Meaning of deceleration parameter flat model q 0 tells you if the Universe is accelerating in its...

21
Meaning of deceleration parameter flat model 2 3 1 models all For 2 3 1 ) 1 2 / ) 1 3 (( 1 2 / ) 1 3 ( constant because 1 0 2 0 ) 1 ( 3 2 0 ) 1 ( 3 2 0 0 0 1 2 / ) 1 3 ( 0 2 / ) 1 3 ( 1 3 2 0 1 3 0 2 0 2 3 3 3 3 0 0 2 0 0 2 0 2 i i w w w w w w w i w w q w a a a q t t t H w a a t H w y dt H dy y y H a a H dt dy a a a a a H dt dy q 0 tells you if the Universe is accelerating in its global expansion rate, or decelerating. Flat, matter dominated q0=1/2 Empty Universe q0=0 Flat, radiation dominated q0=1 Flat, Cosmological Constant dominated
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    219
  • download

    0

Transcript of Meaning of deceleration parameter flat model q 0 tells you if the Universe is accelerating in its...

Meaning of deceleration parameter

• flat model

2

31 models allFor

2

31

)12/)13((

12/)13(

constant because 1

020

)1(3

2

0

)1(3

2

00

0

12/)13(

02/)13(

1320

13

0

20

2

33

33

00

2

00

20

2

ii

ww

w

w

w

w

wi

w

wq

w

a

aaq

t

ttHw

a

a

tHw

y

dtHdyy

yHa

aH

dt

dy

aa

a

a

aH

dt

dy

q0 tells you if the Universe is accelerating in its global expansion rate, or decelerating.

Flat, matter dominatedq0=1/2Empty Universeq0=0Flat, radiation dominatedq0=1Flat, Cosmological Constant dominatedq0=-1

Equation of State Revisited

3?/

?333

1

constant33

00

33

w

w

a

a

aw

wi

i

Constant alCosmologicfor 3 ?

photonsfor -1?

matter normalfor 0?

1

MM

?3

003

0

?

0

0

?

000

3

00

0

0

0

a

a

aa

aa

a

a

E

E

M

M

a

a

V

V

VV

Distance as a function of redshiftq0 0.5

z dproper d_L d_A0 0 0 0

0.1 0.093182 0.1025 0.0847110.2 0.175 0.21 0.1458330.3 0.248077 0.3225 0.1908280.4 0.314286 0.44 0.224490.5 0.375 0.5625 0.250.6 0.43125 0.69 0.2695310.7 0.483824 0.8225 0.2846020.8 0.533333 0.96 0.2962960.9 0.580263 1.1025 0.3054021 0.625 1.25 0.3125

1.1 0.667857 1.4025 0.3180271.2 0.709091 1.56 0.3223141.3 0.748913 1.7225 0.3256141.4 0.7875 1.89 0.3281251.5 0.825 2.0625 0.331.6 0.861538 2.24 0.3313611.7 0.897222 2.4225 0.3323051.8 0.932143 2.61 0.3329081.9 0.966379 2.8025 0.3332342 1 3 0.333333

2.1 1.033065 3.2025 0.3332472.2 1.065625 3.41 0.3330082.3 1.097727 3.6225 0.3326452.4 1.129412 3.84 0.332182.5 1.160714 4.0625 0.3316332.6 1.191667 4.29 0.3310192.7 1.222297 4.5225 0.3303512.8 1.252632 4.76 0.329642.9 1.282692 5.0025 0.3288953 1.3125 5.25 0.328125

3.1 1.342073 5.5025 0.3273353.2 1.371429 5.76 0.3265313.3 1.400581 6.0225 0.3257173.4 1.429545 6.29 0.3248973.5 1.458333 6.5625 0.3240743.6 1.486957 6.84 0.3232513.7 1.515426 7.1225 0.3224313.8 1.54375 7.41 0.3216153.9 1.571939 7.7025 0.320804

d_A

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

d_A

Exact Distance Solutions for open/closed & mixed models

z

i

wiAL zzzdSz

H

czDD i

0

2/12

0332/1

0

2/1

00

2 11)1()1(

0 1

tot i

i

S x

x

x

x

( )

sin( )

sinh( )

k = 1

k = 0

k = -1

Integrating functions

• Use trapezoid rule

f(x)

x1 x2

12

11

1

2

))1(()()(

2

1

xxxN

xxixfxixf

xf toNi

x

x

x1 x1+x

f(x1)f(x1+x)

Area x(f(x1+x)+ f(x1))/2

Trial numerical integration

Microsoft Excel Worksheet

Angular Size Distance How big does an object look as a function of redshift

Proper Motion DistanceApparent Angular velocity as a function of redshift

Luminosity DistanceHow bright does an object appear as a function of redshift

D

dA

)1( zdu

d AM

2)1(4

zdF

Ld AL

Cosmic ChronologyHow old is an object as a function of redshift

Volume TestHow does the Volume per dz change as a function of z

Structure TestHow does structure evolve relative to a model

Density TestMeasure local density of Matter

dzzzzzzH

ttz

M

1

02

010

)2()1()1()1(

11

iiK

KL

K

LkLKL zdHSzdHzdHHdV

1

)1(1

)]1([1)1/()2()( 012

003

0

F

LDL 4

z

i

wiL zzzdSz

H

cD i

0

2/12

0332/1

0

2/1

00

11)1(

0 1

tot i

i

S x

x

x

x

( )

sin( )

sinh( )

k = 1

k = 0

k = -1

Luminosity Distance – GR + Homogenous Isotropic Universefor a monochromatic source (defined as inverse-square law)

the flux an observer sees of an object at redshift z 24 D

LF

Brightness of object depends exclusively on what is in the UniverseHow much and its equation of state.

m

iii

qge

wta

tataq

2

1 .,.

312

1

0

02

000

302

0

2

2

1)1( z

qzz

H

czDD AL O

The Deceleration ParameterThe Deceleration Parameter

)121)(1(1

)1( 000200

2 zqqzqqH

czDD AL

Valid for all models

Mattig (1958) provides exact solution for matter only Universes

Mpc

DMm mag log525)(

Distance Modulus

Fractional distance change ½(mag change)

e.g. 0.1mag difference is 5% distance difference

Angular Size Distance

Attempts to fit/understand models: 1920-1995

•Number counts of Galaxies – Hubble,Yoshii/Peterson

•Angular Size Distances - distant radio cores Kellerman

•Loitering Universes with z=2 Quasars

•Luminosity Distance with Brightest Cluster Galaxies

Volume Effects

At low z, N z3, for any non-diverging luminosity function, Hubble observed this to be true, demonstrating that Galaxies uniformly fill the local Universe. He and Humason were unable to reach conclusions on Geometry.

iiK

KL

K

LkLKL zdHSzdHzdHHdV

1

)1(1

)]1([1)1/()2()( 012

003

0

-1=k

0=k

1=k

)sinh(

)sin(

)(

x

x

x

xS

Angular Size Distance with Compact Radio Sources

Kellerman(1993)

Stepanas & Saha 1995Result not that constraining

Excess z~2 QSOs: Loitering Universe

Petrosian, V., Saltpeter, E.E. & Szekeres, P. 1967

Brightest Cluster Galaxies

Sandage, Humason &Mayhall 1956Baum 1957Peach 1970

Deceleration q0>1

But Tinsley 1976 showed Evolution dominates Cosmology

Methods for Measuring Extra-Galactic Distances

• Brightest Cluster Galaxies • Cepheids• Fundamental Plane (Dn-/Faber Jackson)• Lensing Delay • Planetary Nebulae • Tully-Fisher• Sunyaev-Zeldovich • Surface Brightness Fluctuations• Supernovae Ia• Supernovae II