Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with...

12
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner, T. Schwarz- Selinger, W. Jacob, Stephan Mändl

Transcript of Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with...

Page 1: Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,

Max-Planck-Institutfür PlasmaphysikEURATOM Assoziation

Interaction of nitrogen plasmas with tungsten

Klaus Schmid,A. Manhard, Ch. Linsmeier, A. Wiltner, T. Schwarz-Selinger, W. Jacob,

Stephan Mändl

Page 2: Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,

K. Schmid 2009

• Introduction

• Summary

Outline

• Experiment & Results

N accumulation & sputtering of W

Nitride phase formation

Page 3: Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,

K. Schmid 2009

Introduction

ASDEX Upgrade (now full W) experiments show performance increase for N2 seeding in the divertor compared to Ne or Ar [1]:

Why N and W ?

[1] A. Kallenbach, et. Al. Nuclear Fusion 49 (2009) 045007

Question: Influence of nitrogen ions on tungsten PFCs ?

Sputtering of tungsten by nitrogen

Nitrogen accumulation in tungsten

Thermodynamics and thermal stability of the tungsten-nitrogen system

Perform experiments on:

+ Improved energy confinement+ Smaller ELMs

N2 gas puffing is used for edge plasma cooling in high-Z PFC fusion experiments

Page 4: Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,

K. Schmid 2009

Experiment & ResultsN-accumulation and Sputtering of W by N

grid

Sample holder

UDC, bias

• ECR plasma ion source with freely expanding plasma beam

• Homogenous irradiation of samples

• Ion energy by DC biasing up to 500V

• Water cooled sample holder

• Ion flux & energy distribution measured by retarding field analyzer: 3 to 4x1018 Ny

+ (m-2 s)

• Molecular ion distribution measured by plasma monitor Dominantly N2

+ ions

PLAQ

SamplesWCu

Si

PVD tungsten layer ~ 500 nmPVD copper interlayer ~100 nm

stress reliefSilicon substrate

well-defined surface for RBS analysis

Implantation setup

Page 5: Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,

K. Schmid 2009

Experiment & ResultsN-accumulation and Sputtering of W by N

N2 plasma flux and composition

0 100 200 300 400 5000

1

2

3

4

Bias -500 VBias -400 V

Bias -300 VBias -200 V

d I

on

/dE

(1

01

7 c

m-2

s-1

eV

-1)

Ekin / ion (eV)

floating

Bias -100 V

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.10

10

20

30

40

50

60

70

80

90

100

flu

x fr

acti

on

(%

)

pressure (Pa)

N2+

N+

N3+

Retarding field analyzer measurements

Flux :3 - 4 x 1014 N2+ / cm2 s in main

peak

Most ions have energy corresponding to bias

Plasma monitor measurements

Plasma dominated by N2+ ions

N3+ ions occur at highest

pressures ~1Pa

N+ ions maintain constant level with pressure

Implantations were performed at 0.25 Pa 90% N2+

Page 6: Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,

K. Schmid 2009

0 5000 10000 150001

10

100

1000

p1+2

6x1016 N/cm2 in W

Cou

nts

Proton energy (keV)

40uC of 3.8MeV 3He

p0

p4 p3

Experiment & ResultsN-accumulation and Sputtering of W by N

Measuring N accumulation in W by nuclear reaction

NRA with 3.8 MeV 3He

Reaction used: 14N ( 3He, p ) 16O

Sensitivity: 1015 N/cm2 0.13 cts/C

Peak integral of p1 + p2 protons is

evaluated to obtain the N areal density

Measuring W sputtering via thickness change of W layer

Rutherford backscattering (2.3 MeV 4He)

Yields tungsten layer thickness

Sensitivity: 1012 W atoms / cm2

0 200 400 6000

2000

4000

6000

8000

10000

12000

Si-Substrate

Cu-Layer

Co

un

ts

Channel

W-Layer

Page 7: Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,

K. Schmid 2009

Experiment & ResultsN-accumulation and Sputtering of W by N

0.0 0.5 1.0 1.5 2.00

2

4

6

8

10

Ret

aine

d N

(10

15 c

m-2)

Implantation fluence (1019 N/cm2)

20 V 50 V 100 V

TRIDYN prediction 20 V 50 V 100 V Unimplanted

Implantation in plasma ion source PlaQ

Low energy ions

Sample temperature room temperature

Quick saturation of retained N amount

TRIDYN calculations predict similar levels

Diffusion of N in W low (similar to C in W)

N accumulation controlled by the implantation range

For our low implantation energies one expects accumulation in the range of:

2cmN1030.5cm10cm106 15

n compositio nitrideW

7322

NN cr

Page 8: Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,

K. Schmid 2009

Experiment & ResultsN-accumulation and Sputtering of W by N

0 100 200 300 400 500 600

1E-3

0.01

0.1

Sp

utt

ere

d W

pe

r N

or

Ne

Acceleration voltage drop (V)

Experimental N W Static TRIM N W Dynamic TRIM N W Experimental Ne W Static TRIM Ne W

Sputter yield of W by N from an N2 plasma

Sputter yield is much lower that expected from static TRIM

Accumulation of N in W surface reduces partial sputter yield

Good agreement between dynamic TRIM and experiment (dyn. Surface evolution)

For Ne no accumulation in W surface Ne Sputter yield matches static TRIM

N accumulation in W surface shields W from erosion by N

Could partly be the reason for the good AUG performance with N-puffing

Page 9: Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,

K. Schmid 2009

Experiment & ResultsNitride phase formation

Bombardment of W by 3keV N ion beam

XPS analysis to identify nitride formation

Literature data on W4f shift due to nitride formation varies strongly

We find a shift of 0.45eV for nitride peaks. (lies within the literature data range)

The intensity of nitride phase decreases with temperature

Page 10: Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,

K. Schmid 2009

Experiment & ResultsNitride phase formation

W-N Phase diagram calculated by ThermoCalcTM

Based on very little available data

N2 gas phase suppressed

At ambient pressures WN instable

above ~600K

XPS measurements confirm thermodynamic

modelingWN decomposes at high temperatures and

N is lost as degassing N2.

Page 11: Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,

K. Schmid 2009

600 650 700 750 8005

6

7

8

9

6.0 0.5

4.6 0.4

3.2 0.3

Ret

aine

d N

(10

16 c

m-2

)

Temperature during implantation (K)

Decrease for high temperatures

1.7 0.3

Fluence

(1018 cm-2)

Plasma immersion ion implantation at IOM Leipzig

10 kV pulses

Sample heated by pulses

Implantation fluence comparable to plasma implantation

Retained amount of N decreases with temperature above 650K

Experiment & ResultsNitride phase formation

Decay above ~650K Nicely fits predictions by thermodynamic modeling

As expected: Total accumulated amount higher than in our plasma implantation due to higher energies

Page 12: Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,

K. Schmid 2009

Summary

N accumulation quickly saturates once implantation range is filled with nitride phase

Total amount of N is determined by N energy via the implantation range

N accumulation in the surface leads to a reduction in the partial W sputter yield

Advantage over noble gas seeding species

XPS measurements of nitride fraction & measurements of total N amount indicate that the nitride decomposes at elevated temperatures

This is line with thermodynamic calculations by ThermoCalcTM