/c

0

5000

10000

)2(GeV/cBCM1.84 1.86 1.88

2Ev

ents

/1.0

MeV

/c

0

5000

100000π 0

SK

)2(GeV/cBCM1.84 1.86 1.88

2Ev

ents

/ 1.

0 M

eV/c

0

2000

4000

)2(GeV/cBCM1.84 1.86 1.88

2Ev

ents

/ 1.

0 M

eV/c

0

2000

4000 ω 0S K

)2(GeV/cBCM1.84 1.86 1.88

2Ev

ents

/1.0

MeV

/c

0

500

1000

1500

2000

)2(GeV/cBCM1.84 1.86 1.88

2Ev

ents

/1.0

MeV

/c

0

500

1000

1500

2000η 0

SK

Figure 3: MBC distributions and fits to data.

Emiss ≡ E0 − EK − El, !pmiss ≡ −[!pK + !pl + p̂ST

√E2

0 −m2D].

Here, EK/l (!pK/l) is the energy (three-momentum) of K± or lepton l∓, p̂ST is the unitvector in the reconstructed direction of the CP -tagged D and mD is the nominal D0

mass. The Umiss distributions are plotted in Fig. 4 for D → Keν and D → Kµνmodes.

In fits of the DT Keν modes, signal shape is modeled using MC shape convolutedwith an asymmetric Gaussian and backgrounds are described with a 1st-order polyno-mial function. In fits of the DT Kµν modes, signal shape is modeled using MC shapeconvoluted with an asymmetric Gaussian. Backgrounds of Keν are modeled usingMC shape and their relative rate to the signals are fixed. Shape of Kππ0 background-s are taken from MC simulations with convolution of a smearing Gaussian function;parameters of the smearing function are fixed according to fits to the control sampleof D → Kππ0 events. Size of Kππ0 backgrounds are fixed by scaling the number ofKππ0 events in the control sample to the number in the signal region according tothe ratio estimated from MC simulations. Other backgrounds are described with a1st-order polynomial function.

Finally, we obtain the preliminary result as

yCP = −1.6%± 1.3%(stat.)± 0.6%(syst.).

The result is compatible with the previous measurements [12]. This is the most precisemeasurement of yCP based on D0D0 threshold productions. However, its precision isstill statistically limited.

7

K+K-­‐ π+π-­‐ KSπ+π-­‐

KSπ0 KSω KSη

Prelimin

aryCP+

CP-­‐  

Page 19: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Yields  of  Keν  in  double  tags  (nKeν,CP∓)(reconstruct  CP-­‐final  states  from  one  D  decay,  

with  “Keν”  from  the  other  D)

19

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

50

100

150

200

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

50

100

150

200ν, Ke-K+K

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

20

40

60

80

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

20

40

60

80

ν, Ke-π+π

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

20

40

60

80

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

20

40

60

80

ν, Ke0π0π0SK

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

50

100

150

200

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

50

100

150

200ν, Ke0π0

SK

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

20

40

60

80

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

20

40

60

80

ν, Keω0SK

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

1 )

0

20

40

60

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

1 )

0

20

40

60ν, Keη0

SK

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

50

100

150

200

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

50

100

150

200νµ, K-K+K

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

20

40

60

80

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

20

40

60

80νµ, K-π+π

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

50

100

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

50

100

νµ, K0π0π0SK

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

100

200

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

100

200 νµ, K0π0SK

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

1 )

0

50

100

150

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

1 )

0

50

100

150νµ, Kω0

SK

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

1 )

0

20

40

60

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

1 )

0

20

40

60 νµ, Kη0SK

Figure 4: Fits to Umiss distributions in data for CP -tagged Keν and Kµν modes.

4 Summary

In this paper, the preliminary BESIII results of the strong phase difference cos δKπ

in D → Kπ decays and the mixing parameter yCP are reported. The measurementswere carried out based on the quantum-correlated technique in studying the processof D0D0 pair productions of 2.92 fb−1 e+e− collision data collected with the BESIIIdetector at

√s = 3.773GeV. The preliminary results are given as

cos δKπ = 1.03± 0.12± 0.04± 0.01

andyCP = −1.6%± 1.3%± 0.6%.

8

- Signal  shape:  MC  shape,  convoluted  with  an  asymmetric  Gaussian.

- Background:  A  1st  order  polynomial.

K+K-­‐,  Keν π+π-­‐,  Keν KSπ+π-­‐,  Keν

KSπ0,  Keν KSω,  Keν KSη,  Keν

Prelimin

ary

Page 20: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Yields  of  Kμν  in  double  tags  (nKμν,CP∓)(reconstruct  CP-­‐final  states  from  one  D  decay,  

with  “Kμν”  from  the  other  D)

20

- Signal  shape:  MC  shape,  convoluted  with  an  asymmetric  Gaussian.

- Background:  A  1st  order  polynomial.                                                Kππ0  (dominant).

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

50

100

150

200

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

50

100

150

200ν, Ke-K+K

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

20

40

60

80

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

20

40

60

80

ν, Ke-π+π

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

20

40

60

80

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

20

40

60

80

ν, Ke0π0π0SK

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

50

100

150

200

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

50

100

150

200ν, Ke0π0

SK

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

20

40

60

80

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

20

40

60

80

ν, Keω0SK

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

1 )

0

20

40

60

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

1 )

0

20

40

60ν, Keη0

SK

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

50

100

150

200

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

50

100

150

200νµ, K-K+K

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

20

40

60

80

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

20

40

60

80νµ, K-π+π

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

50

100

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

50

100

νµ, K0π0π0SK

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

100

200

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

05 )

0

100

200 νµ, K0π0SK

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

1 )

0

50

100

150

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

1 )

0

50

100

150νµ, Kω0

SK

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

1 )

0

20

40

60

(GeV)missU-0.1 -0.05 0 0.05 0.1

Even

ts /

( 0.0

1 )

0

20

40

60 νµ, Kη0SK

Figure 4: Fits to Umiss distributions in data for CP -tagged Keν and Kµν modes.

4 Summary

In this paper, the preliminary BESIII results of the strong phase difference cos δKπ

in D → Kπ decays and the mixing parameter yCP are reported. The measurementswere carried out based on the quantum-correlated technique in studying the processof D0D0 pair productions of 2.92 fb−1 e+e− collision data collected with the BESIIIdetector at

√s = 3.773GeV. The preliminary results are given as

cos δKπ = 1.03± 0.12± 0.04± 0.01

andyCP = −1.6%± 1.3%± 0.6%.

8

K+K-­‐,  Kμν π+π-­‐,  Kμν KSπ+π-­‐,  Kμν

KSπ0,  Kμν KSω,  Kμν KSη,  Kμν

Prelimin

aryKππ0 -­‐  Kππ0  shapes  and  sizes

are  fixed  based  oncontrol  samples  of  actual  data.-­‐  The  control  samples  are  obtained  by  the  same  CP  states  and  Kππ0,  while  ignoring  the  two  photons  from  π0  decays  to  calculate  Umiss.See  the  next  slide  for  detail.

Page 21: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Fixing  the  Kππ0  shape- Obtain  Eextra  ≡  Sum  of  the  all  un-­‐used  energiesdeposited  in  EM  calorimeter.- Eextra  tends  to  be  larger  if  it  is  Kππ0  due  to  the  ignored  extra  photons  from  π  0  decay  and  is  small  if  it  is  Kμν.- We  actually  do  require  Eextra<0.2  GeV  to  select  Kμν  signal  candidates.

21

In the fit to Umiss, it is necessary to have a good understanding of Kππ0 back-grounds(Its resolution and fraction). In order to demonstrate this understanding,one can select pure Kππ0 to see Umiss distribution. In addition, due to the resolutionof Umiss is correlated to the tag side, it’s better to use the same tag modes. Thus,our effort was focus on selecting pure Kππ0 against CP tagged events.

We choose cut on the Eextra which is shown in Fig 13. Here we also show the{Umiss : Eextra} two dimensional plot in Fig 15. From which we see that the Umiss

is basically independent with the Eextra. We choose “Eextra > 0.5 GeV ” to selectthe pure Kππ0, then use the Umiss shape of Kππ0 in “Eextra > 0.5 GeV ” region todemonstrate Umiss shape in “Eextra < 0.2 GeV ” region.

(GeV)missU-0.1 -0.05 0 0.05 0.1

(GeV)

extra

E

0

0.2

0.4

0.6

0.8

1all

νµKK,K0ππKK,KνKK,Ke

others

(a) {Umiss : Eextra} two dimensional plot

(GeV)missU-0.1 -0.05 0 0.05 0.1

0

0.02

0.04

0.06

<0.2extraE>0.5extraE

0ππ, K-K+K

(b) Umiss distribution of Kππ0 events inEextra >0.5 GeV region and in Eextra <0.2GeV region

Figure 15: {Umiss : Eextra} two dimensional plot(a) (from MC) and Umiss distributionof Kππ0(b) from MC.

When “Eextra > 0.5 GeV ” was required, the resultant Umiss distributions forKππ0 from inclusive MC are shown in Fig. 16. Kππ0 is not very pure but with someother backgrounds. But the resultant Umiss distributions from data could be fittedusing MC shape, then we could get the resolution difference in data and MC. Weuse PDF from MC to describe flat backgrounds. Fit plots are shown in Fig 17. Theparameters of smearing Gaussian(which describe the resolution differences betweendata and MC) were listed in Table 9.

Through the fit, we could also get the number of Kππ0 events in “Eextra >0.5 GeV ” region. We define the “ratio” as the number of Kππ0 events in “Eextra <0.2 GeV ” region to the number in “Eextra > 0.5 GeV ” region. Then the number ofKππ0 events for data could be estimated using : NE<0.2

Kππ0 = ratio × NE>0.5Kππ0 . Where

ratios could be obtained from MC. We listed these numbers in Table 10.Then, in the Umiss fit, Kππ0 could be constrained well. The number of Kππ0

events could be fixed and parameters of its smearing function could also be fixed.Umiss fit plots are shown in Fig 18.

23

-­‐  Fit  to  Umiss  in  Eextra>0.5  GeV  where  Kμν      peak  is  suppressed.-­‐  The  fihed  shape  ≡  MC  shape,        convoluted  with  a  Gaussian.

(Kππ0  yields  in  data  in  Eextra<0.2  GeV)  =  R×(Kππ0  yields  in  data  in  Eextra>0.5  GeV),where  R  =  (Kππ0  yields  in  MC  in  Eextra<0.2  GeV)/(Kππ0  yields  in  MC  in  Eextra>0.5  GeV).

Fix  shape

Fix  size

Page 22: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Preliminary  results- Fi�ed  yields  for  each  mode:

- A\er  correc>ng  for  efficiencies  (branching  frac>ons),  we  arrive  at                                                  yCP  =  [-­‐1.6±1.3(stat.)±0.6(syst.)]%.- The  result  is  sta>s>cally  limited.- The  systema>c  uncertainty  mainly  comes  from  fi�ng  procedures.

22

Preliminary numerical results

Xiao-Rui Lu @ Charm 2013 24 24

Signal yields of the full data set

preliminary result:

• result is statistically limited • systematic uncertainty is relatively small

Page 23: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Comparison  with  other  measurements

- Our  result  is  consistent  with  the  world  average  (HFAG2013;  this  preliminary  result  is  not  included  in  the  average).

- Also  consistent  with  the  latest  result  from  CLEO-­‐c  (PRD86,  112001  (2012));              yCP  =  (4.2±2.0±1.0)%.(not  listed  in  the  figure).

23

Comparison with world measurement

Xiao-Rui Lu @ Charm 2013 25 25

compatible with world average results

BESIII (pre.) -1.6 ±1.3 ±0.6 %

best precision in Charm factory

World average directly from HFAG2013 (BESIII (pre.) not included)

CLEOc 2012: [PRD 86 (2012) 112001]

yCP=(4.2±2.0 ±1.0)%

Page 24: Measurements*of strongphaseinD Kπdecayandy ...docbes3.ihep.ac.cn/~talks/images/f/fa/Muramatsu.pdf · Double Tag techniques: (partial-)reconstruct both D mesons Charm events at threshold

Miami 2013 DEC/2013Hajime Muramatsu U of Minnesota

Summary- Quantum-­‐correlated  D0Dj0  in  e+e-­‐  annihila>ons  near  threshold:  Unique  way  to  measure  the  Charm  mixing  parameters.

- Most  precise  measurement  of                                  strong  phase  difference  in  D0➝  Kπ.Will  improve  the  determina>on  of  mixing  parameters,  x  and  y.

- Measurement  of  yCP:  Sta>s>cally  limited,  consistent  with  the  world  average.

- Will  collect  larger  “open-­‐charm”  data  samples  in  years  to  come:Expect  many  interes>ng  results.

24