Mathematica and Quantum Corrections to Kink...

58
Mathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos Basic Notions Application to scalar field models The Asymptotic Approach The Mathematica Program Mathematica and Quantum Corrections to Kink Masses Alberto Alonso Izquierdo 1,3 Miguel Ángel González León 1,3 Juan Mateos Guilarte 2,3 1 Departamento de Matemática Aplicada (Universidad de Salamanca) 2 Departamento de Física Fundamental (Universidad de Salamanca) 3 IUFFyM (Universidad de Salamanca) Encuentros de Invierno de Geometría, Mecánica y Teoría de Control, Zaragoza 2010

Transcript of Mathematica and Quantum Corrections to Kink...

Page 1: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Mathematicaand

Quantum Corrections to Kink Masses

Alberto Alonso Izquierdo1,3

Miguel Ángel González León1,3

Juan Mateos Guilarte2,3

1Departamento de Matemática Aplicada (Universidad de Salamanca)

2Departamento de Física Fundamental (Universidad de Salamanca)

3IUFFyM (Universidad de Salamanca)

Encuentros de Invierno deGeometría, Mecánica y Teoría de Control,

Zaragoza 2010

Page 2: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Outline

1 Basic Notions

2 Application to scalar field models

3 The Asymptotic Approach

4 The Mathematica Program

Page 3: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Outline

1 Basic Notions

2 Application to scalar field models

3 The Asymptotic Approach

4 The Mathematica Program

Page 4: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

THE AIM OF THE TALK

Question:How to compute the quantum correction to the kink mass in a(1+1)-scalar field theory model?

Page 5: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

DESCRIPTION OF THE PROBLEM

PHYSICAL SYSTEM

CLASSICAL PHYSICS(~ = 0)

QUANTUM PHYSICS(~ 1)

• (1+1)-D Scalar field Model:S =

∫dx2 [ 1

2∂µφ∂µφ− U(φ)

]• Euler-Lagrange Equations

∂µ∂µφ = −∂U

∂φSOLUTION: φS

• Classical Mass:

Mcl =

∫ ∞−∞dx[

12 (∂φ

∂x)2 + U(φ)

]

Quantification ofthe classical system

SERIES EXPANSIÓN OF THE MASS

MQ(~) ≈ Mcl + ~∆M1 + ~2∆M2 + . . .

SEMICLASSICAL

APPROXIMATION:

• Solution stability:H[φS](ψn) = ω2

nψn

H[φS] = − d2

dx2 + ∂2U∂φ2 [φS]

ωn > 0⇒ Stable solution

∆M1 = 12 ~∑

r ωr

ONE-LOOP QUANTUM MASS CORRECTION

∆M1 = 12 ~ tr(H 1

2 [φS])

Page 6: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

DESCRIPTION OF THE PROBLEM

PHYSICAL SYSTEM

CLASSICAL PHYSICS(~ = 0)

QUANTUM PHYSICS(~ 1)

• (1+1)-D Scalar field Model:S =

∫dx2 [ 1

2∂µφ∂µφ− U(φ)

]• Euler-Lagrange Equations

∂µ∂µφ = −∂U

∂φSOLUTION: φS

• Classical Mass:

Mcl =

∫ ∞−∞dx[

12 (∂φ

∂x)2 + U(φ)

]

Quantification ofthe classical system

SERIES EXPANSIÓN OF THE MASS

MQ(~) ≈ Mcl + ~∆M1 + ~2∆M2 + . . .

SEMICLASSICAL

APPROXIMATION:

• Solution stability:H[φS](ψn) = ω2

nψn

H[φS] = − d2

dx2 + ∂2U∂φ2 [φS]

ωn > 0⇒ Stable solution

∆M1 = 12 ~∑

r ωr

ONE-LOOP QUANTUM MASS CORRECTION

∆M1 = 12 ~ tr(H 1

2 [φS])

Page 7: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

DESCRIPTION OF THE PROBLEM

PHYSICAL SYSTEM

CLASSICAL PHYSICS(~ = 0)

QUANTUM PHYSICS(~ 1)

• (1+1)-D Scalar field Model:S =

∫dx2 [ 1

2∂µφ∂µφ− U(φ)

]• Euler-Lagrange Equations

∂µ∂µφ = −∂U

∂φSOLUTION: φS

• Classical Mass:

Mcl =

∫ ∞−∞dx[

12 (∂φ

∂x)2 + U(φ)

]

Quantification ofthe classical system

SERIES EXPANSIÓN OF THE MASS

MQ(~) ≈ Mcl + ~∆M1

SEMICLASSICAL

APPROXIMATION:

• Solution stability:H[φS](ψn) = ω2

nψn

H[φS] = − d2

dx2 + ∂2U∂φ2 [φS]

ωn > 0⇒ Stable solution

∆M1 = 12 ~∑

r ωr

ONE-LOOP QUANTUM MASS CORRECTION

∆M1 = 12 ~ tr(H 1

2 [φS])

Page 8: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

DESCRIPTION OF THE PROBLEM

PHYSICAL SYSTEM

CLASSICAL PHYSICS(~ = 0)

QUANTUM PHYSICS(~ 1)

• (1+1)-D Scalar field Model:S =

∫dx2 [ 1

2∂µφ∂µφ− U(φ)

]• Euler-Lagrange Equations

∂µ∂µφ = −∂U

∂φSOLUTION: φS

• Classical Mass:

Mcl =

∫ ∞−∞dx[

12 (∂φ

∂x)2 + U(φ)

]

Quantification ofthe classical system

SERIES EXPANSIÓN OF THE MASS

MQ(~) ≈ Mcl + ~∆M1

SEMICLASSICAL

APPROXIMATION:

• Solution stability:H[φS](ψn) = ω2

nψn

H[φS] = − d2

dx2 + ∂2U∂φ2 [φS]

ωn > 0⇒ Stable solution

∆M1 = 12 ~∑

r ωr

ONE-LOOP QUANTUM MASS CORRECTION

∆M1 = 12 ~ tr(H 1

2 [φS])

Page 9: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

DESCRIPTION OF THE PROBLEM

PHYSICAL SYSTEM

CLASSICAL PHYSICS(~ = 0)

QUANTUM PHYSICS(~ 1)

• (1+1)-D Scalar field Model:S =

∫dx2 [ 1

2∂µφ∂µφ− U(φ)

]• Euler-Lagrange Equations

∂µ∂µφ = −∂U

∂φSOLUTION: φS

• Classical Mass:

Mcl =

∫ ∞−∞dx[

12 (∂φ

∂x)2 + U(φ)

]

Quantification ofthe classical system

SERIES EXPANSIÓN OF THE MASS

MQ(~) ≈ Mcl + ~∆M1

SEMICLASSICAL

APPROXIMATION:

• Solution stability:H[φS](ψn) = ω2

nψn

H[φS] = − d2

dx2 + ∂2U∂φ2 [φS]

ωn > 0⇒ Stable solution

∆M1 = 12 ~∑

r ωr

SEMICLASSICAL MASS

Msc = Mcl + 12 ~ tr(H 1

2 [φS])

Page 10: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

RENORMALIZATION AND REGULARIZATION OF ∆M

Quantum correction to the mass:

∆M = 12 ~ tr(H 1

2 [φS])

• Hessian Operator: H[φS] = − d2

dx2 +∂2U∂φ2 [φS]

Page 11: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

RENORMALIZATION AND REGULARIZATION OF ∆M

Quantum correction to the mass:

∆M = 12 ~ tr(H 1

2 [φS])

• Hessian Operator: H[φS] = − d2

dx2 +∂2U∂φ2 [φS]

WARNING MESSAGE!!!:

The response will be∞SOLUTION:

We need a reference point

Zero-Point Renormalization

Page 12: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

RENORMALIZATION AND REGULARIZATION OF ∆M

Quantum correction to the mass:

∆M = 12 ~ tr(H 1

2 [φS])

• Hessian Operator: H[φS] = − d2

dx2 +∂2U∂φ2 [φS]

WARNING MESSAGE!!!:

The response will be∞SOLUTION:

We need a reference point

Zero-Point Renormalization

We have to measure the quantum correction with respect to the minimum energysolution φV .

Page 13: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

RENORMALIZATION AND REGULARIZATION OF ∆M

Quantum correction to the mass:

∆M = 12 ~ tr(H 1

2 [φS])− 12 ~ tr(H 1

2 [φV ])

• Hessian Operator: H[φS] = − d2

dx2 +∂2U∂φ2 [φS]

Page 14: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

RENORMALIZATION AND REGULARIZATION OF ∆M

Quantum correction to the mass:

∆M = 12 ~ tr(H 1

2 [φS])− 12 ~ tr(H 1

2 [φV ])

• Hessian Operator: H[φS] = − d2

dx2 +∂2U∂φ2 [φS]

WARNING MESSAGE!!!:

The response is∞−∞

SOLUTION:

We need a procedure

Mode NumberCut-off Regularization

Page 15: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

RENORMALIZATION AND REGULARIZATION OF ∆M

Quantum correction to the mass:

∆M = 12 ~ tr(H 1

2 [φS])− 12 ~ tr(H 1

2 [φV ])

• Hessian Operator: H[φS] = − d2

dx2 +∂2U∂φ2 [φS]

WARNING MESSAGE!!!:

The response is∞−∞

SOLUTION:

We need a procedure

Mode NumberCut-off Regularization

Page 16: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

RENORMALIZATION AND REGULARIZATION OF ∆M

Quantum correction to the mass:

∆M = 12 ~ tr(H 1

2 [φS])− 12 ~ tr(H 1

2 [φV ])|M.C.

• Hessian Operator: H[φS] = − d2

dx2 +∂2U∂φ2 [φS]

Page 17: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

RENORMALIZATION AND REGULARIZATION OF ∆M

Quantum correction to the mass:

∆M = 12 ~ tr(H 1

2 [φS])− 12 ~ tr(H 1

2 [φV ])|M.C.

• Hessian Operator: H[φS] = − d2

dx2 +∂2U∂φ2 [φS]

WARNING MESSAGE!!!:

The response is∞

SOLUTION:

The mass coupling constant

is infinite

Mass Renormalization

We have to introduce the counterterms (well stablished procedure in Physics)

Page 18: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

RENORMALIZATION AND REGULARIZATION OF ∆M

Quantum correction to the mass:

∆M = 12 ~ tr(H 1

2 [φS])− 12 ~ tr(H 1

2 [φV ])|M.C.+Ect[φS]− Ect[φV ]

Page 19: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

RENORMALIZATION AND REGULARIZATION OF ∆M

Quantum correction to the mass:

∆M = 12 ~ tr(H 1

2 [φS])− 12 ~ tr(H 1

2 [φV ])|M.C. + Ect[φS]− Ect[φV ]

• Hessian operator associated to the solution φS:

H[φS] = − d2

dx2 +∂2U∂φ2 [φS]︸ ︷︷ ︸

V[φS]≡V(x)

• Hessian operator associated to the vacuum φV :

H[φV ] = − d2

dx2 +∂2U∂φ2 [φV ]︸ ︷︷ ︸V[φV ]≡V0

• Counterterms:

Ect[φS]− Ect[φV ] = ~ δm∫

dx[∂2U∂φ2 [φS]− ∂2U

∂φ2 [φV ]]

δm =

∫dk4π

1√k2 + d2U

dφ2 [φV ]

Page 20: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Outline

1 Basic Notions

2 Application to scalar field models

3 The Asymptotic Approach

4 The Mathematica Program

Page 21: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

QUANTUM CORRECTION: MODEL φ4

• Action Functional:S =

∫dxdt

[ 12∂φ∂t

∂φ∂t −

12∂φ∂x

∂φ∂x − U(φ)

]• Potential:

U =12

(φ2 − 1)2

• Partial Diferential Equation:∂2φ

∂t2 −∂2φ

∂x2 + 2φ(φ2 − 1) = 0

Page 22: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

QUANTUM CORRECTION: MODEL φ4

• Action Functional:S =

∫dxdt

[ 12∂φ∂t

∂φ∂t −

12∂φ∂x

∂φ∂x − U(φ)

]• Potential:

U =12

(φ2 − 1)2

• Partial Diferential Equation:∂2φ

∂t2 −∂2φ

∂x2 + 2φ(φ2 − 1) = 0

SOLUTIONS:

VACUUM SOLUTION:φV = ±1

KINK SOLUTION:φK = tanh x−vt√

1−v2

Page 23: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

QUANTUM CORRECTION: MODEL φ4

• KINK ENERGY DENSITY:

ε(x) = sech4 x + x0 − vt√1− v2

• KINK CLASSICAL MASS:

Mcl =

∫ ∞−∞

dx sech4(x + x0) =43

CLASSICAL KINK

Page 24: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

QUANTUM CORRECTION: MODEL φ4

• KINK ENERGY DENSITY:

ε(x) = sech4 x + x0 − vt√1− v2

• KINK CLASSICAL MASS:

Mcl =

∫ ∞−∞

dx sech4(x + x0) =43

QUANTUM KINK

Page 25: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

QUANTUM CORRECTION: MODEL φ4

HOMOGENEOUS SOLUTION

φV = ±1

- Hessian Operator:H[φV ] = − d2

dx2 + 4Spec Hd[φV ] = 4 1

2

Spec Hc[φV ] = k2 + 4k∈R

- Spectral Density:ρv(k) = L

KINK SOLUTION:φK(x) = ± tanh x

- Hessian Operator:H[φK ] = − d2

dx2 + 4− 6 sech2xSpec Hd[φK ] = 0 ∪ 3 ∪ 4 1

2

Spec Hc[φK ] = q2 + 4q∈R

- Spectral Density:ρK(q) = L

2π + 12π

dδ(q)dq , δ(q) = −2 arctan 3q

2−q2

∆M =~m

2

(√

3 +1

∫ ∞−∞

dq√

q2 + 4dδ(q)

dq

)+ Ect[φK] − Ect[φv] + ∆R =

=

√3~m

2−

~m

∫ ∞−∞

dq3√

q2 + 4(q2 + 2)

q4 + 5q2 + 4+

3~m

∫ ∞−∞

dk√k2 + 4

+~m

4π〈V(x) − 4〉 =

=

√3 ~m

2−

~m√

3+

~m

∫ ∞−∞

dx(−6sech2x) = ~m

(1

2√

3−

3

π

)≈ −0.666255~m

Page 26: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

QUANTUM CORRECTION: MODEL φ4

HOMOGENEOUS SOLUTION

φV = ±1

- Hessian Operator:H[φV ] = − d2

dx2 + 4Spec Hd[φV ] = 4 1

2

Spec Hc[φV ] = k2 + 4k∈R

- Spectral Density:ρv(k) = L

KINK SOLUTION:φK(x) = ± tanh x

- Hessian Operator:H[φK ] = − d2

dx2 + 4− 6 sech2xSpec Hd[φK ] = 0 ∪ 3 ∪ 4 1

2

Spec Hc[φK ] = q2 + 4q∈R

- Spectral Density:ρK(q) = L

2π + 12π

dδ(q)dq , δ(q) = −2 arctan 3q

2−q2

∆M =~m

2

(√

3 +1

∫ ∞−∞

dq√

q2 + 4dδ(q)

dq

)+ Ect[φK] − Ect[φv] + ∆R =

=

√3~m

2−

~m

∫ ∞−∞

dq3√

q2 + 4(q2 + 2)

q4 + 5q2 + 4+

3~m

∫ ∞−∞

dk√k2 + 4

+~m

4π〈V(x) − 4〉 =

=

√3 ~m

2−

~m√

3+

~m

∫ ∞−∞

dx(−6sech2x) = ~m

(1

2√

3−

3

π

)≈ −0.666255~m

Page 27: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

QUANTUM CORRECTION: MODEL φ4

HOMOGENEOUS SOLUTION

φV = ±1

- Hessian Operator:H[φV ] = − d2

dx2 + 4Spec Hd[φV ] = 4 1

2

Spec Hc[φV ] = k2 + 4k∈R

- Spectral Density:ρv(k) = L

KINK SOLUTION:φK(x) = ± tanh x

- Hessian Operator:H[φK ] = − d2

dx2 + 4− 6 sech2xSpec Hd[φK ] = 0 ∪ 3 ∪ 4 1

2

Spec Hc[φK ] = q2 + 4q∈R

- Spectral Density:ρK(q) = L

2π + 12π

dδ(q)dq , δ(q) = −2 arctan 3q

2−q2

∆M =~m

2

(√

3 +1

∫ ∞−∞

dq√

q2 + 4dδ(q)

dq

)+ Ect[φK] − Ect[φv] + ∆R =

=

√3~m

2−

~m

∫ ∞−∞

dq3√

q2 + 4(q2 + 2)

q4 + 5q2 + 4+

3~m

∫ ∞−∞

dk√k2 + 4

+~m

4π〈V(x) − 4〉 =

=

√3 ~m

2−

~m√

3+

~m

∫ ∞−∞

dx(−6sech2x) = ~m

(1

2√

3−

3

π

)≈ −0.666255~m

Page 28: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

QUANTUM CORRECTION: MODEL φ4

HOMOGENEOUS SOLUTION

φV = ±1

- Hessian Operator:H[φV ] = − d2

dx2 + 4Spec Hd[φV ] = 4 1

2

Spec Hc[φV ] = k2 + 4k∈R

- Spectral Density:ρv(k) = L

KINK SOLUTION:φK(x) = ± tanh x

- Hessian Operator:H[φK ] = − d2

dx2 + 4− 6 sech2xSpec Hd[φK ] = 0 ∪ 3 ∪ 4 1

2

Spec Hc[φK ] = q2 + 4q∈R

- Spectral Density:ρK(q) = L

2π + 12π

dδ(q)dq , δ(q) = −2 arctan 3q

2−q2

∆M =~m

2

(√

3 +1

∫ ∞−∞

dq√

q2 + 4dδ(q)

dq

)+ Ect[φK] − Ect[φv] + ∆R =

=

√3~m

2−

~m

∫ ∞−∞

dq3√

q2 + 4(q2 + 2)

q4 + 5q2 + 4+

3~m

∫ ∞−∞

dk√k2 + 4

+~m

4π〈V(x) − 4〉 =

=

√3 ~m

2−

~m√

3+

~m

∫ ∞−∞

dx(−6sech2x) = ~m

(1

2√

3−

3

π

)≈ −0.666255~m

• R. Dashen, B. Hasslacher, A. Neveu, Phys. Rev. D 10 (1974) 4130

Page 29: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

QUANTUM CORRECTION: MODEL sinh4 φ

• Action Functional:S =

∫dxdt

[ 12∂φ∂t

∂φ∂t −

12∂φ∂x

∂φ∂x − U(φ)

]• Potential:

U =14

(sinh2 φ− 1)2

• Partial Diferential Equation:∂2φ∂t2 −

∂2φ∂x2 + 1

2 sinh(2φ)(sinh2 φ− 1) = 0

Page 30: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

QUANTUM CORRECTION: MODEL sinh4 φ

• Action Functional:S =

∫dxdt

[ 12∂φ∂t

∂φ∂t −

12∂φ∂x

∂φ∂x − U(φ)

]• Potential:

U =14

(sinh2 φ− 1)2

• Partial Diferential Equation:∂2φ∂t2 −

∂2φ∂x2 + 1

2 sinh(2φ)(sinh2 φ− 1) = 0

SOLUTIONS:VACUUM SOLUTION:φV = ±arcsinh 1

Hessian OperatorH[φV ]:

H[φV ] = − d2

dx2 + 4

KINK SOLUTION:φK = arctanh[ 1√

2tanh x−vt√

1−v2]

Hessian OperatorH[φK ]:

H[φK ] = − d2

dx2 +2sech2x(9 + sech2x)

(1 + sech2x)2

Page 31: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

QUANTUM CORRECTION: MODEL sinh4 φ

• Action Functional:S =

∫dxdt

[ 12∂φ∂t

∂φ∂t −

12∂φ∂x

∂φ∂x − U(φ)

]• Potential:

U =14

(sinh2 φ− 1)2

• Partial Diferential Equation:∂2φ∂t2 −

∂2φ∂x2 + 1

2 sinh(2φ)(sinh2 φ− 1) = 0

SOLUTIONS:VACUUM SOLUTION:φV = ±arcsinh 1

Hessian OperatorH[φV ]:

H[φV ] = − d2

dx2 + 4

KINK SOLUTION:φK = arctanh[ 1√

2tanh x−vt√

1−v2]

Hessian OperatorH[φK ]:

H[φK ] = − d2

dx2 +2sech2x(9 + sech2x)

(1 + sech2x)2

UNKOWN SPECTRUM: ∆M NO COMPUTABLE

Page 32: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

QUANTUM CORRECTION: MODELS

Question:Which (1+1) scalar field models we can generalize the Dashen - Hasslacher -Neveau computation to in order to compute the quantum correction ∆M to thekink mass?

Answer:List of the scalar field models with computed ∆M:

1 Model φ4 and the kink.

2 Model sine-Gordon and the soliton.

Conclusion:Dashen, Hasslacher and Neveu are lucky guys.

Page 33: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

QUANTUM CORRECTION: MODELS

Question:Which (1+1) scalar field models we can generalize the Dashen - Hasslacher -Neveau computation to in order to compute the quantum correction ∆M to thekink mass?

Answer:List of the scalar field models with computed ∆M:

1 Model φ4 and the kink.

2 Model sine-Gordon and the soliton.

Conclusion:Dashen, Hasslacher and Neveu are lucky guys.

Page 34: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

QUANTUM CORRECTION: MODELS

Question:Which (1+1) scalar field models we can generalize the Dashen - Hasslacher -Neveau computation to in order to compute the quantum correction ∆M to thekink mass?

Answer:List of the scalar field models with computed ∆M:

1 Model φ4 and the kink.

2 Model sine-Gordon and the soliton.

Conclusion:Dashen, Hasslacher and Neveu are lucky guys.

Page 35: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

QUANTUM CORRECTION: MODELS

Task:Approach a procedure to compute approximately the semiclassical mass of akink in a (1+1) dimensional scalar field model.

Clue:We will estimate the trace of the differential operator without the knowledge ofthe exact spectrum.

Page 36: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Outline

1 Basic Notions

2 Application to scalar field models

3 The Asymptotic Approach

4 The Mathematica Program

Page 37: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Quantum correction: Asymptotic approach

Quantum Correction

∆M = 12 ~[tr (H(φK))

12 − tr (H(φV))

12

]+ Ect(φK)− Ect(φV)

Generalized Zeta Function: Heat Function

ζH(s) = TrH−s =

∞∑n=0

(ω2n)−s hH(β) = Tr e−βH =

∞∑n=0

e−βω2n

Mellin Transform

ζH(s) =1

Γ(s)

∫ ∞0

dβ βs−1 hH(β)

Quantum Correction

∆M =~2

lims→− 1

2

1Γ(s)

∫ ∞0

dβ βs−1[h∗H[φK ](β)− h∗H[φV ](β)] + lims→ 1

2

Ect[ζH[φV ](s)] + ∆R

Page 38: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Quantum correction: Asymptotic approach

Quantum Correction

∆M = 12 ~[tr (H(φK))

12 − tr (H(φV))

12

]+ Ect(φK)− Ect(φV)

Generalized Zeta Function: Heat Function

ζH(s) = TrH−s =

∞∑n=0

(ω2n)−s hH(β) = Tr e−βH =

∞∑n=0

e−βω2n

Mellin Transform

ζH(s) =1

Γ(s)

∫ ∞0

dβ βs−1 hH(β)

Quantum Correction

∆M =~2

lims→− 1

2

1Γ(s)

∫ ∞0

dβ βs−1[h∗H[φK ](β)− h∗H[φV ](β)] + lims→ 1

2

Ect[ζH[φV ](s)] + ∆R

Page 39: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Quantum correction: Asymptotic approach

• Heat function: hH(β) = tr(e−βH) =

∫Ω

dx KH( x , x , β)︸ ︷︷ ︸Trace of a HEAT KERNEL

H

KH( x , y ;β) = 〈x| e−βH |y〉 =

∫dkξk(y)∗ξk(x)e−βω

2k

verifies the PDE[∂∂β− ∂2

∂x2 + V(x)]

KH(x, y;β) = 0; KH(x, y; 0) = δ(x− y)

Plugging the Series Expansion into the PDE:

KH[φK ](x, y;β) = KH[φV ](x, y;β)

∞∑n=0

an(x, y)βn a0(x, y) = 1

provides us with the Recurrence Relation in x− y variables:

(n + 1) an+1(x, y) + (x− y)∂an+1(x, y)

∂x+ (V(x)− V0)an(x, y) =

∂2an(x, y)

∂x2

Page 40: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Quantum correction: Asymptotic approach

• Heat function: hH(β) = tr(e−βH) =

∫Ω

dx KH( x , x , β)︸ ︷︷ ︸Trace of a HEAT KERNEL

H

KH( x , y ;β) = 〈x| e−βH |y〉 =

∫dkξk(y)∗ξk(x)e−βω

2k

verifies the PDE[∂∂β− ∂2

∂x2 + V(x)]

KH(x, y;β) = 0; KH(x, y; 0) = δ(x− y)

Plugging the Series Expansion into the PDE:

KH[φK ](x, y;β) = KH[φV ](x, y;β)

∞∑n=0

an(x, y)βn a0(x, y) = 1

provides us with the Recurrence Relation in x− y variables:

(n + 1) an+1(x, y) + (x− y)∂an+1(x, y)

∂x+ (V(x)− V0)an(x, y) =

∂2an(x, y)

∂x2

Page 41: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Quantum correction: Asymptotic approach

• Heat function: hH(β) = tr(e−βH) =

∫Ω

dx KH( x , x , β)︸ ︷︷ ︸Trace of a HEAT KERNEL

H

KH( x , y ;β) = 〈x| e−βH |y〉 =

∫dkξk(y)∗ξk(x)e−βω

2k

verifies the PDE[∂∂β− ∂2

∂x2 + V(x)]

KH(x, y;β) = 0; KH(x, y; 0) = δ(x− y)

Plugging the Series Expansion into the PDE:

KH[φK ](x, y;β) = KH[φV ](x, y;β)

∞∑n=0

an(x, y)βn a0(x, y) = 1

provides us with the Recurrence Relation in x− y variables:

(n + 1) an+1(x, y) + (x− y)∂an+1(x, y)

∂x+ (V(x)− V0)an(x, y) =

∂2an(x, y)

∂x2

Page 42: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Quantum correction: Asymptotic approach

• Heat function: hH(β) = tr(e−βH) =

∫Ω

dx KH( x , x , β)︸ ︷︷ ︸Trace of a HEAT KERNEL

H

KH( x , y ;β) = 〈x| e−βH |y〉 =

∫dkξk(y)∗ξk(x)e−βω

2k

verifies the PDE[∂∂β− ∂2

∂x2 + V(x)]

KH(x, y;β) = 0; KH(x, y; 0) = δ(x− y)

Plugging the Series Expansion into the PDE:

KH[φK ](x, y;β) = KH[φV ](x, y;β)

∞∑n=0

an(x, y)βn a0(x, y) = 1

provides us with the Recurrence Relation in x− y variables:

(n + 1) an+1(x, y) + (x− y)∂an+1(x, y)

∂x+ (V(x)− V0)an(x, y) =

∂2an(x, y)

∂x2

We have to take the limit y→ x

Page 43: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Quantum correction: Asymptotic approach

• Recurrence Relations:

(n + 1) an+1(x, y) + (x− y)∂an+1(x, y)

∂x+ (V(x)− V0)an(x, y) =

∂2an(x, y)

∂x2

y→ x (Delicated limit) (k)An(x) = limy→x

∂kan(x, y)

∂xk

(0)An(x) = an(x, x) (k)A0(x) = δk0

(k)An(x) =1

n + k

[(k+2)An−1(x)−

k∑j=0

(kj

)∂ j(V − V0)

∂xj(k−j)An−1(x)

]

• Coefficients of the recurrence relationships:(0)A5(x)(0)A4(x) (1)A4(x) (2)A4(x)(0)A3(x) (1)A3(x) (2)A3(x) (3)A3(x) (4)A3(x)(0)A2(x) (1)A2(x) (2)A2(x) (3)A2(x) (4)A2(x) (5)A2(x) (6)A2(x)(0)A1(x) (1)A1(x) (2)A1(x) (3)A1(x) (4)A1(x) (5)A1(x) (6)A1(x) (7)A1(x) (8)A1(x)(0)A0(x) (1)A0(x) (2)A0(x) (3)A0(x) (4)A0(x) (5)A0(x) (6)A0(x) (7)A0(x) (8)A0(x) (9)A0(x) (10)A0(x)

Page 44: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Quantum correction: Asymptotic approach

• Recurrence Relations:

(n + 1) an+1(x, y) + (x− y)∂an+1(x, y)

∂x+ (V(x)− V0)an(x, y) =

∂2an(x, y)

∂x2

y→ x (Delicated limit) (k)An(x) = limy→x

∂kan(x, y)

∂xk

(0)An(x) = an(x, x) (k)A0(x) = δk0

(k)An(x) =1

n + k

[(k+2)An−1(x)−

k∑j=0

(kj

)∂ j(V − V0)

∂xj(k−j)An−1(x)

]

• Coefficients of the recurrence relationships:(0)A5(x)(0)A4(x) (1)A4(x) (2)A4(x)(0)A3(x) (1)A3(x) (2)A3(x) (3)A3(x) (4)A3(x)(0)A2(x) (1)A2(x) (2)A2(x) (3)A2(x) (4)A2(x) (5)A2(x) (6)A2(x)(0)A1(x) (1)A1(x) (2)A1(x) (3)A1(x) (4)A1(x) (5)A1(x) (6)A1(x) (7)A1(x) (8)A1(x)(0)A0(x) (1)A0(x) (2)A0(x) (3)A0(x) (4)A0(x) (5)A0(x) (6)A0(x) (7)A0(x) (8)A0(x) (9)A0(x) (10)A0(x)

Page 45: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Quantum correction: Asymptotic approach

• Recurrence Relations:

(n + 1) an+1(x, y) + (x− y)∂an+1(x, y)

∂x+ (V(x)− V0)an(x, y) =

∂2an(x, y)

∂x2

y→ x (Delicated limit) (k)An(x) = limy→x

∂kan(x, y)

∂xk

(0)An(x) = an(x, x) (k)A0(x) = δk0

(k)An(x) =1

n + k

[(k+2)An−1(x)−

k∑j=0

(kj

)∂ j(V − V0)

∂xj(k−j)An−1(x)

]

• Coefficients of the recurrence relationships:(0)A5(x)(0)A4(x) (1)A4(x) (2)A4(x)(0)A3(x) (1)A3(x) (2)A3(x) (3)A3(x) (4)A3(x)(0)A2(x) (1)A2(x) (2)A2(x) (3)A2(x) (4)A2(x) (5)A2(x) (6)A2(x)(0)A1(x) (1)A1(x) (2)A1(x) (3)A1(x) (4)A1(x) (5)A1(x) (6)A1(x) (7)A1(x) (8)A1(x)(0)A0(x) (1)A0(x) (2)A0(x) (3)A0(x) (4)A0(x) (5)A0(x) (6)A0(x) (7)A0(x) (8)A0(x) (9)A0(x) (10)A0(x)

Page 46: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Quantum correction: Asymptotic approach

• Recurrence Relations:

(n + 1) an+1(x, y) + (x− y)∂an+1(x, y)

∂x+ (V(x)− V0)an(x, y) =

∂2an(x, y)

∂x2

y→ x (Delicated limit) (k)An(x) = limy→x

∂kan(x, y)

∂xk

(0)An(x) = an(x, x) (k)A0(x) = δk0

(k)An(x) =1

n + k

[(k+2)An−1(x)−

k∑j=0

(kj

)∂ j(V − V0)

∂xj(k−j)An−1(x)

]

• Coefficients of the recurrence relationships:(0)A5(x)(0)A4(x) (1)A4(x) (2)A4(x)(0)A3(x) (1)A3(x) (2)A3(x) (3)A3(x) (4)A3(x)(0)A2(x) (1)A2(x) (2)A2(x) (3)A2(x) (4)A2(x) (5)A2(x) (6)A2(x)(0)A1(x) (1)A1(x) (2)A1(x) (3)A1(x) (4)A1(x) (5)A1(x) (6)A1(x) (7)A1(x) (8)A1(x)(0)A0(x) (1)A0(x) (2)A0(x) (3)A0(x) (4)A0(x) (5)A0(x) (6)A0(x) (7)A0(x) (8)A0(x) (9)A0(x) (10)A0(x)

Page 47: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Quantum correction: Asymptotic approach

• OUTLINE:

∆M~

= − 12√π− 1

N∑n=2

cn · (V0)−n+1 · γ[n− 1,V0]

↓cn =

∫ ∞−∞

an(x, x) dx

↓an(x, x) = (0)An(x)

↓(k)An(x) =

1n + k

[(k+2)An−1(x)−

k∑j=0

(kj

)∂ j(V − V0)

∂xj(k−j)An−1(x)

]

Page 48: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Quantum correction: Asymptotic approach

• OUTLINE:

∆M~

= − 12√π− 1

N∑n=2

cn · (V0)−n+1 · γ[n− 1,V0]

↓cn =

∫ ∞−∞

an(x, x) dx

↓an(x, x) = (0)An(x)

↓(k)An(x) =

1n + k

[(k+2)An−1(x)−

k∑j=0

(kj

)∂ j(V − V0)

∂xj(k−j)An−1(x)

]

Page 49: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Quantum correction: Asymptotic approach

• OUTLINE:

∆M~

= − 12√π− 1

N∑n=2

cn · (V0)−n+1 · γ[n− 1,V0]

↓cn =

∫ ∞−∞

an(x, x) dx

↓an(x, x) = (0)An(x)

↓(k)An(x) =

1n + k

[(k+2)An−1(x)−

k∑j=0

(kj

)∂ j(V − V0)

∂xj(k−j)An−1(x)

]

Page 50: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Quantum correction: Asymptotic approach

• OUTLINE:

∆M~

= − 12√π− 1

N∑n=2

cn · (V0)−n+1 · γ[n− 1,V0]

↓cn =

∫ ∞−∞

an(x, x) dx

↓an(x, x) = (0)An(x)

↓(k)An(x) =

1n + k

[(k+2)An−1(x)−

k∑j=0

(kj

)∂ j(V − V0)

∂xj(k−j)An−1(x)

]

Page 51: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Outline

1 Basic Notions

2 Application to scalar field models

3 The Asymptotic Approach

4 The Mathematica Program

Page 52: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Constructing an algorithm

Page 53: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Constructing an algorithm

Go to the Mathematica Program

Page 54: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Testing the algorithm

Exact quantum correction to the kink mass∆M = −0.666255~m

Estimated quantum correction to the kink mass∆M = −0.666619~m

Relative Error: 0.07%

Virtue of the ApproachApplicable to every model

Page 55: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Testing the algorithm

Exact quantum correction to the kink mass∆M = −0.666255~m

Estimated quantum correction to the kink mass∆M = −0.666619~m

Relative Error: 0.07%

Virtue of the ApproachApplicable to every model

Page 56: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Testing the algorithm

Exact quantum correction to the kink mass∆M = −0.666255~m

Estimated quantum correction to the kink mass∆M = −0.666619~m

Relative Error: 0.07%

Virtue of the ApproachApplicable to every model

Page 57: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

Testing the algorithm

Exact quantum correction to the kink mass∆M = −0.666255~m

Estimated quantum correction to the kink mass∆M = −0.666619~m

Relative Error: 0.07%

Virtue of the ApproachApplicable to every model

Page 58: Mathematica and Quantum Corrections to Kink Massescampus.usal.es/~mpg/General/Zaragoza10Definitivo.pdfMathematica and Quantum Corrections to kink Masses A. Alonso M. González J. Mateos

Mathematica andQuantum

Corrections to kinkMasses

A. AlonsoM. González

J. Mateos

Basic Notions

Application toscalar field models

The AsymptoticApproach

The MathematicaProgram

End of the talk