ME22457_Chapter4_021703_MACL

download ME22457_Chapter4_021703_MACL

of 22

Transcript of ME22457_Chapter4_021703_MACL

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    1/22

    1 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    Mechanical Vibrations 

    Chapter 4 

    Peter Avitabile Mechanical Engineering Department University of Massachusetts Lowell 

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    2/22

    2 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    Impulse Excitation 

    Impulsive excitations are generally considered to be a large magnitude 

    force that acts over a very short duration time 

    The time integral of the force is 

    When the force is equal to unity and the time approaches zero then the unit impulse exists and 

    the delta function has the property of 

    (4.1.1)

    ∫= dt)t(FF̂

    ( )   ξ≠=ξ−δ tfor 0t

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    3/22

    3 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    Impulse Excitation 

    Integrated over all time, the delta function is 

    If this function is multiplied times any forcing function then the product will result in only one value at t= 

     

    and zero elsewhere 

    (4.1.2)

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    4/22

    4 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    Impulse Excitation 

    Considering impact-momentum on the system, a sudden change in velocity is equal to the actual 

    applied input divided by the force.Recall that the free response due to initial conditions is given by 

    tcos)0(xtsin)0(x

    x nnn

    ω+ωω

    =  &

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    5/22

    5 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    Impulse Excitation 

    Then the velocity initial condition yields 

    and it can be seen that the solution includes h(t) 

    (4.1.4)

    (4.1.5)

    )t(hF̂tsinm

    F̂x

    nn

    =ωω

    =

    tsinm

    1)t(h n

    n

    ωω

    =

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    6/22

    6 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    Impulse Excitation 

    When damping is considered in the solution, the free response is given as (x(0)=0) 

    which can be written as 

    or as 

    (4.16)

    tsine)0(x

    t1sin1

    e)0(xx d

    d

    t2n2

    n

    tn

    ωω

    =ζ−ωζ−ω

    = σ−ζω− &&

    t1sine1m

    F̂x 2n

    t

    2n

    n ζ−ωζ−ω

    =   ζω−

    )t(hF̂tsinem

    F̂x d

    t

    d

    =ωω

    =   σ−

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    7/22

    7 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    Arbitrary Excitation 

    Using the unit impulse response 

    function, the response due to arbitrary loadings can be determined.

    The arbitrary force is considered to be a series of impulses 

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    8/22

    8 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    Arbitrary Excitation 

    Since the system is considered linear, then the superposition of the responses of each individual 

    impulse can be obtained through numerical integration 

    This is called the superposition integral. But it is also referred to as the 

    Convolution Integral or Duhammel’s Integral 

    (4.2.1)∫   ξξ−ξ=t

    0

    d)t(h)(f )t(x

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    9/22

    9 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    Step Excitation 

    Determine the indamped response due to a step.

    For the undamped system,

    which is substituted into (4.2.1) to give 

    (4.2.2)

    tsinm

    1)t(h n

    n

    ωω

    =

    ( )  ξξ−ωω

    = ∫ dtsinmF

    )t(x

    t

    0

    nn

    0

    ( )tcos1k 

    F)t(x n

    0 ω−=

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    10/22

    10 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    Step Excitation 

    This implies that the peak response is twice the statical displacement 

    (4.2.2)( )tcos1k F)t(x n

    0 ω−=

    0 5 10 15 20 25 300

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    Time

         D     i   s   p     l   a   c   e   m   e   n    t

    Displacem ent versus Time

    Note: Force selected such that F/k ratio is 1.0 

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    11/22

    11 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    Step Excitation 

    When damping is included in the equation, then 

    and 

    (4.2.2)t1sin1m

    e

    )t(h2

    n2n

    tn

    ζ−ωζ−ω=

    ζω−

    ψ−ζ−ω

    ζ−ω−=

    ζω−

    t1cos1m

    e1k F)t(x 2n2

    n

    t

    0n

    (4.2.3)

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    12/22

    12 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    Step Excitation 

    This can be simplified as 

    tsinm

    e)t(h d

    d

    t

    ωω=

    σ−

    ψ−ωω−=

    σ−

    tcosm

    e

    1k 

    F

    )t(x dd

    t0

    M=1 ; K=2 

    C=0 

    C=0.1 C=0.5 

    C=1.0 

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    13/22

    13 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    Base Excitation 

    For base excitation,

    the equation of motion is expressed as z=x-y and will result in 

    Notice that the F/m term is replaced by the negative of the base acceleration (ie, F=ma) 

    (3.5.1)

    (4.2.4)yzz2z2

    nn   &&&&&   −=ω+ζω+

    )yx(c)yx(k xm   &&&&   −−−−=

    yxz   −= (3.5.2)

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    14/22

    14 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    Base Excitation 

    For and undamped system initially at rest, the 

    solution for the relative displacement is 

    (4.2.5)( )  ξξ−ωξω−= ∫ dtsin)(y1

    )t(z

    t

    0n

    n &&

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    15/22

    15 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    Ramp Excitation and Rise Time 

    This solution must always be considered in two  parts - the time less than and greater than t 1 

    The ramp of the force is 

    and h(t) for the convolution integral is 

    (4.4.1) 

      

     =

    10 t

    tF)t(f 

    (4.4.1)tsink 

    tsinm

    1)t(h

    n

    n

    nn

    ωω

    =ωω

    =

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    16/22

    16 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    Ramp Excitation and Rise Time 

    The response for the first part of the ramp is 

    and the response of the step portion after t 1  is 

    (4.4.2)

    1

    1n

    n

    1

    0

    n

    t

    0 10

    n

    ttt

    tsin

    t

    t

    F

    d)t(sintFk )t(x

     

     

     

     

    ω

    −ω

    −=

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    17/22

    17 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    Ramp Excitation and Rise Time 

    The superposition of the two pieces of the solution  gives the total response due to the force as 

    (4.4.3)( )

    11n

    1n

    1n

    n0 ttt

    ttsin

    t

    tsin1

    F)t(x   >

     

      

     ω

    −ω+

    ωω

    −=

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    18/22

    18 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    Rectangular Pulse 

    The rectangular pulse is the sum of two different step functions - one positive and one negative 

    shifted in time Step Up 

    Step down 

    Combined 

    (4.4.4)( ) 1n0

    tttcos1F

    )t(kx

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    19/22

    19 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    0 10 20 30 40 50 60 70 80 90 100-0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    Time

         D     i   s   p     l   a   c   e   m   e   n    t

    Dis placeme nt versus Time

    MATLAB Examples - VTB3_1 

    VIBRATION TOOLBOX EXAMPLE 3_1

    >> m=1; c=.1; k=2; tf=100; F0=1;

    >> vtb3_1(m,c,k,F0,tf)>>

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    20/22

    20 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    0 10 20 30 40 50 60 70 80 90 1000

    0.5

    1

    Time

         D     i   s   p     l   a   c   e   m   e

       n    t

    Dis placeme nt versus Time

    MATLAB Examples - VTB3_2 

    VIBRATION TOOLBOX EXAMPLE 3_2

    >> m=1; c=.1; k=2; tf=100; F0=1;

    >> VTB3_2(m,c,k,F0,tf)>>

    >>

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    21/22

    21 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    MATLAB Examples - VTB1_4 

    VIBRATION TOOLBOX EXAMPLE 1_4 – pulse

    >> clear; p=1:1:1000; pp=p./p; ppp=[(p./p-p./p) pp (p./p-p./p) (p./p-p./p)];

    >> x0=0; v0=0; m=1; d=.5; k=2; dt=.01; n=4000;

    >> u=ppp; [x,xd]=VTB1_4(n,dt,x0,v0,m,d,k,u);

    >> t=0:dt:n*dt; plot(t,x);plot(t,x);

    >>

    0 5 10 15 20 25 30 35 40-0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

  • 8/18/2019 ME22457_Chapter4_021703_MACL

    22/22

    22 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    22.457 Mechanical Vibrations - Chapter 4

    0 5 10 15 20 25 300

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    MATLAB Examples - VTB1_4 

    VIBRATION TOOLBOX EXAMPLE 1_4 – ramp up (basically a static problem)

    >> clear; x0=0; v0=0; m=1; d=.5; k=2; dt=.01; n=3000;

    >> t=0:dt*100:n; u=t./3000; [x,xd]=VTB1_4(n,dt,x0,v0,m,d,k,u);

    >> t=0:dt:n*dt; plot(t,x);

    >>