Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

22
Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment G.M. Wright University of Wisconsin-Madison, FOM – Institute for Plasma Physics Rijnhuizen D.G. Whyte, B. Lipschultz Plasma Science and Fusion Center, M.I.T. The Pilot-PSI Team FOM – Institute for Plasma Physics Rijnhuizen T E C

description

T E C. Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment. G.M. Wright University of Wisconsin-Madison, FOM – Institute for Plasma Physics Rijnhuizen D.G. Whyte, B. Lipschultz Plasma Science and Fusion Center, M.I.T. The Pilot-PSI Team - PowerPoint PPT Presentation

Transcript of Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

Page 1: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

G.M. WrightUniversity of Wisconsin-Madison, FOM – Institute for Plasma Physics Rijnhuizen

D.G. Whyte, B. LipschultzPlasma Science and Fusion Center, M.I.T.

The Pilot-PSI TeamFOM – Institute for Plasma Physics Rijnhuizen

T E C

Page 2: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

Outline

1. The DIONISOS experiment

2. The influence of MeV-range ion irradiation

3. The influence of high flux plasma exposure

4. Diffusion and bulk retention

5. Consequences and solutions

6. Summary and conclusions

Page 3: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

Outline

1. The DIONISOS experiment

2. The influence of MeV-range ion irradiation

3. The influence of high flux plasma exposure

4. Diffusion and bulk retention

5. Consequences and solutions

6. Summary and conclusions

Page 4: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

DIONISOS = Dynamics of ION Implantation and Sputtering Of Surfaces

• Simultaneous ion beam irradiation and plasma exposure of target.

• Real-time, in-situ measurement of D concentrations using 3He(d,p) NRA.

• Helicon source yields high flux (~1021 D/m2s), low temperature (Te ~ 5 eV) plasmas

• Target can be biased to 500 V and heated to ~750 K.

Page 5: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

Trapped deuterium depth profiles measured in-situ emphasize the importance of diffusion

Trapped D profiles are highly sensitive to Mo temperature:

• low TMo diffusion limited

• high TMo flat profile, trap limited

Trapped D concentrations as high as 3 at.% 0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 1 2 3 4 5Depth (mm)

Dtr

ap

pe

d/M

o

300K

400K

500K

600K

700K

Vbias = 30 V

Flux density ~ 1 x 1021 D/m2s

Total fluence ~ 1.5 x 1024 D/m2

3.5 MeV 3He irradiating surface

Page 6: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

0.0E+00

5.0E+20

1.0E+21

1.5E+21

2.0E+21

2.5E+21

200 300 400 500 600 700 800

Temperature (K)

D r

eta

ine

d i

n f

irs

t 5

mm

(D

/m2)

30 eV

100 eV

350 eV

D retention in Mo after exposure to 3.5 MeV 3He beam and D plasma in DIONISOS

No dependence on incident ion energy.

Indications that retention for 600-700 K extends much deeper than 5 mm. Implies total retention is lowest at 300K.

Page 7: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

Outline

1. The DIONISOS experiment

2. The influence of MeV-range ion irradiation

3. The influence of high flux plasma exposure

4. Diffusion and bulk retention

5. Consequences and solutions

6. Summary and conclusions

Page 8: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

3.5 MeV 3He irradiation of the target produce lattice displacements that can become traps

0.00001

0.0001

0.001

0.01

0 1 2 3 4 5Depth (mm)

D/M

o

3.5 MeV 3He beamduring plasmaexposure

No 3He beamduring exposure

TMo = 500 K

Vbias = 100 VD flux = 1021 m-2s-1

3He flux = 3×1017 m-2s-1

texposure = 1500 s

For these conditions, displacements due to the 3He irradiation account for ~85 % of the total trapped D.

Displacements account for a larger fraction of trap sites deeper into the Mo bulk near the end of the 3He ion range.

Page 9: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

0

1E+20

2E+20

3E+20

4E+20

5E+20

6E+20

0 1E+20 2E+20 3E+20 4E+20 5E+20 6E+20

3He++ fluence (3He/m2) [ displacements/m2]

reta

ined

D (

Dtr

ap/m

2)

Trap density increases non-linearly with 3He ion fluence (and displacements)

Non-linearity indicates an approach to a saturation level but also a large increase in trap density after only a small amount of 3He fluence.

TMo = 500 K

Vbias = 100 V

Same plasma parameters

Trap density (3He fluence)1/4 (dpa)1/4

Page 10: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

Scaling of trap production from irradiation may depend on several factors

Takagi et al, Fusion Sci. & Technol. 41 (2002) 897.

0.8 MeV 3He beam

TMo = 493 K

Indicates a dependence on irradiating ion energy.

Trap production may also depend on radiating species (ions/neutrons), target composition, and target temperature.

0

5E+20

1E+21

1.5E+21

2E+21

2.5E+21

0 5E+20 1E+21 1.5E+21 2E+21

3He++ fluence (3He/m2)

reta

ined

D (

Dtr

ap/m

2)

DIONISOS

Takagi

Page 11: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

Outline

1. The DIONISOS experiment

2. The influence of MeV-range ion irradiation

3. The influence of high flux plasma exposure

4. Diffusion and bulk retention

5. Consequences and solutions

6. Summary and conclusions

Page 12: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

Plasma exposure also produces trap sites well beyond the implantation range

0.00001

0.0001

0.001

0.01

0 1 2 3 4 5Depth (mm)

D/M

o

3.5 MeV 3He beamduring plasmaexposure

No 3He beamduring exposure

0.00001

0.0001

0.001

0.01

0 1 2 3 4 5Depth (mm)

D/M

o

No 3He beamduring exposure

TMo = 500 K

Vbias = 100 VD ~ 1021 m-2s-1

High rate of low-energy ion implantation into a target with very low natural hydrogenic solubility (<10-7 D/Mo for conditions in DIONISOS)

Indicates a trap production mechanism that extends beyond r implant or the

production of traps in rimplant that subsequently mobilize into the bulk.

rimplant ~ 10 nm

Page 13: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

Implanted D super-saturatesThe implantation zone.

How does surface trap production scale?

Vacancy clustering and void/blister formation

W atom is displaced anda vacancy is formed.

What experimental factors influence strength and formation of stress fields?

• Plasma flux density – sets rate of implantation (source)

• Hydrogenic solubility – sets saturation limit (boundary condition)

• Diffusion/surface recombination – rate-limiting process removes D from implantation zone (sink).

Page 14: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

Dynamic capabilities of DIONISOS yield insights into the rate limiting processes

For a diffusion-limited release, nDsurf Eion (deeper implantation). Opposite effect observed in DIONISOS implying a recombination-limited release.

off plasmaDsurf

on plasmaDsurfDsurf nnn

Page 15: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

Outline

1. The DIONISOS experiment

2. The influence of MeV-range ion irradiation

3. The influence of high flux plasma exposure

4. Diffusion and bulk retention

5. Consequences and solutions

6. Summary and conclusions

Page 16: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

Mobile traps and implanted D implies retention in the bulk material will be significant

Simulated D retention profile:

D = 1023 m-2s-1

No MeV ion irradiation

Trapplasma D

3 s pulse, 3 s cooling, 30 s wait time

300

700

0 20 40 60Time (s)

Te

mp

(K

)

Repeated and rapid thermal cycling drives the trapped D into the bulk. Simulation results in linear increase in retention with fluence.

High hydrogenic diffusion rates in Mo and assumption of mobile trap sites are key to this mechanism.

I-14, B. Lipschultz et al.

Page 17: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

Underlying physics apply to materials with similar hydrogenic properties

Trapping mechanism

Required property

Mo W

Bulk displacements from MeV particle

irradiation

Trap production through bulk

displacements?

YESDIONISOS, Takagi et al.

YES

Oliver et al.

Super-saturation from exposure to high flux plasma

Low hydrogenic solubility?

YESTanabe et al.

YESFrauenfelder et al.

Surface recombination

limited?

ProbablyDIONISOS

ProbablyOgorodnikova et al.

Bulk retention High hydrogenic diffusion?

YESTanabe et al.

YESFrauenfelder et al.

Takagi et al. Fusion Science and Technology 41 (2002) 897.Oliver et al. Journal of Nuclear Materials 307-311 (2002) 1418.Tanabe et al. Journal of Nuclear Materials 191-194 (1992) 439.Frauenfelder et al. Journal of Vacuum Science and Technology 6 (1969) 388.Ogorodnikova et al. Journal of Applied Physics 103 (2008) 034902.

Page 18: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

Tungsten Pilot-PSI experiment allows for tests at ITER-relevant plasma flux densities

0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

1.0E-05

1.2E-05

1.4E-05

1.6E-05

0 5E+21 1E+22 1.5E+22 2E+22 2.5E+22

Total Incident Fluence (D)

Re

tain

ed

fra

cti

on

(D

reta

ined

/Din

cid

ent)W targets

D~1023-1024 m-2s-1

Te ~ 2 eV

TW ~ 1000-1600 K

Retained fraction determined with TDS

D retention is low and may possibly indicate saturation.

High tungsten temperatures have mitigated plasma-driven trap production.

P1-65, A.W. Kleyn, G.M. Wright, et al.

T E C

Page 19: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

Outline

1. The DIONISOS experiment

2. The influence of MeV-range ion irradiation

3. The influence of high flux plasma exposure

4. Diffusion and bulk retention

5. Consequences and solutions

6. Summary and conclusions

Page 20: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

What are the issues and how do we solve them?

• Bulk displacements and high flux, low energy plasma exposure can both create trap sites in high-Z refractory metals.

• High H diffusion and trap production in the bulk means retention is higher at moderately elevated target temperatures (400-600 K).

• High H diffusion and mobile traps indicate retention deep in the bulk occurs with repeated thermal cycling (T removal concerns).

What are the solutions?

• High ambient surface temperature (hot walls) mitigates plasma-driven trap production and anneals irradiation-produced traps (Oliver et al. J. Nucl. Mater. 329-333 (2004) 977).

• Control access of implanted hydrogen to the bulk (diffusion barriers). Diffusion-limited regime has lowest retention.

0-19, D.G. Whyte

Page 21: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

Summary & Conclusions

• The DIONISOS experiment has yielded new insights into hydrogenic retention properties of high-Z materials in an irradiating environment.

• Irradiation of Mo with MeV ions produces bulk displacements that lead to significant trap concentrations throughout the irradiating ion range.

• Exposure of Mo to a high flux of low energy plasma ions can create trap sites extending much deeper than rimplant

• High diffusion rates and mobile traps in combination with thermal cycling can lead to retention throughout the bulk of the material and a linear increase in retention with incident fluence.

• Many of the underlying physics driving these mechanisms in Mo can also be applied to W.

Page 22: Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment

Summary & Conclusions

• In future fusion devices, plasma facing components will be exposed to high plasma fluxes and 14 MeV neutron irradiation. The combination could lead to high retention rates even in refractory metals

• Plasma, radiative, and neutron heating activates diffusion. Trap production by n-irradiation means traps will be distributed throughout the bulk. Even small local D/T concentrations could lead to high overall retention.

• Diffusion barriers can limit retention in the bulk.

• Operating with hot walls (900-1000 K) would solve many problems with hydrogenic retention in refractory metals.