ME_302-L-Forced_Vibrations_V3.pdf

24
-ME 302- Theory of Machines II HARMONIC EXCITATION OF ME-302 THEORY OF MACHINES II Page: 1/24 Kıvanç Azgın SINGLE DEGREE-OF-FREEDOM SYSTEMS

Transcript of ME_302-L-Forced_Vibrations_V3.pdf

  • -ME 302-Theory of Machines II

    HARMONIC EXCITATION OF

    ME-302 THEORY OF MACHINES II Page: 1/24Kvan Azgn

    HARMONIC EXCITATION OFSINGLE DEGREE-OF-FREEDOM

    SYSTEMS

  • eq eq eq 0 0Initial Conditions

    m x c x k x F(t), x 0 x , x 0 x

    Forced Vibrations

    x t is the total forced vibration response (work is done on the system by external forces)

    ME-302 THEORY OF MACHINES II Page: 2/24Kvan Azgn

    For >0, only xp(t) has contribution to the long term behavior of x(t). That is why xp(t) is also called the steady state solution.

    h p

    h eq eq eq

    p

    x t x t x t

    x t is the homogenous solution, the free vibration response (soln. of m x c x k x 0)

    x t is t

    he particular solution and it depends on the form of F(t)

    ss pt

    x t = lim x t =x t which is independent of initial conditions

  • eq eq eq 0 0Initial Conditions

    m x c x k x F(t), x 0 x , x 0 x

    Forced Vibrations

    ME-302 THEORY OF MACHINES II Page: 3/24Kvan Azgn

    hx t x t px t

  • eq eq eq 0m x c x k x F(t) F sin t

    Amplitude ofexcitation (N)

    Harmonic Excitation

    Frequency ofexcitation (rad/sec)

    Harmonic excitation (with single frequency) commonly occur in practical problems, thus deserves special attention

    ME-302 THEORY OF MACHINES II Page: 4/24Kvan Azgn

    special attention

    Sinusoidalwavy road

    c k

    c k

    M

    Suspension

    Any periodic excitation can be approximated by a truncated Fourier Series (sinusoidal) Expansion

  • eq eq

    eq

    eq eq

    2n

    eq

    m x k x F(t)

    k F(t)x x

    m m

    F(t)x x

    m

    where x is the independent generalized coordinate, is the generalized mass (meq or Ieq)and is the generalized stiffness (keq or kt,eq)

    eqm

    k

    Harmonic Excitation of Undamped SDOF Systems

    ME-302 THEORY OF MACHINES II Page: 5/24Kvan Azgn

    and is the generalized stiffness (keq or kt,eq)

    When F(t) is harmonic, i.e.,

    We need to introduce the complex excitation and complex solution

    0 02 20 0n n

    eq eq

    F(t) F sin t OR F(t) F cos t

    F Fx x sin( t) OR x x cos( t)

    m m

    0( )

    i t

    i t

    F t F e

    x t Xe

    eqk

  • 0 2 0

    ( )

    i t

    i tni t

    eq

    F t F e Fx x e

    mx t Xe

    2 i tx t X eiWhere

    Harmonic Excitation of Undamped SDOF Systems

    ME-302 THEORY OF MACHINES II Page: 6/24Kvan Azgn

    2 02

    i t i t i t

    n

    eq

    FX e Xe e

    mi

    22

    i i

    n

    eq

    Fe e

    mi

    X

  • 2

    2 0

    2 0

    2

    2

    since cos sin

    i in

    eq

    in

    eq

    i

    Fe e

    m X

    Fe

    m X

    e i

    F

    i

    i

    Note that this eq. is the char. equation where s terms are replaced by i terms

    Harmonic Excitation of Undamped SDOF Systems

    ME-302 THEORY OF MACHINES II Page: 7/24Kvan Azgn

    0

    2 0

    0 0

    2

    2 2

    0

    2

    2

    Imag. part : 0 sin sin 0 0 or

    0 if Real part : cos

    if

    1

    eq

    n

    n

    neq

    eeq neq

    n

    Fi

    m X

    F

    m X

    F F F

    mk

    Xk

    2

    2

    1 for

    1

    n

    q

    staticncase

  • 0 2 0

    w hen

    ( )

    n

    n

    n

    n

    i t

    i tni t

    eq

    F t F e Fx x e

    mx t tXe

    2

    2 n nn

    i i t

    n

    ti ix t X X eteWhere

    Harmonic Excitation of Undamped SDOF Systems

    ME-302 THEORY OF MACHINES II Page: 8/24Kvan Azgn

    2 2 02

    n n n ni t i t i t i tn

    e

    n n

    q

    FXe X e X

    mi e etit

    02

    in

    eq

    Fi e

    m X

  • 00

    2

    2

    since cos sin

    2

    i

    eq

    i

    eq

    i

    n

    n

    Fe

    m X

    Fe

    m X

    e i

    m XF

    i

    i

    Harmonic Excitation of Undamped SDOF Systems

    ME-302 THEORY OF MACHINES II Page: 9/24Kvan Azgn

    0

    0

    0

    0

    0

    2Imag. part : 2 sin sin

    Real part : 0 cos , since sin 02

    2sin 1

    2

    eq

    eq

    n

    n

    n

    n

    eq

    eq

    eq

    m XFi

    m X F

    F

    m X

    m X FX

    F m

    i

  • 0 0 0Input : ( ) sinc so

    i t i FF t F e tF t

    Substituting X and into the assumed solution

    2

    0 1

    1

    eq

    FX

    k

    Harmonic Excitation of Undamped SDOF Systems

    ME-302 THEORY OF MACHINES II Page: 10/24Kvan Azgn

    0

    Re( ( )) Im( ( ))

    Re

    0

    ( ( )) Im( ( ))

    0

    2

    Input : ( )

    0 if For , where

    i

    f

    Output :

    For ,

    sin

    sin

    c s

    cos

    o

    F t F t

    i t n

    n

    nx t x t

    i t

    n

    i FF t F e

    x t Xe

    x t tX

    t

    i X t

    e

    F t

    X t

    Re( ( )) Im( ( ))

    s2

    in

    o2

    c s

    x t x t

    tX t i tX t

    2

    1

    eqstatic

    ncase

    0

    2

    eqn

    FX

    m

  • eq eq eq

    eq eq

    eq eq eq

    2n n

    eq

    m x c x k x F(t)

    c k F(t)x x x

    m m m

    F(t)x 2 x x

    m

    where x is the independent generalized coordinateis the generalized mass (meq or Ieq)is the generalized damping (c or c )c

    eqm

    Harmonic Excitation of Damped SDOF Systems

    ME-302 THEORY OF MACHINES II Page: 11/24Kvan Azgn

    is the generalized damping (ceq or ct,eq)is the generalized stiffness (keq or kt,eq)

    When F(t) is harmonic, i.e.,

    We need to introduce the complex excitation andcomplex solution

    eqc

    0 0F(t) F sin t OR F(t) F cos t

    0( )

    i t

    i t

    F t F e

    x t Xe

    eqk

  • 0 2 0

    ( )2

    i t

    i tn ni t

    eq

    F t F e Fx x x e

    mx t Xe

    2

    i t

    i t

    ix t X e

    x t iX eWhere

    Harmonic Excitation of Damped SDOF Systems

    ME-302 THEORY OF MACHINES II Page: 12/24Kvan Azgn

    2 2 02

    i t i t i t i tn n

    eq

    FX e X e Xe e

    mi i

    2 2 02

    i i i

    n n

    eq

    Fei e

    mi e

    X

  • 2

    2 0

    2 0

    2

    2

    2

    2

    i i in n

    eq

    in n

    eq

    i i

    i i

    Fe e e

    m X

    Fe

    m XNote that this eq. is the char. equation where s terms are

    Harmonic Excitation of Damped SDOF Systems

    ME-302 THEORY OF MACHINES II Page: 13/24Kvan Azgn

    0

    0

    2

    2 2 0

    0

    2

    since cos sin

    2Imag. part : 2 sin sin

    Real part : cos cos

    i

    n eq

    n

    eq

    n eq

    n

    eq

    e i

    m XFi

    m X F

    mF

    X

    i

    X

    m F

    equation where s terms are replaced by i terms

  • 2

    0 0

    22

    2 0

    1

    2

    2

    2

    2

    2sin ,cos

    arctan , 2

    And,

    2

    n eqn eq

    n n

    in n

    eq

    m Xm X

    F F

    Fe

    m X

    F

    i

    Harmonic Excitation of Damped SDOF Systems

    ME-302 THEORY OF MACHINES II Page: 14/24Kvan Azgn

    2 22

    2

    2 0

    0 02 2 222

    2

    22

    2

    1 1

    21 2

    n n

    eq

    eq eq nn n

    n n

    F

    m

    F

    m

    X

    FX

    m

    2

    02 2

    2

    1

    1 2

    eq

    n n

    FX

    k

  • 0

    Re( ( )) Im( ( ))

    0 0Input : ( )

    Outp

    cos

    cos

    si

    ut :

    n

    sin

    i t

    F t F t

    i t

    i F t

    i X

    F t F e

    x t tXe

    F t

    X t

    Substituting X and into the assumed solution

    Harmonic Excitation of Damped SDOF Systems

    ME-302 THEORY OF MACHINES II Page: 15/24Kvan Azgn

    Re( ( )) Im( ( ))

    Outp cosut : sin

    x t x t

    i Xx t tXe X t

    Re

    Im

    0( ) i tF t F e

    ( )

    i t

    x t Xe

    0r F0

    2

    2

    22

    1

    1 2

    eq

    n n

    Fr X

    k

    Re

    Im

  • 2 0

    2 2

    2 2

    ( )2

    ( )2 ( )

    ( ) 1( )

    ( ) 2

    ( ) 1 1 1 1( )

    i t

    n n

    eq eq

    n n

    eq

    eq n n

    F eF tx x x

    m m

    F ss s X s

    m

    X sG s

    F s m s s

    X iiG

    Harmonic Excitation of Damped SDOF Systems

    ME-302 THEORY OF MACHINES II Page: 16/24Kvan Azgn

    2 22 2

    2

    2

    2

    2 2

    ( )( ) 22

    21 1 1( )

    2

    eq eq n nn n

    n n

    eq n n eq n

    ii ii i

    ii

    F m m

    Gm mi

    G

    0

    2 2 222 2

    2

    2

    2

    2

    2

    222 22

    1 1

    21 2

    21( ) arctan , 2

    2

    eqn

    n n

    X

    F

    n n

    n n

    eq n n

    k

    Gm

    ii

  • 2 Amplitude of forced response:

    n

    nXm Xk X XM

    Some Definitions:

    Harmonic Excitation of Damped SDOF Systems

    ME-302 THEORY OF MACHINES II Page: 17/24Kvan Azgn

    0

    0

    00 0 0 0

    max. spring force:excitation force amp.

    22 22

    :Static deflection due to

    1 2, = arctan

    11 2

    s

    n

    F

    F

    MFF F Fk

    M

  • Harmonic Excitation of Damped SDOF Systems

    2 22

    2

    2

    When =0, M at =1

    For other values of , M reaches a maximum when

    11 2 is a minimum

    2 1 2 2 2 2 0

    RM

    dR

    d

    2 22

    1

    1 2

    M

    ME-302 THEORY OF MACHINES II Page: 18/24Kvan Azgn

    2 2

    2max

    max 2

    4 1 2 0

    1 2 exists for 0.5 corresponding to

    1

    2 1

    Note that

    M

    2 2res n d n n1 2 1

  • Harmonic Excitation of Damped SDOF Systems

    2

    M=1 when 0 for all values (this is static case where 0)

    M 0 when (Due to inertia, i.e., x= )

    Increasing decreases M for a given .

    REM RKSA :

    x

    2 22

    1

    1 2

    M

    ME-302 THEORY OF MACHINES II Page: 19/24Kvan Azgn

    n

    Increasing decreases M for a given .

    For =0, M at 1 (i.e., )

    For 0.5 M re

    2res

    max 2

    aches a maximum (resonance) at 1 2

    1with a value

    2 1

    For 0.5, 0 at 0, for 0.5 M decreases monotonically

    with increasing , there is no resonance peak.

    M

    dM

    d

  • 2 22

    1

    1 2

    M

    Harmonic Excitation of Damped SDOF Systems

    =0

    M

    ME-302 THEORY OF MACHINES II Page: 20/24Kvan Azgn

    Increasing

    =0.5

    =0.707

  • Harmonic Excitation of Damped SDOF Systems

    For =0, response and excitation are in-phase for 1

    and out-of-phase for 1

    For 0, response and excitation are in-phase only when 0

    REMARKS:

    2

    2= arctan

    1

    ME-302 THEORY OF MACHINES II Page: 21/24Kvan Azgn

    For 1 phase is -90 regardless of damping and

    excitat

    ion is in-phase with velocity.

    For 1, - - , response leads the excitation.2

    For 1, - , response is opposite to excitation.

    1

  • Harmonic Excitation of Damped SDOF Systems

    2

    2= arctan

    1

    =0

    ME-302 THEORY OF MACHINES II Page: 22/24Kvan Azgn

    Increasing

    Increasing

  • Example: For an undamped spring-mass system m=10kg, k=1kN/m, F0=50N. Determine the amplitude of oscillations for steady state case for the excitation frequencies 1=2rad/s and 2=20rad/s

    Harmonic Excitation of Damped SDOF Systems

    rad/s 1010

    1000

    sin50

    n

    tkxxm

    ME-302 THEORY OF MACHINES II Page: 23/24Kvan Azgn

    mm 67.1

    3

    1005.0

    21

    1

    1000

    50

    11210

    20 ,For

    mm 208.596.0

    1005.0

    2.01

    1

    1000

    50

    112.010

    2 ,For

    10

    522

    02

    222

    522

    01

    111

    mm

    n

    mm

    n

    Mk

    FX

    M

    Mk

    FX

    M

  • Example: A part with m=2kg vibrates in a viscous medium. Result of a frequency sweep shows that a harmonic exciting force of amplitude 2.8N results in a maximum steady state vibration amplitude of 12mm and of period 0.2s. c=?

    Harmonic Excitation of Damped SDOF Systems

    res

    res

    2 2 2res n

    2 231.42

    0.2

    1 2 1 2 31.42, "k" and " " are unknown (1) 1 2 987.212 2

    T

    k k

    m

    ME-302 THEORY OF MACHINES II Page: 24/24Kvan Azgn

    res n

    resmax res 2 2

    0

    22

    1 2 1 2 31.42, "k" and " " are unknown (1) 1 2 987.212 2

    1 0.012 1, "k" and " " are unknown (2)

    2.82 1 2 1

    2.8 1 2 987.21= ,

    0.012 1 22 1

    m

    XM M

    F k k

    k 2 2

    2 2 2 2

    1 1

    2 2

    let u= 561.35 1 1.96 1 4 4

    561.35 561.35 1.96 7.87 7.87 569.22 569.22 1.96 290.40 290.40 1 0

    0.996545 0.99827Which one? Note that there would be n

    0.034554 0.05878

    u u u u

    u u u u u u u u

    u u

    u uo resonance if 0.707

    0.05878 substitute in (1) or (2) 1988.169

    2 2 0.05878 1988.169 2 7.4135 /

    k

    c km Ns m