MATH 104/184 F E R SESSION

14
MATH 104/184 FINAL EXAM REVIEW SESSION BY RAYMOND SITU

Transcript of MATH 104/184 F E R SESSION

Page 1: MATH 104/184 F E R SESSION

MATH104/184FINALEXAMREVIEWSESSION

BYRAYMONDSITU

Page 2: MATH 104/184 F E R SESSION

TABLEOFCONTENT

I. Relatedratesin3dimensionsII. OptimizationIII. LocallinearapproximationIV. TaylorpolynomialsV. CurvesketchingVI. Somefunlimits

Page 3: MATH 104/184 F E R SESSION

RELATEDRATESAplaneistakingofftherunwayataspeedof300km/hdueNorth.Theangleofelevationis30degrees.Acaristravellingdueeastat150km/honastraight,level,road.Howfastisthedistancebetweentheplaneandthecarincreasingwhentheplanehasreachedanaltitudeof3km,assumingtheybothstartedfromthesamepointandreachedtheirrespectivevelocitiesinstantly.(redisplane,greeniscar,blueisdistances).IheardtherewasafunrelatedratesonthemidterminvolvingtrianglessoImadethisquestionswithlotsoftriangles.

Fig1

Fig2 Fig3

Page 4: MATH 104/184 F E R SESSION

Wewanttofindtherateofchangeofdistance.Aswecanseeinfig2andfig3,distanceisthehypotenuseofgrounddistanceandheightdistance.Togetanequationfordistanceweneedanequationforheightdistanceandgrounddistance.Lookingatfig1,grounddistanceisthehypotenuseofthehorizontaldistancetravelledbythecarandtheplane.Tofindthehorizontaldistancetravelledbytheplanewecanusetrig.Tofindhorizontaldistancetravelledbythecaritisthevelocityofthecarmultipliedbytime(thecaronlyhasvelocityin1direction).Whentheplaneisatanaltitudeof3kmhowmanysecondshaspassed?Tofindthatoutweneedtofindouthowlongittakestheplanetoreach3kmaltitude.

1. sin '(= *++*,-./

01+*./23,/= 4

+562/.768/59-,.62:/

;<= 4

+562/.768/59-,.62:/

π‘π‘™π‘Žπ‘›π‘’π‘‘π‘Ÿπ‘Žπ‘£π‘’π‘™π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ = 6π‘˜π‘š

2.π‘‘π‘–π‘šπ‘’ = +562/.768/59-,.62:/8/5*:-.1

= (4LL

= 0.02h

3. cos '(= 69R6:/2.

01+*./23,/= +562/0*7-S*2.659-,.62:/

(

√4<= +562/0*7-S*2.659-,.62:/

(

π‘π‘™π‘Žπ‘›π‘’β„Žπ‘œπ‘Ÿπ‘–π‘§π‘‘π‘œπ‘›π‘Žπ‘™π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ = 3√3π‘˜π‘š

π‘π‘™π‘Žπ‘›π‘’β„Žπ‘œπ‘Ÿπ‘–π‘§π‘œπ‘›π‘‘π‘Žπ‘™π‘£π‘’π‘™π‘œπ‘π‘‘π‘¦ = +562/0*7-S*2.659-,.62:/.-Y/

= 4√4L.L<

= 150√3π‘˜π‘š/β„Ž

π‘π‘™π‘Žπ‘›π‘’π‘£π‘’π‘Ÿπ‘‘π‘–π‘π‘Žπ‘™π‘£π‘’π‘™π‘œπ‘π‘‘π‘¦ = +562/0/-\0.9-,.62:/.-Y/

= 4L.L<

= 150π‘˜π‘š/β„Ž

5.Carhorizontaldistance=time*carvelocity=0.02*150=3km

6.π‘”π‘Ÿπ‘œπ‘’π‘›π‘‘π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’< = π‘π‘™π‘Žπ‘›π‘’β„Žπ‘œπ‘Ÿπ‘–π‘§π‘œπ‘›π‘‘π‘Žπ‘™π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’< + π‘π‘Žπ‘Ÿβ„Žπ‘œπ‘Ÿπ‘–π‘§π‘œπ‘›π‘‘π‘Žπ‘™π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’<

π‘”π‘Ÿπ‘œπ‘’π‘›π‘‘π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ = `(3√3)< + 3<

=c9(3) + 9=√36 = 6π‘˜π‘š

7.findingrateofchangeforgrounddistanceForsakeofsimplicity(justforthispart)Ipluginnumbersfromstepsabovesoifyouarewonderwhereanumbercamefrom.Lookup!

grounddistance=cplanehorizontaldistance=acarhorizontaldistance=b

𝑐< = π‘Ž< +𝑏<nowwederive

2𝑐(9:9.) = 2π‘Ž(96

9.) + 2𝑏(9f

9.)

2(6)(9:9.) = 2(3√3)(150√3) + 2(3)(150)

12(9:9.) = 2700 + 900

h9:9.i = 4(LL

;<= 300π‘˜π‘š/β„Žrateofchangeofgrounddistancewhenplanehaselevationof3km

Page 5: MATH 104/184 F E R SESSION

8.Heightdistance=3km(given)

9.π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’< = β„Žπ‘’π‘–π‘”β„Žπ‘‘π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’< + π‘”π‘Ÿπ‘œπ‘’π‘›π‘‘π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’<

π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ = √3< + 6< = √45

10.Forthissectiononlywewillusethefollowingvariablenames,nottobeconfusedwithpart7.Ipluginnumbersfromstepsabovesoifyouarewonderwhereanumbercamefrom.Lookup!

Distance=cheightdistance=agrounddistance=b𝑐< = π‘Ž< +𝑏<nowwederive

2𝑐(9:9.) = 2π‘Ž(96

9.) + 2𝑏(9f

9.)

2√45(9:9.) = 2(3)(150) + 2(6)(300)

2√45(9:9.) = 900 + 3600

2√45(9:9.) = 4500

9:9.= klLL

<√kl

9:9.= <<lL

√klπ‘˜π‘š/β„Žfinalanswer

Page 6: MATH 104/184 F E R SESSION

OPTIMIZATIONThefirstyearstudentsatUBC(UniversityofBurnabyCoquitlam)havecriedariverafterfailingtheirMATH140/148midterm.Theriveris5kmwideandthestudentsneed togetacross to theotherside toapoint that is10kmdownstream fromthepointdirectlyacrossfromtheircurrentposition.Thestudentscanwalkataspeedof5km/h.Theriverisalsososaltythatthecurrentisnolongerflowingwhichallowsthe students to swimat a speedof3km/h.What is themost efficientway for thestudentstoβ€œgetoverit”?(bothphysicallyandpsychologically)

Wewanttominimizetime.0≀x≀10Thereare2separatesections(swimmingandwalking)Thetimeofswimmingsectionisdefinedby:

𝑑 = 9-,.62:/8/5*:-.1

= √lmnom

4

Thetimeofthewalkingsectionisdefinedby:𝑑 = 9-,.62:/

8/5*:-.1= ;Lpo

l

ThetotaltimetogettopointBwouldbe:𝑑 = √lmnom

4+ ;Lpo

l

𝑑q = ;4;<

<o√lmnom

βˆ’ ;l

𝑑q = <o(√lmnom

βˆ’ ;l

0 = o4√lmnom

βˆ’ ;l

;l= o

4√lmnom

3√5< + π‘₯< = 5π‘₯squarebothsides9(5< + π‘₯<) = 25π‘₯<9 βˆ— 5< + 9π‘₯< = 25π‘₯<9 βˆ— 5< = 16π‘₯<

π‘₯ = `uβˆ—lm

;(

π‘₯ = √u√lm

√;(

π‘₯ = 4βˆ—lk

π‘₯ = ;lk

Testboundarycasesaswell(x=0andx=10)

𝑑 = √lmnLm

4+ ;LpL

l

= √lm

4+ ;L

l

= l4+ 2

= ;;4

𝑑 = `lmn(vw

x)m

4+

;Lpvwx

l

𝑑 = `mwvnmmwvy

4+

mwx

l

𝑑 = `ymwvy

4+ l

k

𝑑 = mwx

4+ l

k

𝑑 = ;L4

π‘₯ = ;l

kgivesusthesmallestt.

𝑑 = √lmn;Lm

4+ ;Lp;L

l

𝑑 = √<ln;LL4

𝑑 = √;<l4

Wecancomparethiswith10/3bysquaringbothofthem.125/9>100/9

Page 7: MATH 104/184 F E R SESSION

LOCALLINEARAPPROXIMATIONGiven: 65z

a) Findthelinearapproximationb) Usethelinearapproximationtoapproximatethedesiredvaluec) Determineifitisanoverestimateoranunderestimated) Whatistheboundontheerror?

Originally,IhadaveryfunquestionplannedforyouguysbutProfessorDesaulnierssaidβ€œIthinkthisproblemmayconfusethem”soIhadtochangeittoasimplerone:(

a) 𝐿(π‘₯) = 𝑓(π‘Ž) + 𝑓q(π‘Ž)(π‘₯ βˆ’ π‘Ž)Wecanchoosea=64.𝑓(π‘Ž) = 4

𝑓q(π‘₯) = ;4(π‘₯

}mz )

𝑓q(64) = ;4h ;;(i = ;

k~

𝐿(π‘₯) = 4 + ;k~(π‘₯ βˆ’ 64)

b) 𝐿(65) = 4 + ;

k~(65 βˆ’ 64)

𝐿(65) = 4 + ;k~= k

;hk~k~i + ;

k~= ;u<

k~+ ;

k~= ;u4

k~

c) 𝑓q(π‘₯) = ;4(π‘₯

}mz )

𝑓qq(π‘₯) = ;4hβˆ’ <

4i (π‘₯

}wz ) = βˆ’ <

u(π‘₯

}wz )

𝑓′′(64) =βˆ’29(64

βˆ’53)𝑓qq(64) = π‘›π‘’π‘”π‘Žπ‘‘π‘–π‘£π‘’Thesecondderivativeisnegativemeaningitisconcavedown.Thismeansitisanoverestimate.

d) Youneedtoknowthat|𝑓qq(𝑐)| ≀ 𝑀inotherwordsweneedtofindthemaximumvalueof|𝑓qq(𝑐)|π‘–π‘›π‘‘β„Žπ‘’π‘–π‘›π‘‘π‘’π‘Ÿπ‘£π‘Žπ‘™[64,65]

𝑓qqq(π‘₯) = βˆ’ <uhβˆ’ l

4i hπ‘₯

}οΏ½z i = 0

hπ‘₯}οΏ½z i = 0

;

οΏ½oοΏ½zοΏ½= 0π‘›π‘œπ‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›, π‘Žπ‘™π‘‘β„Žπ‘œπ‘’π‘”β„Žπ‘€β„Žπ‘’π‘›π‘₯ = 0𝑓qqq(π‘₯)𝑖𝑠𝑒𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑

Therearenocriticalpointsinourintervalsowecanjusttesttheboundaries

Page 8: MATH 104/184 F E R SESSION

Noticethat:𝑓qq(π‘₯) = βˆ’ <uhπ‘₯

}wz i = βˆ’ <

u;

(owz)

xisinthedenominatormeaningthatsmallerx=biggerf’’(x).Therefore,x=64willgiveusthelargervalue

|Error|≀h;<i hβˆ’ <

uih(64)

}wz i (|65 βˆ’ 64|)<

Page 9: MATH 104/184 F E R SESSION

TAYLORPOLYNOMIALSWhatisthe2nddegreeTaylorpolynomialof:

𝑓 π‘₯ = sin(π‘₯<) + log( on;)z( π‘₯ + 1)(Lata= πœ‹

𝑓(π‘₯) = sin(π‘₯<) + 20simplifytheweirdlogattheendto20.

𝐢L = �(√')L!

= π‘“οΏ½βˆšπœ‹οΏ½ = 0 + 20 = 20

𝐢; = ��(√');!

= 𝑓q�√'οΏ½ = cos hβˆšπœ‹<iοΏ½2βˆšπœ‹οΏ½ = βˆ’2βˆšπœ‹

𝐢< = ���(√')

<!= ����√'�

<= ;

<οΏ½βˆ’ sin hβˆšπœ‹

<i οΏ½2βˆšπœ‹οΏ½οΏ½2βˆšπœ‹οΏ½ + cos hβˆšπœ‹

<i (2)οΏ½ = p<

<= βˆ’1

The2nddegreeTaylorpolynomialis:

𝑃�(π‘₯) = 𝐢L + 𝐢;(π‘₯ βˆ’ π‘Ž) + 𝐢<(π‘₯ βˆ’ π‘Ž)<

𝑃�(π‘₯) = 20 βˆ’ 2βˆšπœ‹οΏ½π‘₯ βˆ’ βˆšπœ‹οΏ½βˆ’(π‘₯ βˆ’ βˆšπœ‹)<

Page 10: MATH 104/184 F E R SESSION

CURVESKETCHING

Sketchthecurve𝑓 π‘₯ = 3π‘₯l βˆ’ 5π‘₯4

1.Domain:allrealnumbers2.Asymptotes:

Vertical:noneHorizontal:takelimitasx->infinityandnegativeinfinityandyouwillnotgetafinitenumberasaresult.Therefore,nohorizontalasymptotes.

3.Intercepts:xintercept:

0 = 3π‘₯l βˆ’ 5π‘₯40 = π‘₯4(3π‘₯< βˆ’ 5)

x=0,x=Β±`l4

(0,0),(βˆ’`l4, 0), (`l

4, 0)

yintercept:𝑦 = 3(0l) βˆ’ 5(04)y=0(0,0)

4.Intervalsofincreaseanddecrease: 𝑓q(π‘₯) = 15π‘₯k βˆ’ 15π‘₯<

0 = 15π‘₯<(π‘₯< βˆ’ 1)x=00= π‘₯< βˆ’ 1 π‘₯< = 1 π‘₯ = Β±1

𝑓′(βˆ’2)>0 𝑓′(βˆ’0.5)<0 𝑓′(0.5)<0 𝑓′(2)>0

Increasingon(βˆ’βˆž,βˆ’1)π‘Žπ‘›π‘‘(1,∞)Decreasingon(βˆ’1,0)π‘Žπ‘›π‘‘(0,1)

Page 11: MATH 104/184 F E R SESSION

5.Localmax/minAtx=-1.𝑓(βˆ’1) = 3(βˆ’1)4 βˆ’ 5(βˆ’1)4=βˆ’3 βˆ’ (βˆ’5) = 2Localmax(-1,2)Atx=1.𝑓(1) = 3(1)4 βˆ’ 5(1)4=3 βˆ’ 5 = βˆ’2Localmin(1,-2)

6.Concavity 𝑓q(π‘₯) = 15π‘₯k βˆ’ 15π‘₯< 𝑓qq(π‘₯) = 60π‘₯4 βˆ’ 30π‘₯ 0 = 30π‘₯(2π‘₯2 βˆ’ 1) π‘₯ = 00 = 2π‘₯< βˆ’ 1 π‘₯< = ;

<

π‘₯ = Β±`;<

𝑓′′(βˆ’1) < 0 𝑓′′(βˆ’0.1) > 0 𝑓′′(0.1) < 0 𝑓′′(1) > 0

ConcavedownonοΏ½βˆ’βˆž,βˆ’`12οΏ½ π‘Žπ‘›π‘‘ οΏ½0,`12οΏ½

ConcaveuponοΏ½βˆ’`12, 0οΏ½ π‘Žπ‘›π‘‘ οΏ½`12, ∞�

7.sketch

Page 12: MATH 104/184 F E R SESSION

Sketch𝑓 π‘₯ = oomn;

,given𝑓q π‘₯ = ;(omn;)z

and𝑓qq π‘₯ = βˆ’ 4o(omn;)w

1.Domain:Allrealnumbers2.AsymptotesVertical:noneHorizontal-∞ limoβ†’pοΏ½

o√omn;

= οΏ½οΏ½ Β‘β†’}Β’

o

οΏ½οΏ½ Β‘β†’}Β’

√omn;

=

οΏ½οΏ½ Β‘β†’}Β’

o

οΏ½οΏ½ Β‘β†’}Β’

√omn;=

οΏ½οΏ½ Β‘β†’}Β’

o

οΏ½οΏ½ Β‘β†’}Β’

|o|= βˆ’1

Horizontalasymptoteof-1asπ‘₯ β†’ βˆ’βˆž

Horizontal∞ limoβ†’οΏ½

o√omn;

=οΏ½οΏ½ Β‘β†’Β’

o

οΏ½οΏ½ Β‘β†’}Β’

√omn;

=

οΏ½οΏ½ Β‘β†’Β’

o

οΏ½οΏ½ Β‘β†’Β’

√omn;=

οΏ½οΏ½ Β‘β†’Β’

o

οΏ½οΏ½ Β‘β†’Β’

|o|= 1

Horizontalasymptoteof1asπ‘₯ β†’ ∞

3.Interceptsx–intercept0= o

√omn;

x=0intercept(0,0)

y–intercepty= L

√Lmn;

y=0intercept(0,0)

4.Intervalsofincreaseanddecrease𝑓q(π‘₯) = ;

c(omn;)z

0 = c(π‘₯< + 1)4and0= ;c(omn;)z

havenosolutions.

Wecancheckthederivativeatx=0togetapositivenumbermeaningthefunctionisincreasingfrom(-∞,∞)withnocriticalpoints.5.Localmax/minNone6.Concavity𝑓qq(π‘₯) = βˆ’ 4o

c(omn;)w

0=-3x0=c(π‘₯< + 1)lx=0nosolution𝑓qq(βˆ’1) = π‘π‘œπ‘ π‘–π‘‘π‘–π‘£π‘’π‘“qq(1) = π‘›π‘’π‘”π‘Žπ‘‘π‘–π‘£π‘’Concaveupon(-∞,0),concavedownon(0,∞),inflectionpointat(0,0)

Page 13: MATH 104/184 F E R SESSION
Page 14: MATH 104/184 F E R SESSION

SOMEFUNLIMITS

Evaluatethelimit: limo→;}

𝑙𝑛 π‘₯k βˆ’ 1 βˆ’ 𝑙𝑛 βˆ’1

Letf(x)= sin 𝑒z 𝑖𝑓π‘₯ = 𝑒'𝑒'𝑖𝑓π‘₯ β‰  𝑒'

,evaluatethelimit limo→/€

𝑓(𝑓 π‘₯ ).

Giveyouranswerinacalculatorreadyform

Supposethatlimo→:

𝑓 π‘₯ = 𝑧,wherezisapositiveinteger,whichofthefollowingstatementsareguaranteedtobetrue?(Youmaycirclemultipleoptions)

a)𝑓q 𝑐 𝑒π‘₯𝑖𝑠𝑑𝑠b)𝑓 π‘₯ π‘–π‘ π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘ π‘Žπ‘‘π‘₯ = 𝑐c)𝑓 π‘₯ π‘–π‘ π‘‘π‘’π‘“π‘–π‘›π‘’π‘‘π‘Žπ‘‘π‘₯ = 𝑐d)𝑓 𝑐 = 𝑧e)π‘Ž)π‘Žπ‘›π‘‘π‘‘)f)𝑏)π‘Žπ‘›π‘‘π‘)g)π‘π‘œπ‘›π‘’π‘œπ‘“π‘‘β„Žπ‘’π‘Žπ‘π‘œπ‘£π‘’

Startwiththeinsidef(x)firstthenworkoutwards limo→/€

𝑓(𝒇(𝒙)).

AsxAPPROACHES𝑒' ,whichalsomeansxisNOT𝑒' ,thenvalueoff(x)willbe𝑒' (bottomcase)

Nowweareleftwithf(𝑒')whichwillgiveusavalueofsinβˆšπ‘’z

Therefore,thefinalanswerisπ¬π’π§βˆšπ’†πŸ‘

limo→;}

𝑙𝑛|π‘₯k βˆ’ 1| βˆ’ 𝑙𝑛 |βˆ’1|

= 𝑙𝑛|(1p)k βˆ’ 1| βˆ’ 𝑙𝑛 1(ln1=0)= 𝑙𝑛|(1p) βˆ’ 1|(somethingslightlysmallerthan1tothepowerof4isstillsomethingslightlysmallerthan1)= 𝑙𝑛|0p|=𝑙𝑛0n=-∞(graphofln,youshouldknowhappensatln0)

g)itispossiblefor𝑓(π‘₯)tohaveaholeatx=c.Thismeansb),c),andd)arefalse.Thereisnot

enoughinformationtosaya)isalwaystrue.Example:𝑓(π‘₯) = Β­(op<)(op<)(op<)

Β­withc=2.Checkitout

ingraphingcalculator.