Matrix Decomposition and Its Application Part I

download Matrix Decomposition and Its Application Part I

of 32

Transcript of Matrix Decomposition and Its Application Part I

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    1/32

    1

    MatriA Decomposition and itsApplication in Statistics

    Part I

    Chaiyaporn Khemapatapan, Ph.D

    DPU

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    2/32

    2

    Overview

    • Introduction

    • LU decomposition

    •QR decomposition• Choes!y decomposition

    • "ordan Decomposition

    • #pectra decomposition• #in$uar vaue decomposition

    • %ppications

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    3/32

    3

    Introduction

      #ome o& most &re'uenty used decompositions are the LU, QR ,

    Cholesky, Jordan, Spectral decomposition  and Singular alue

    decompositions. 

    (his Lecture covers reevant matri% decompositions, )asic

    numerica methods, its computation and some o& its appications.

    Decompositions provide a numericay sta)e way to sove

    a system o& inear e'uations, as shown aready in *+amper,-/0, and to invert a matri%. %dditionay, they provide an

    important too &or anay1in$ the numerica sta)iity o& a system.

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    4/32

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    5/32

    5

    Easy to solve system (Cont.)

    Lower triangular matriA:

    Solution: This system is solved using forward substitution

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    6/32

    Easy to solve system (Cont.)

    Upper Triangular MatriA:

    Solution: This system is solved using Backward substitution

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    7/32

    !

    LU Decomposition

     

    and

    (hen,

    =

    mm

    m

    m

    u

    uu

    uuu

    //

    / 333

    3

    =

    mmmm   l l l 

    l l 

     L

    3

    333

    /

    //

     LU  A =

    LU decomposition was ori$inay derived as a decomposition o& 'uadraticand )iinear &orms. La$ran$e, in the very &irst paper in his coectedwor!s4 5-6 derives the a$orithm we ca 7aussian eimination. Later(urin$ introduced the LU decomposition o& a matri% in -89 that is used tosove the system o& inear e'uation.

    Let A )e a m × m with nonsin$uar s'uare matri%. (hen there e%ists twomatrices L and U  such that, where L is a ower trian$uar matri% and U  is an

    upper trian$uar matri%.

    ":L Lagrange 

    4;< =9;6 

    %. >. (urin$

    4-3:-586 

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    8/32

    "

     Finding echelon matriA of A

    e(A ) ? U  4upper trian$uar6

     ⇒

     U  ? E k  ⋅⋅⋅

      E  A ⇒  A ? 4 E 6

    − ⋅⋅⋅ 4 E ! 6− U 

     ⇒  A ? LU 

    I& each such eementary matri% E i is a ower trian$uar matrices,

    it can )e proved that 4 E 6−, ⋅⋅⋅, 4 E ! 6

    − are ower trian$uar, and

    4 E 6− ⋅⋅⋅ 4 E ! 6

    − is a ower trian$uar matri%.

    Let L=4 E 6− ⋅⋅⋅ 4 E 

    ! 6− then  A=LU. 

    @ow to decompose %?LUA

    −−

    −−

    −=

    −−

    −=

    −−

    =

    3;;

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    9/32

    #

    Calculation o! L and U (cont.) 

     Bow reducin$ the &irst coumn we have

    −−−

    =3;;

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    10/32

    1%

      I& % is a Bon sin$uar matri% then &or each L 4ower trian$uar matri%6 the uppertrian$uar matri% is uni'ue )ut an LU  decomposition is not uni'ue. (here can )emore than one such LU  decomposition &or a matri%. #uch as

    Calculation o! L and U (cont.) 

    =

    =

    −−

    −−

    ;32

    /3

    //

    ;/

    //

    //

    /32

    /3

    //

    ;/

    //

    //

    /32

    /3

    // 

    −−−

    =3;;

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    11/32

    11

    alculation of L and U (cont.)

      (hus LU decomposition is not uni'ue. #ince we compute LU  decomposition )y eementary trans&ormation so i& we chan$e

    L then U wi )e chan$ed such that %?LU 

    (o &ind out the uni'ue LU  decomposition, it is necessary to put some restriction on L and U  matrices. or e%ampe, wecan re'uire the ower trian$uar matri% L to )e a unit one 4i.e.set a the entries o& its main dia$ona to ones6.

      LU Decomposition in MA"LA#$

    uunction u in >%(L% is LU &acotri1ation not decomposition. #o, &indout &rom internet

    Calculation o! L and U (cont.) 

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    12/32

    &unction ' ecom*osition in +,T',-unction / '0 0 $ 'decom*osition(,) 

    Ensures , is n by ns $ sie(,)i s(1)6$s(2)

      *rint(7, is not n by n8n7)  clear ,  returnend n $ s(1) ' $ eye(n) $ eye(n) $ , or i$1:s(1) 

    9o reducin;i (i0i)$$%

      ma,imum $ ma,(abs((i:end01)))  or

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    13/32

    13

    • %oteE there are aso $enerai1ations o& LU to non:s'uare and sin$uar

    matrices, such as ran! reveain$ LU &actori1ation.

    • *Pan, C.(. 43///6. On the e%istence and computation o& ran! reveain$ LU

    &actori1ations. Linear Algebra and its Alications, ;iranian, L. and 7u, >. 43//;6. #tron$ ran! reveain$ LU &actori1ations. Linear Algebra and its Alications, ;

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    14/32

    14

    Soling system o! linear e&uation

    using LU decomposition  #uppose we woud i!e to sove a mFm system %% ? ). (hen we can &ind

    a LU:decomposition &or %, then to sove A A =b, it is enou$h to sove the

    systems

      (hus the system L! = b can )e soved )y the method o& &orward

    su)stitution and the system U  A ? Y   can )e soved )y the method o&

     )ac!ward su)stitution. (o iustrate, we $ive some e%ampes

    Consider the $iven system A A ? b, where

      and 

    −−−

    =3;;

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    15/32

    15

    +e have seen A = LU , where

     

    (hus, to sove A A = b, we &irst sove LY  = b )y &orward su)stitution 

    (hen

    Soling system o! linear e&uation

    using LU decomposition

    =

    ;32

    /3

    //

     L

    −−−

    =5//

    38/

    33<

    =

    8

    9

    ;32

    /3

    //

    ;

    3

     $

     $

     $

    −−=

    =

    5

    3

    9

    ;

    3

     $

     $

     $

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    16/32

    1

     Bow, we sove U  A =Y  )y )ac!ward su)stitution

    then

    Soling system o! linear e&uation

    using LU decomposition

    −−=

    −−−

    5

    3

    9

    5//

    38/

    33<

    ;

    3

     "

     "

     "

    =

    ;

    3

    ,

    ;

    3

    ,

     "

     "

     "

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    17/32

    1!

    QR Decomposition Brtho;onalAtrian;ular decom*osition

      I& A is a m×n matri% with ineary independent coumns, then A can )e

    decomposed as ,

    where % is a m×n matri% whose coumns &orm an orthonorma )asis &or the

    coumn space o& A. (hus, % is an ortho$ona matri% 4its coumns are

    ortho$ona unit vectors meanin$ %& % = ' 6

      R is an nonsin$uar upper trian$uar matri% 4ri$ht trian$uar matri%6.

     

    %( A =

    J'rgen Pedersen (ram 495/ =-

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    18/32

    1"

    QR:Decomposition 4Cont.6

      Proo&E #uppose %?*u H u3H . . . H un0 and ran! 4 A6 ? n.

      %ppy the 7ram:#chmidt process to u, u3 , . . . ,unJ and the

      ortho$ona vectors v, v3 , . . . ,vn are

      Let &or i=1,2,. . ., n. (hus ', '3 , . . . ,'n &orm a

    orthonorma

      )asis &or the coumn space o& A.

    3

    33

    3

    3

    3

      ,,,

    −−−−−=   ii

    iiii

    ii   ))

    )u)

    )

    )u)

    )

    )uu)  

    i

    ii)

    )*   =

    +here inner product )u)uhermitianof  caseinor )u)u  + &  ==   ,,

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    19/32

    1#

    QR:Decomposition 4Cont.6

     Bow,

    i.e.,

    (hus ui is ortho$ona to * , &or ,-i

    3

    33

    3

    3

    3

      ,,,−

    −++++=   ii

    iiii

    ii   ))

    )u)

    )

    )u)

    )

    )u)u  

    33  ,,, −−++++=⇒   iiiiiiii   **u**u**u*)u  

    J,,IJ,,,I 33   iiii   *** san))) sanu     =∈

    33

    33;;;;;

    3333

    ,,,

    ,,

    ,

    −−

    ++++=

    ++=

    +=

    =

    nnnnnnnn

      **u**u**u*)u

    **u**u*)u

    **u*)u

    *)u

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    20/32

    2%

      Let %= **1  *2  . . . *n0 , so % is a m×n matri% whose coumns &orm an  orthonorma )asis &or the coumn space o& A .

       Bow,

    i.e., A=%.

      +here,

    (hus % can )e decomposed as A=% / where R is an upper trian$uar and

    nonsin$uar matri%.

    QR:Decomposition 4Cont.6

    [ ] [ ]

    ==

    n

    n

    n

    n

    nn

    )

    *u)

    *u*u)

    *u*u*u)

    ***uuu A

    ////

    ,//

    ,,/

    ,,,

    ;;

    33;3

    ;3

    33

    =

    n

    n

    n

    n

    )

    *u)

    *u*u)

    *u*u*u)

     (

    ////

    ,//

    ,,/

    ,,,

    ;;

    33;3

    ;3

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    21/32

    21

    QR Decomposition

     EAample: ind the QR decomposition o&

    −−

    −−=

    ///

    //

     A

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    22/32

    22

    %ppyin$ 7ram:#chmidt process o& computin$ QR decomposition

     *st Step$

    +nd Step$

    ,rd Step$

    Calculation o! QR Decomposition 

     

        

     

     

     

     

    ==

    ==

    /

    ;,

    ;,

    ;,

    ,

    ;

    ,

    ,

    ,

    ,,,

    aa

    *

    ar 

    ;333   −==   a*r   & 

         

     

     

     

     

    ==

    ==

         

     

     

     

     

    =     

     

     

     

     

    −−     

     

     

     

     

    =−=−=

    /

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    23/32

    23

    -th Step$

    .th Step$

    /th Step$ 

    Calculation o! QR Decomposition 

    ;;;   −==   a*r   & 

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    24/32

    24

    (here&ore, A=% 

    QR Decomposition in MA"LA#$

     

    *Q,R0 ? 'r4%6

    UsesE QR decomposition is widey used in computer codes to &ind the

    ei$envaues o& a matri %, to sove inear systems, and to &ind east s'uares

    appro%imations.

    Calculation o! QR Decomposition 

      −

    −−

    =

    −−

    32

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    25/32

    25

    Least s&uare solution using QR

    Decomposition

    (he east s'uare soution o& b is

    Let A=%. (hen

    (here&ore,

    ( )   !  # b #  #    t t  =

    ( ) ( )  0 ! % b! %   b  ! %  b  t t t t t t t t t  ==⇔=⇔=   −−  

    ( )   ( ) ( )! % (!  # 

     (b (%(b% (b%(%(b #  # 

    t t t 

    t t t t t 

    ==

    ===

     

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    26/32

    2

    Cholesky Decomposition 

    Choes!y died &rom wounds received on the )atte &ied on ; %u$ust -9at 5 oMcoc! in the mornin$ in the Borth o& rance. %&ter his death one o&

    his &eow o&&icers, Commandant enoit, pu)ished Choes!yMs method o&

    computin$ soutions to the norma e'uations &or some east s'uares data

    &ittin$ pro)ems pu)ished in the ulletin godesi*ue in -38. +hich is

    !nown as Choes!y Decomposition

    Choes!y DecompositionE I& A is a real n×n  matri%, symmetric 4 AT  = A 6 

    and positive de&inite matri% then there e%ists a uni&ue lo0er triangular

    matriA L 0ith positie diagonal element such that .

     .Noror

    @

     LL LL LL A

      & 

    =

    Andre1Louis Cholesky

    95:-9

     Bote L is not such as e'u to L in LU

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    27/32

    2!

    Choes!y Decomposition  Proo&E #ince A is a n×n rea and positive de&inite so it has a LU

    decomposition, A = LU . %so et the ower trian$uar matri% U  to )e a unitone 4i.e. set a the entries o& its main dia$ona to ones6. #o in that case LU

    decomposition is uni'ue. Let us suppose . #ince A 

    is positive de&inite so a dia$ona eements o& D are positive.

    Let L1 ? L/D  L1  ? U T 

    o)serve that  L1  is a unit ower trian$uar matri%, i.e. det4 L16 ? det4U 6 ? . 

    (hus, A = L1 DU = L1 D1/2(D1/2 )T  L1T   ? L1 D1/2(D1/2 L1 )T   .

    Let L2 ? L1 D1/2

     

    (hen we can write  A = L2 L2& 

    6,,,4 33 nnl l l diag  3   =

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    28/32

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    29/32

    2#

    Cholesky Decomposition 2Cont34

    Procedure "o !ind out the cholesky decomposition 

    Suppose

    +e need to sove

     the e'uation

    =

    nnnn

    n

    n

    aaa

    aaa

    aaa

     A

    3

    3333

    3

     

     

    &  L

    nn

    n

    n

     L

    nnnnnnnn

    n

    n

    l l 

    l l l 

    l l l 

    l l 

    aaa

    aaa

    aaa

     A

    =

    =

    //

    //

    //

    333

    3

    3

    333

    3

    3333

    3

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    30/32

    3%

    )Aample o! Cholesky

    Decomposition #uppose

    (hen Choes!y Decomposition

     Bow,

    32,,

    ,

    3   

      

     −=   ∑

    =

     s

    kskk kk    l al 

    =

    533

    3/3

    338

     A

    =

    ;

    /;

    //3

     L

    or k  &rom to n

     

    or , &rom k41 to n   kk k 

     s

    ks ,s ,k  ,k    l l l al      

      

     −=   ∑

    =

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    31/32

    31

    Cholesky and LDL Decompositions

    • Cholesky decomposition 5 in MA"LA# L 6 chol2A57lo0er74

    •  LDLT decomposition 5 in MA"LA# 8L5D9 6 ldl2A4

      −

    ==

    −=

    //

    ;2/3232

    ;//

    /-///8

    ;232

    /32//

    533

    3/3338

    &  L3L A

      −

    ==

    =

    ;//

    ;/

    3

    ;

    /;

    //3

    533

    3/3

    338&  LL A

  • 8/15/2019 Matrix Decomposition and Its Application Part I

    32/32

    32

    Application o! Cholesky

    Decomposition

      Choes!y Decomposition is used to sove the systemo& inear e'uation AA=b/ where % is rea symmetric

    and positive de&inite.

    In re$ression anaysis it coud )e used to estimate the parameter i& A&  A is positive de&inite.

      In Kerne principa component anaysis, Choes!ydecomposition is aso used 4+eiya #hi ue:ei

    7uo 3//6