mathBook

29
Тухайн Дифференциал Тэгшитгэл Үүеэ Отгонбаяр

description

Math book

Transcript of mathBook

  • 1. 1 1. 1 2. 4 3. 8 4. 11 5. 15

    2. 19 1. 19 2. 21

    23

    25

    iii

  • 1

    1.

    Nakhl H. Asmar- Partial Differential Equations with Fourier Seriesand Boundary Value problems ( , Pearson Prentice Hall 2005,2000) . .

    . .

    , ;

    f(x), f(x, y, z), u(x, t)

    . .

    ;

    limn fn(x),

    n=1

    un(x, t)

    . /pointwise /uniform

    . L2-

    . ;

    ,

    ex, sinx, cosx

    A.4, A.5 .

    ( ) ,

    1

  • 2 1

    u(x) + p(x)u(x) = g(x)

    ; (, )

    u(x) + pu(x) + qu(x) = 0 .

    A.1, A.2 .

    . 2-

    a0 +n=1

    (an cos(nx) + bn sin(nx))

    . , . , .

    ( ), , .

    : u(x, t) . ux(x, t) = t- x- ut (x, t) = x- t- .

    1.1.

    u(x, t) := x2 + sin(t)x

    u

    x(x, t) = 2x+ sin(t)

    u

    t(x, t) = cos(t)x.

    .

    1.2. (1) f = f(x), g = g(s)

    f(s) := f(g(s))

    df

    ds(s) =

    df

    dx(g(s)) dg

    ds(s).

  • 1 3

    (2) f = f(x), g = g(s, t)

    f(s) := f(g(s, t))

    f

    s(s) =

    df

    dx(g(s)) g

    s(s).

    (3)

    u = u(,), = (x, t), = (x, t)

    u(x, t) := u((x, t),(x, t))

    u

    x=

    u

    x

    +u

    x

    u

    t=

    u

    t

    +u

    t

    .

    - : u = u(x, t)u

    x+

    u

    t= 0. (1.1)

    ?(1) :

    u(x, t) := x t.

    u

    x= 1,

    u

    t= 1

    u

    x+

    u

    t= 0.

    (2) , f -

    u(x, t) := f(x t) (1.2) :

    u

    x= f ,

    u

    t= f .

    (t s)3, e(ts)2 , sin(t s) + 3

    .

  • 4 1

    : , C- y(t) := C eat y = ay C = y(0).

    u(x, 0) = (1.3)

    /initial value condition .- /initialvalue problem .

    (1.1) , f u = f(x t) .

    2.

    (1.1) .

    u(x, t) = v(,), (x, t) = ax+ bt, (x, t) = cx+ dt

    ( adbc = 0 ).

    u

    x= a

    v

    + c

    v

    u

    t= b

    v

    + d

    v

    u

    x+

    u

    t= (a+ b)

    v

    + (c+ d)

    v

    .

    a = 1, b = 0, c = 1, d = 1

    v

    (,) = 0

    . , - C =C()-

    v(,) = C() . (x, t) = x t

    u(x, t) = v(,) = C() = C(x t) (1.2) .

    1.3. - - . .

    1.4. (1.1) /transport equation . advection equation .

    u

    x+ (x, t)

    u

    t= k(x, t)

  • 2 5

    . 1.1- The method of characteristic curves 1.2.27- .

    . .

    :

    1.5. c > 0 . : u = u(x, t)

    2u

    t2 c2

    2u

    x2= 0

    : u = u(x, t)

    u

    t c2

    2u

    x2= 0

    : u = u(x, y)

    2u

    x2+ c2

    2u

    y2= 0.

    , ,

    2 c22 = a c22 = a2 + c22 = a

    , , . .

    :

    2u

    t2 c2

    2u

    x2= 0. (1.4)

    x [0, L] , t R- u(0, t) = 0 = u(L, t) (1.5)

    . L . . /boundary condition .

    : :

    u

    t cu

    x= 0

  • 6 1

    . , F ,G 2

    u(x, t) = F (x+ ct) +G(x ct) . .

    : . . .

    . . .

    c = 1, L =

    . 2u

    t2

    2u

    x2= 0

    u(0, t) = 0 = u(, t)

    . 1:

    u(x, t) := sin(x) cos(t).

    2u

    t2= u =

    2u

    x2

    2u

    t2

    2u

    x2u = 0.

    ut(x, t) :=

    u

    t(x, t) = sin(x) sin(t)

    Iu(x, 0) = sin(x)ut(x, 0) = 0

    . Iu(x, 0) = 0ut(x, 0) = sin(x)

    u(x, t) := sin(x) sin(t)

    1 .

  • 2 7

    . , ,Iu(x, 0) = 12 sin(x)ut(x, 0) = 3 sin(x)

    u(x, t) :=12sin(x) cos(t) + 3 sin(x) sin(t)

    . ( .) , I

    u(x, 0) = f(x)ut(x, 0) = g(x)

    Iu(x, 0) = f(x)ut(x, 0) = 0

    Iu(x, 0) = 0ut(x, 0) = g(x)

    . .

    c, L- , :

    u(x, t) := sin3

    Lx4cos

    3c

    Lt4.

    /principal solution . : c = 1, L =

    u2(x, t) := sin(2x) cos(2t)...

    un(x, t) := sin(nx) cos(nt) .

    2unt2

    = n2u = 2u

    x2

    . u(0, t) = 0 = u(, t) . I

    un(x, 0) = sin(nx)unt (x, 0) = 0

    . c, L-

    un(x, t) := sin3n

    Lx4cos

    3cn

    Lt4

    . /normal mode .,

    u(x, t) :=Nn=1

    bn sin3n

    Lx4cos

    3cn

    Lt4

  • 8 1

    . /superposition . :

    u(x, 0) =Nn=1

    bn sin3n

    Lx4

    ut(x, 0) = 0

    .

    ut(x, t) =Nn=1

    3cn

    L

    4bn sin

    3n

    Lx4sin3cn

    Lt4

    .

    3.

    u(x, 0) = f(x)

    f(x) =Nn=1

    bn sin3n

    Lx4

    u(x, t) =Nn=1

    bn sin3n

    Lx4cos

    3cn

    Lt4

    .

    f(x) =n=1

    bn sin3n

    Lx4

    u(x, t) =n=1

    bn sin3n

    Lx4cos

    3cn

    Lt4

    , ? ? .

    , . o . . 3.5 . ,

    u

    t c2

    2u

    x2= 0

    u(0, t) = 0 = u(L, t)u(x, 0) = f(x)

    . L , 0 , x f(x) .

  • 3 9

    u1(x, t) := sin3

    Lx4ec

    2( L)2t

    ...

    un(x, t) := sin3n

    Lx4ec

    2(nL )2t

    u(x, t) :=n=1

    bn sin3n

    Lx4ec

    2(nL )2t

    u(x, 0) :=n=1

    bn sin3n

    Lx4

    . , f(x)-

    f(x) =n=1

    bn sin3n

    Lx4

    (1.6)

    . f - , , ? . (1.6) , . , .

    2.1 .

    1.6. f : R R x R-

    f(x+ T ) = f(x) f - T - .

    T - [0, T ) ( a R- [a, a+ T ) (a, a+ T ]) .

    1.7. f(x) = x (L,L] 2L :f(x) = x 2kL, x ((2k 1)L, (2k + 1)L], k Z.

    . . . ,L,L, 3L, . . . . .

    1.8. 18- /saw-tooth : 2- [0, 2)

    f(x) :=12( x), x [0, 2)

  • 10 1

    o.

    .

    1.9. f : [a, b] R x- f(x) := lim

    0,>0 f(x ), f(x+) := lim0,>0 f(x+ )

    x- . f(x) f - x . x a b f(a+) f(b)- .

    1.10. f : [a, b] R f - /piecewise contin-uous .

    , [a, b]

    a = t0 < t1 < < tm < tm+1 = b f (ti, ti+1) f(ti), f(ti+) f - ( a, b f(a+), f(b)- ). .

    C0 = C1 = , ,

    . C1 /smooth C .

    .

    1.11. f : [a, b] R f f 2 f - C1 . f : R R C1 f - C1 .

    1.12. (1.7, 1.8) C1 .

    1.13. f(x) = x2 [1, 1] 2- . f C1.

    2 f f - .

  • 4 11

    4.

    , 3, . .

    . .

    1.14. f : R R T - , a R- T

    0f(x)dx =

    a+Ta

    f(x)

    . . f =

    f(x) T g(x) := f(px), p = 0 T/p . sin(x), cos(x) 2, sin(nx), cos(nx) 2/n . n , sin(nx), cos(nx) 2 .

    1.15. n,m . cos(nx)dx =

    I2, n = 0,0, n = 0

    sin(nx)dx = 0, n

    . ,

    cos(nx) cos(mx)dx =

    2, n = m = 0,, n = m = 0,0, n = m

    sin(nx) cos(mx)dx = 0, n, m

    sin(nx) sin(mx)dx =

    I, n = m,0, n = m

    .

    . :

    1dx = 2,

    3 .

  • 12 1 cos(nx)dx =

    1n(sin(n) sin(n)) = 0, n = 0,

    sin(nx)dx =

    0(sin(nx) + sin(nx))dx = 0.

    :

    cos(x) cos(y) =12(cos(x y) + cos(x+ y))

    sin(x) cos(y) =12(sin(x y) + sin(x+ y))

    sin(x) sin(y) =12(cos(x y) cos(x+ y)).

    1.16. m = 0 .

    1.17. [0, 2] .

    2 f : R R

    f(x) = a0 +n=1

    (an cos(nx) + bn sin(nx))

    f(x)dx =

    a0dx+n=1

    (an cos(nx)dx+ bn

    sin(nx)dx)

    = 2a0

    . ,m = 0 ,

    f(x) cos(mx)dx =

    a0 cos(mx)dx+n=1

    (an cos(nx) cos(mx)dx

    + bn sin(nx) cos(mx)dx)

    = am,

    f(x) sin(mx)dx =

    a0 sin(mx)dx+n=1

    (an cos(nx) sin(mx)dx

    + bn sin(nx) sin(mx)dx)

    = bm

    ( ). .

  • 4 13

    1.18. f : R R 2-

    a0 :=12

    f(x)dx

    an :=1

    f(x) cos(nx)dx

    bn :=1

    f(x) sin(nx)dx

    .

    a0 +n=1

    (an cos(nx) + bn sin(nx))

    - f -

    sN = sN (f) := a0 +Nn=1

    (an cos(nx) + bn sin(nx))

    .

    . , , .

    1.19. f [,] e . ,

    f(x) cos(nx), f(x) sin(nx)

    .4 .

    1.20. [0, 2] .

    1.21. (1.8): 2-

    f(x) :=12( x), x [0, 2).

    , f [,] ( 1.29- )

    a0 =12

    f(x)dx = 0

    an =1

    f(x) cos(nx)dx = 0

    4 - f f2 , f L2[,], .

  • 14 1

    bn =1

    20

    12( x) sin(nx)dx

    =12

    20

    (x) sin(nx)dx

    =12

    20

    1nxd cos(nx)

    =12

    3 1nx cos(nx)

    ----20 20

    1ncos(nx)dx

    4=

    1n

    . f - n=1

    1nsin(nx)

    . ? , , Ix (0, 2) f(x)-x = 0 0-

    .

    . 2.8 .5

    T 1.22. f : R R 2- C1 . x R-

    a0 +n=1

    (an cos(nx) + bn sin(nx)) =12(f(x) + f(x+))

    . f x f(x) = f(x) = f(x+)

    a0 +n=1

    (an cos(nx) + bn sin(nx)) = f(x)

    .

    1.23. f C1 f - .

    5 Asmar- .

  • 5 15

    5.

    2- C1 f : R R 1.22- f - f - . .

    T 1.24. f : R R 2- C1 . f - f - .

    2.9 .

    1.25. C1 . , . .

    http://www.sosmath.com/fourier/fourier3/gibbs.html

    f(x) :=I1, x [, 0)1, x [0,)

    4

    3sin(x) +

    13sin(3x) +

    15sin(5x) + . . .

    4 0

    s2n13

    2n

    4 2

    0

    sin(x)x

    dx 1.18, n

    .

    1.26. :

    g(x) :=I + x, x [, 0] x, x [0,]

    C1 .

    2+

    4

    3cos(x) +

    132cos(3x) +

    152cos(5x) + . . .

    4 . x- ----cos(2n 1)x(2n 1)2

    ---- 1(2n 1)2 , n 1

    n=1

    1(2n 1)2

  • 16 1

    1.27. 2- . ,x = 0

    =

    2+

    4

    n=1

    1(2n 1)2

    2

    8=

    n=1

    1(2n 1)2

    . ,n=1

    1n2

    =n=1

    1(2n 1)2 +

    n=1

    1(2n)2

    =n=1

    1(2n 1)2 +

    14

    n=1

    1n2

    2

    6=

    n=1

    1n2

    .

    1.28. (1.8, 1.26)

    f(x) +12g(x) =

    I x, x [0,)0, x [, 2)

    .

    4+

    n=1

    31 (1)nn2

    cos(nx) +1nsin(nx)

    4 .

    . .

    1.29. f : R R x- f(x) = f(x) , x- f(x) = f(x) .

    1.30. |x|, x2, cos(nx) , x, x3, sin(nx) .f p

    pf(x)dx =

    p0f(x) + f(x)dx = 0

    . 1.21- .

    .

  • 5 17

    1.31. f

    f :=12(f(x) + f(x+))

    .

    , f f - . 1.22-oo f - f - .

    1.32. f : R R 2 C1 f -

    f(x) = a0 +n=1

    (an cos(nx) + bn sin(nx))

    . (i) f n- bn = 0,(ii) f n- an = 0.

    . f - f - .

    1.33.

    a0 +n=1

    an cos(nx)

    ,n=1

    bn sin(nx)

    .

    1.34. A.2(1, 5, 9, 62), 1.1(2a, 3a, 4), 1.2(1, 2, 3, 4, 16, 18, 25), 2.1(3,4, 5, 27), 2.2(2, 4, 6a, 7a, 20a).6

    6 . .

  • 2

    1.

    1.32- .

    2.1. ( 1.8)

    n=1

    sin(nx)n

    .

    2.2. ( 1.26)

    2+

    4

    n=1

    cos((2n 1)x)(2n 1)2 .

    [0,] [,]- .

    2.3. f : [0,] R- (,]-.f(x) := f(|x|)

    f(x) :=

    f(x), x (, 0)f(x), x (0,)0, x = 0,

    2- R- . f , f . f(x) =

    x, x [0,] , .

    f

    a0 =12

    f(x)dx

    =1

    0f(x)dx

    an =1

    f(x) cos(nx)dx

    =2

    0f(x) cos(nx)dx

    19

  • 20 2

    bn =1

    f(x) sin(nx)dx

    =2

    0f(x) sin(nx)dx

    .

    a0 +n=1

    an cos(nx)

    f - ,n=1

    bn sin(nx)

    f - .

    2.4. f C1 f C1 f - f - . f(0) = f() = 0 , f .

    O 2- . f 2p, p > 0 .

    g(x) := f3p

    x4

    g 2 :

    g(x+ 2) = f3p

    (x+ 2)

    4= f

    3p

    x+ 2p

    4= f

    3p

    x4= g(x).

    f(x) = g1px2 g- f -

    . f C1 g

    f(x) = g3

    px4= a0 +

    n=1

    3an cos

    3

    pnx4+ bn sin

    3

    pnx44

    .

    a0 =12

    g(x)dx

    =12

    f3p

    x4dx

    =12p

    pp

    f(x)dx

    an =1p

    pp

    f(x) cos3

    pnx4dx

    bn =1p

    pp

    f(x) sin3

    pnx4dx

  • 2 21

    . , . 2 2p .

    1, cos3

    px4, cos

    3

    p2x4, . . . , sin

    3

    px4, . . .

    ppcos

    3

    px42

    dx = p

    .

    2.5. p = 2 . f : [0,] R

    a0 +n=1

    (an cos(2nx) + bn sin(2nx))

    : - .

    f(x) = sin(x) [0,] . sin(x) sin(x) . sin(x)- -

    n=0

    an cos(2nx)

    . , f(x) = x cos(x), x [/2,/2]

    n=1

    bn sin(2nx)

    .

    2.6. h(x) = 1x2, x [1, 1]2- . , C1

    h(x) =23 4

    2

    n=1

    (1)nn2

    cos(nx)

    .

    2.

    2.5 .

    a0 +n=1

    (an cos(nx) + bn sin(nx))

  • 22 2

    N

    sN := a0 +Nn=1

    (an cos(nx) + bn sin(nx))

    . . L2- .

    2.7. {fn}n=1 f [a, b] . N b

    a|fN (x) f(x)|2dx 0

    fn- f - L2- .1

    2.8. f .

    EN :=12

    |f(x) sN (x)|2dx . EN - f - N .

    .

    T 2.9. f : R R 2 , . N EN 0, f - f -L2-.

    2.10. f C1 f - L2-. . f - .2

    .

    T 2.11. f .

    EN =12

    f(x)2dx a20 12

    n=1

    (a2n + b2n)

    .

    1 fn f L2- .2 f L2[,]

    .

  • [Asm05] Nakhl H. Asmar, Partial differential equations with fourier series and boundary valueproblems, 2 ed., Pearson Prentice Hall, 2005.

    23

  • C0, 10C1, 10C, 10

    equationadvection, 4transport, 4

    normal mode, 7

    principal solution, 7

    superposition, 8

    , 15, 2, 1 , 4 , 4 , 7 , 7 , 5 , 4 , 3 , 17, 20

    , 17, 20, 8, 9 , 2 , 2, 5, 5, 5, 8, 4

    , 15, 11, 16 , 10, 16

    , 10 C1, 10 , 9

    , 10

    , 9

    25