Materials Characterization by Resonant Ultrasonic Spectroscopy

84
KR0100936 KAERI/RR-2077/2000 til- Materials Characterization by Resonant Ultrasonic Spectroscopy 32/ 48

Transcript of Materials Characterization by Resonant Ultrasonic Spectroscopy

Page 1: Materials Characterization by Resonant Ultrasonic Spectroscopy

KR0100936

KAERI/RR-2077/2000

til-

Materials Characterization by Resonant Ultrasonic

Spectroscopy

3 2 / 48

Page 2: Materials Characterization by Resonant Ultrasonic Spectroscopy

2001. 1.

;§ -g-

A] ^ JS.

- 1 -

Page 3: Materials Characterization by Resonant Ultrasonic Spectroscopy

A £

II.

Q-factor

ffl. ^ ^ 7 f l « ^ ufl-g-

- 11 -

Page 4: Materials Characterization by Resonant Ultrasonic Spectroscopy

iv.

^ ^ r 7fi >£*}&_&

RMS error7} 0.07 - 0.10

V.

(grain boundary, grain size, precipitation, defect, dislocation -§•)

Q-factor# ^^§<>1 7}^}v\. ZL$\} ^ ^ ^ > Q-factor -

Q-factor

Page 5: Materials Characterization by Resonant Ultrasonic Spectroscopy

S U M M A R Y

I. Project Title

Materials Characterization by Resonant Ultrasonic Spectroscopy Method

II. Objectives and Importance of the Project

For the several decades, various nondestructive methods have been

applied to characterize microscopic variations in materials. However, it

is not successful to give a satisfactory result to monitor the nuclear

material degradation by neutron irradiation embrittlement. Therefore it

is necessary to develop a more sensitive nondestructive characterization

method. The resonant ultrasonic spectroscopy (RUS) can be a possible

candidate for this purpose. The objective of the project is to develop

the RUS technology to determine the dynamic elastic constants with an

accuracy less than 0.1^. In addition, RUS technology can determine the

high temperature elastic constant as well as Q-factor by an improvement

of the present RUS system. This technology can also be applied to

characterize the microstructural variations, such as material degradation

including neutron irradiation embrittlement.

III. Scope and Contents of the Projects

The dynamic elastic constants of weld heat affected zone(HAZ) of SA 508

Class 3 reactor pressure vessel(RPV) steel, which has various different

localized microstructures was investigated by RUS. A high temperature

device for the RUS measurement was designed and fabricated. The high

temperature elastic constants of the RPV steel was measured.

- IV -

Page 6: Materials Characterization by Resonant Ultrasonic Spectroscopy

IV. Results and Proposal for Application

Through the measurement of elastic constants from the various

localized microstructures we can confirmed that the RUS method is very

sensitive to the microstructure of the test materials. By comparing the

RMS error of the range of 0.07 - 0.10 % for this measurement to the

general limit of 0.2& for the effectiveness of the measurement, we can

confirm the measrements were highly reliable.

RUS can also be used to measure Q-factor (mechanical damping) which

related to the microstructural variations (grain boundary, grain size,

precipitation, defects, dislocations etc. ). In order to get an accurate

measurement of Q-factor, environmental pressure and contact pressure

between ultrasonic sensor and sample should be measured and controlled.

Thus the vacuum system for the environment and a load cell to control

contact pressure should be attached for accurate measurement of Q-factor.

The complete RUS system can be use to determine the anisotropic elastic

constant, temperature dependence and Q-factor. These capabilities will be

useful to monitor the degradation of nuclear materials, including neutron

irradiation embrittlenient. In addition, RUS technology can be applied to

various areas, such as the nondestructive identification of the fluid

inside a vessel, nondestructive quality test for precision components as

well as nondestructive materials characterization.

- v -

Page 7: Materials Characterization by Resonant Ultrasonic Spectroscopy

CONTENTS

Chapter 1 Introduction 1

Chapter 2 State-of-the-art 4

Section 1 State-of-the-art of similar research 4

1. Case of foreign countries 4

2. Case of domestic area 4

Section 2 Evaluation of the specific technologies 5

Section 3 Technical status of the Project 5

Chapter 3 Study results and discussion 7

Section 1 Theory of resonant ultrasound spectroscopy 7

1. Elastic constant of isotropic materials 7

2. Elastic constants of anisotropic materials 8

3. Calculation of resonance frequency 10

3.1 Minimization of the Lagrangian 12

3.2 Solution for rectangular parallelepiped shape 17

Section 2 Calculation of elastic constant 21

1. Levenberg-Marquardt algorithm 21

2. Consideration of Error bars and goodness-of-fit 25

Section 3 Measurement of ultrasonic resonance frequency 27

1. Ultrasonic transducer for resonant ultrasound

spectroscopy 27

2. Q-factor in the resonant ultrasound spectroscopy 28

Section 4 High temperature for resonant ultrasound spectroscopy— 31

Section 5 Experiment of resonant ultrasound spectroscopy 35

1. Determination of dynamic elastic constants of RPV steel

- vi

Page 8: Materials Characterization by Resonant Ultrasonic Spectroscopy

weld due to localized micro-structural variation 35

1.1. Introduction 35

1.2. Preparation of Specimen 36

1.3. Measurement of elastic constants by resonant

ultrasound spectroscopy 40

1. 4. Experimental results and discussion 42

1. 5 Conclusion 56

Chapter 4 Accomplishment and contribution of the study 58

Section 1 Accomplishment of the study 58

Section 2 Contribution to technology development 58

Chapter 5 Application of the results 59

^1 1 Necessity of additional study 59

^1 2 ^ Application to the other research 59

Chapter 6 References 60

Appendix

1. Detail drawings of high temperature resonantultrasound spectrospopy system 63

- vn -

Page 9: Materials Characterization by Resonant Ultrasonic Spectroscopy

,5*

l

$) 7}<£7m ^ % 4

1 ^ -S-4W -*HH W d£> W 41. ^ £ | ^ 4

2. -^-g^ 3^- 4

2 *g Afl - 7 ] # A > % ^ £ £ ^ r^ ^ ^ 5

7l#^ 1 1 5

^ ^ 2 f 7

7

}7fl^ 7

2. 6)uo^ :a*)l^ Q^n^r 8

3. ^ ^ r s ) - ^ T f l ^ 10

3.1. Lagrangian 3]4x£f 7l»g<ifl 5]*> •g-'g^nH5 ^ 12

3.2 ^^-^A(|ofl nfl?t i^afg- ig «H 17

2 ^ ^ ^ 4 - r 4^1 21

1. Levenberg-Marquardt iKnelil 21

2. Error bars ^ goodness-of-fitofl tfltl 3 - ^ 25

3 ^ i-g-aVg-'g ^ 4 ^ r ^ ^ 27

1. 3^-sF§-^^ ^-^# ^« %^> 27

2. J ^ s F g - ^ 1 ^ ^ ^ ^ 1 ^ ^ Q-factor 28

4 ^ Jl^r 5i^3i>^-tg«.^ A 1 ^ B | ^||3|- 31

5 ^ J i - i - s } ^ ^ ^ ^ 35

-^^f.^^1^ 4^ 35

1.1. * ^ 351 9 11 TEJ ^ . H l _ - - - Qfi1 , u. s^X xj. ^ C o | — OD

1.3. ^ ^ a } * ^ ^ * ^ ^ ^l t> f > A ^ l ^ r ^H§ 40

- viii -

Page 10: Materials Characterization by Resonant Ultrasonic Spectroscopy

1.

1.4.-g^ ^ g 3.% 421 K ; ^ J iL - Kf\

m ^^ ^ fl^ H 581 ^ ^^fll ^ ^ B ^ ^-S ^ ^ £ 58

58

^ 59

1 ^ ^ 7 } <=1 -*1 i }£ .^ 59

2 ^ Bf <=*^-o\)$) -§--§- 59

60

63

- IX -

Page 11: Materials Characterization by Resonant Ultrasonic Spectroscopy

1 S- M

Resonant Ultrasound Spectroscopy) £

t:Hf-7) ^]^r canonical geometry^]

Lord Raleigh 7}

3. a l ^ . ^ ] 1970

3 j

1 5] *o}7] A}4^> 1980^^1] o)^:e>lt:}. 1987^

Los Alamos ^ - ^ ^ ^ ^ i ^ l Dr. Migliori^ °M7\]

o l S ^ PC - oflAl ^ - ^ ^ 3 ^ § <Sp§S} ^ oife hardware^

^ ^ ^ ^ ^ T W ^A l^ f e software^ n^W ^ ^ ^ ^ ^ ^ r ^ ^ (RUS

Resonant Ultrasound Spectroscopy) 2J-.2. ^ ^ ^ ^ l ^ . ^ 1990\lc}|

S E

- 1 -

Page 12: Materials Characterization by Resonant Ultrasonic Spectroscopy

O.I*

ufl -ofl ^fl*fe c^o>*> # M - $ (grain boundary,

defect, dislocation, precipitation ^-) afl

mechanical damping

pulse echo

mechanical

s.t:|-. al^oil S.-g-aVg-'g^^igoJI^^. ^.ig^a).^^ H>7}^- (FWHM, Full Width

Half Maximum)^ ^ ^ § * } ^ <^1S Q-factorS

Q-factor# ^ 1 ^

damping jL2f7> S ^ £ ] J I $X°^S. o|e|*> ^ ^ - 3.3l*llo> ^ c } . o]

# ^ Q-factorl

^^ ^ 1 # 7H1**H

Q-factor

SA 508 C1.3 3J-2J- ^ ^ S . ^ ^ ^ ^flS.<y Zr-2.5Nb

- 2 -

Page 13: Materials Characterization by Resonant Ultrasonic Spectroscopy

Q-factor-^

- 3 -

Page 14: Materials Characterization by Resonant Ultrasonic Spectroscopy

SL\

1970

^ . ^ 1990 Vi flofl n ]^ - Los Alamos

1991-d

1994V17

Los Alamos

(NIST) *\}*\±= 2&

1998 - 1999

2.

1999V3.

*> Zr-2.5Nb

4 -

Page 15: Materials Characterization by Resonant Ultrasonic Spectroscopy

^~S-5E}"o"tS'a 31H| Sfi) ^9 Aj-ofl ]

-§"§-

^« 7!« «« *1 71* ««

a l^- LOS Alamos ^"^^l-J2-^,sfl'S^-?-^-, Penn. StateUniv. - - flA-l 7fl^^| .

It ^ **** **

• * * "^^^"^l]^M " "~ ~ - ^ ^ ( x ] - ^ 1

JXV -Q' ^ - ^ ^ " ^ ^ T l 7 l yd] ."^- \

- 5 -

Page 16: Materials Characterization by Resonant Ultrasonic Spectroscopy

o o

7}

71

, -g-71

Page 17: Materials Characterization by Resonant Ultrasonic Spectroscopy

l. §tfcM)

U )

°] CV§-2|. ^ ^

< 3 )

matrix*! determinants

(dispersion equation)

i l

o]

8im=\

£ 0

- 7 -

Page 18: Materials Characterization by Resonant Ultrasonic Spectroscopy

2.

*i6)}

11=»1 22=^2

23=^4 13=^5 12=^6

0-4

C12 C13 C14

C22 C23 C24

C 1 5

C26

Cl3 < 23 C33 C34 C35 C 3 6

C14 C24 C34 C44 C45 C46C1S C25 C35 C45 C55 C56

. C16 C26 C36 C46 C56 C66,

(4)

Hook's law# triclinic 21

fe shear 0 1 cfl orthorhombic

'11

-13

000

C\2

C22C23

000

Cl3

Czz<?33

000

000

C44

00

0000

C550

Oi0000

(5)

tetragonal S

= C55, c13=c23, c u = c 2

fe 67HS. hexagonal = c6 6

Page 19: Materials Characterization by Resonant Ultrasonic Spectroscopy

1-2

37112}

cubic

Cn.Ci2.C44

shear wave^

H S Hook's

<73

04^5

c l l C12 C12 0 0 0u U

C]2 Cyi Cn 0 0 00 0 0 C44 0 00 0 0 0 C44 00 0 0 0 0 c.

£2£3£4

\£6.

(6)

o]

C12CU ,C1 2

cubic

# '1' i = 2 6)

0 = c12Ui + £3) + cns2

0 = C12O! + £3) + cu£3

0 = C44£4 = C55£5 = C66£6

(7)

2c\2

' C12(8)

Poison's ratio u

- 9 -

Page 20: Materials Characterization by Resonant Ultrasonic Spectroscopy

A ,—v (9)(cn/c12)

bulk modulus # A^Ot^A £}*M hydrostatic

=(y3 oj SjnJ shear stress -fe -U^. o o]v\. &}B}*\ £ l = £2=£3 7}

(10)

Bulk modulus B ^ <&$t% cfl^ *))*} ^ S f # c ) ^ ^>^*) ° i ^ ^ °)

cubic

3.

Slj(analytical solution)

iggofl ^*f ujgfl^^d] Sfl(non-analytical

solution)^©] 7f-^^ e|| o?aflfe -

-10 -

Page 21: Materials Characterization by Resonant Ultrasonic Spectroscopy

tg

r ^ J. D. Maynard [2]

71 4 ^ 1 4 . Lamb ^ Love 6\) $\^ 7 ] ^ ©l^ofl o|oj 7]^ . »o>^Al«y A] ( 1 )

M #Sti^.^ Fraser and

[3]. ol*: Anderson, Kumazawa

rfl 1960

. Holland [4]^- Dermarest [5]fe <>1^ •%-*}?>± formalism#

^ # ^ r Ohno |

Mochizuki [7]7}

L^]#el ^-o>6fl^l n l ^ LOs Alamos

igliori^- Visscher7> <^5i 7fx| ^ S \ %$ cfl^Hl ^ ^ ? > ^

# ^-§-*H ^ m ^ ^ ^ * > 5 i 3 . <>1# i ^ s f g - i g ^ ^ ^ (RUS,

Resonant Ultrasoniat Spectroscopy) B}3. x^x^^}^-\ [8].

mechanical Lagrangian£) sfl

(eigenfrequency)-l-

11 -

Page 22: Materials Characterization by Resonant Ultrasonic Spectroscopy

3.1. Lagrangian £\£.Q

Lagrangian L •&

L= f(KE-PE)dV , (12)

cm

KE= \ ^po)2u) , (13)

y, z

2 hfm dXj dx, •

u. ^ ^^%> a«]Bi^ / »|«|| j a . ^ 0 ^ ( f = 1, 2, 3 ^ t ^ <^fe 4 4 x,

y, z 2*S^r ^oM- ^ « 1 ^ ) ^l^-Hl H*> harmonic £ ) # ^ , ^ «(d=Moe i a r f •§•

:>. <ael ^ i ^ - ^ 1 c^fe > <^7)^ cjj^v* s u m mation^ S ^ 1 dj|^ 3

(13) 2}- (14)fe ^ ^ 3 . ^ ?!-§• (simple harmonic oscillator)^!

4 ^ KE 51 PE ^

LagrangianSl S ] 4 : ^ # ^

r*Ui+8ui) L

- 12 -

Page 23: Materials Characterization by Resonant Ultrasonic Spectroscopy

i §

1st order

dx.

Jfg=

o]

(15)

(16)

? 5, « ' c * ^ ^

,- fe V SE.k= S

(17)

stationary point L

- 13 -

Page 24: Materials Characterization by Resonant Ultrasonic Spectroscopy

bgr *J (17)51

6\

setfe

Rayleigh-Ritz

(20)

Demarest [5] 3f Ohno [6]fe ^•fl-*!-^ Legendre

polynomial^ 4-§-*>^lfe 31 dl uov^^r ^ - # ^ ^ 1 matrix A^t ^]^>^1 ^ l^f l^ l

Sir}. Visscher et. al

(2D

^±3. ^ (20)(12) ofl cj |<a*^ ^ ^ . ^ m x l KE ^-^r^r

- 14 -

Page 25: Materials Characterization by Resonant Ultrasonic Spectroscopy

.

o] Lagrangian L

dXl

..2(21)

• V Z i,}.m.n ,),k7l,m,n^

(22)

7]-

matrix

summation^ 1 ofl^ N 7?}*\ °]r\.

f 0xP0r dV,

dv z\3dx. dx._

- 15 -

Page 26: Materials Characterization by Resonant Ultrasonic Spectroscopy

*E 1 - \~7*fli (23)

a fe SL^.7\ at QA ^tfS. O.S>\ transposed aT °}i$ E

order7> R (*g«>]M- <gSj 7fl^# ^ ^ ) ?1 matrix o]r\. R g.

truncation condit ion '^ .

l+m+n < N, (24)

1 i?=3(iV+l)(AH-2)(JV+3)/6"exact" *> *fl# 7} lt:}. -y^lSfe N -£

(eigenvalue)7>

[8].

L^*}«H JV=1O ±S. ¥3. ^ (23)

307fl JEE-fe

Matrix £

(25)

matirx T

sr/ J K ^ 7 - ^ 7 ^ (26)

p <] tB^fl^ orthonormal setSj ®x # ^«?^c>ig E ^ unit

matrix 7>

- 16 -

Page 27: Materials Characterization by Resonant Ultrasonic Spectroscopy

orthonormal set

complex^ ^fcflS

«,- 7} * H r # ^ £-2)121 «He>^ Lagrangian *1 (12)fe stationary

«l|fe ^ (21 )# 4 J? , ^1^ - fl« oil tfl*M Dl -?> ^ # 0 jOS

a)2 Itli =7" ~a (27)

3.2. ^1

Lagrangian5l

r dV (27)

7HJ- ^51 ^ o } ^ ^AO>O| n ;g;g

orthorhombic 5Efe H

(26)51 ^ ^

f. A

(28)

- 17 -

Page 28: Materials Characterization by Resonant Ultrasonic Spectroscopy

E

odd function # 0 £.3. %-A

3 % ^ Stic}.

M 7f parity triplet (

(29)

uz7\ parityl-

(30)

matrix^, degenerate

parity#

parity triplet i ^ S ^-^fl block-diagonal

tl^.^ o | | | M;c «q parityefjl -r-^-^1- [7], nj-e>

- 18 -

Page 29: Materials Characterization by Resonant Ultrasonic Spectroscopy

- 6T -

VC - o ^ . ^ t r [ b x

-H2T ofo S

ft& 00T X 001

0001 X 0001 -trfr IP(8S8=H '0I=N)

Page 30: Materials Characterization by Resonant Ultrasonic Spectroscopy

ux ^ (/,»»,») = (0,0,0) SM=- *=1 # 5fe

: *= 1

k

>. (Fig. 1-1)

Vibration Modes(Rectangular Parallelepiped)

k=l x-axis translationk=2 y-axis rotationk=3 z-axis rotationk=4 x-axis rotationk=5 volumetrick=6 z-axis translationk=7 y-axis translationk=8 complex motion

- 20 -

Page 31: Materials Characterization by Resonant Ultrasonic Spectroscopy

->

set

1. Levenberg-Marquardt

*fe i g ^ ^ 5 ] ^ ^ ^ ^-*l-7l £1<JH ^ ^ ^ } ^ 4 ^°1 figure of

mer i t, F #

F= itw{ (fi-gd2 , (31)1= 1

f S F

triclinic £ J ^ 7 ^ ) ^ ^ ^ (21 ^ ^ f ^ fg ffe Newtonian solution^

- 21 -

Page 32: Materials Characterization by Resonant Ultrasonic Spectroscopy

steepest descents^] ^ Ho^-£.3. HJ3.2) -#-<*l^o] 9l°.v\

f>\xx{ *\2\^ £ f e Levenberg-Marquardt

F # Taylor

(32)

!^i^3f afl^ofl^ ^*fi^lfe Euler angle

x-x6 *W ^SLUW o^Tfl

^ 0 « •

F 7} x

=0, a=\ M. (33)

( 3 4 )

M ^ } ^ * Newtonian

< 3 6 )

o|

- 22 -

Page 33: Materials Characterization by Resonant Ultrasonic Spectroscopy

da>i l dcDi 1 —f r dF

02)7} # ^ 7f^, ^ x 7}

steepest-descent

Levenberg-Marquardt ^ J

•Off — Z j ty,\/j—^r,9 3 i o / ;

Aaf=^WcMLM- ( 3 8 )

"" ~J BB ' (39)

(40)

F-surface

o| ^ ^ -7^^<H^) Sife "downhill" ?gA># ir}5> ^ n j ^ - 7jJ# 7j ^-f, o)

- 23 -

Page 34: Materials Characterization by Resonant Ultrasonic Spectroscopy

Levenberg-Marquardt toe]il<HW ^ (39) -&

(41)

J 0 $) (42)

(41 ) £ 42=0 <ti ^ - f *I (39)5f 2-2.«l. fl 7} 9\M 7]S\ diagonal S 5|

Ba=Q, a=lt...,M ) F f e H

3 ^ ) + Sxa Aag(x^2) 8xfi+..., (43)

2 order

S^>. 2A 7> >1 }$) covariance

matrix ^ ^ | B S *]•$ diagonal ize * } ^ (iEfe- G S\ <a^J) M 7)1*] 3.^*1

(44)

(45)

- 24 -

Page 35: Materials Characterization by Resonant Ultrasonic Spectroscopy

F X ^ M-

(46)

2. Error bars i | goodness-of-fit<Hl

-fe fit7>

2)

3)

x-ray ^ £ ^ 1 - 2

H7}

8 - 10

10% olt

- 25 -

Page 36: Materials Characterization by Resonant Ultrasonic Spectroscopy

:1 mapping^

SH7} flU 3.7] 30

0.1 - 0.2% RMS

fitted parameter^! cfl V error bar

c>6<?*>7fl ^ 4 f * M ° J ^ - £ S congressional moduli( cs, *= l ,

7> 0.5 - 1.0%, shear moduli( cih ;=4,6)°fl ^Sf lA^ 0.02%, off-diagonal

moduli( ce> ^;)<H1 tJ|*iHfe- 2.0 - 3.0% ^Jflefl 7^1^51^ ^^]^<y RMS

0.1 - 0.2% olvfloJH 7l|4>^c>. <y

^ t l -a%!^ ^ % ^ ^ r RMS error ^ .2 .

RMS error7> 0.2%

-2°

i-f- fitting

independent^^}. ZL

fit7>

routined

5%

JE^f fitting

cubic

=cai. c12=C23) tetragonal

Tflo]7114

- 26 -

Page 37: Materials Characterization by Resonant Ultrasonic Spectroscopy

mm l 4 \ & ] M ^ ^

g ^ > B ) ^ M ^ §]51 geometry

fl flfl ( ^ mm

o] ^Hl^olt:]-. Undisturbed free-sample*J ^ ^ I # ^ - ^ ^ f e

fe ^ ^ 4 «H7]^ <H^^r ^ ^ : 1 mm 3 7 ] *| A)

mm U ^ > 7 } Hl^*}t:>^ ^o

cfl EV^I-7]- - ^ ^ 3 . # t :>^ L J £ ^ s ^ ^.^| S H f e torsional

cfl ^-^o] 3 km/s 6] ^3}oflA-l ^ c | 1.5 mm<>]

S ^ 1 MHz

EMAT (Electro-Magnetic Acoustic Transducer)^ A]-g- -

^ # ^71 ^*H^fe "I 3717} ^X]7| 4 ^

Q-factor 7} ^^Sr | ^ ^ - ^ ^ 1 ' Slc>.

match7f -f^r^v) 7l7iH Q7f 50

PVDF(Polyvinylidine fluoride) s t r i p # mm

j>}$) x]^o]} greased - ^ * H

& Curie

- 27 -

Page 38: Materials Characterization by Resonant Ultrasonic Spectroscopy

(Lithium Niobatefe 800 - 1100 K <>M ^ 7 l ^ ^ S short $\S.7\ 5\7\\-\ -g--g-

Q) ^r£6fl 11> ^ 1 1 - *M*}7l ^ a o^-^5 - buffer rod

t\. Buffer rodfe

*43. buffer rodS

buffer rod^l 4 ^ ^ ^ISl^- ^ - j ^ §- 1 ^IJl #<Hl convolution^ ^1^1

rod :?H1 7^flxlfe ?Q$] o]v\. -7-^)1^ o^ z}o\ 20 cm, « | ^ 3 mm^ <g

l^^cH # ^ f e 10,000m/s ^-S^lnl-. o]

3 . stiffness7l- ^^c f l ) -^ ^ ^^1 cflsf 3mm

5,000 m/sH ^ ^ - A j t l t : ^ ^ irfl SL7\ 507fl

0.438 - 1.25 MHz o\]*\ T-M^c}. O\ ^ S } ^ ^^<Hl>H buffer rod

reverberation Iimit7> *Xt\. o\7%.~§: cfle>

Q=1000 <y 3 . ^ ^ ^ - a l ^ ^ ^g-?- S H 7 } ^ 4 * W 1 ^ ^ 5 ] ^ ^ ^ l ^ ^ l 3 l^ fe X\

^ ^^ofl Af-g-^^ ^ s f ^ *&4\61}M ^ ^ " o ^ ^ f e ^ ^ ° 1 ^ ^ l ^ buffer

rodS # 41 Sllt:>. n}eM <^^-nlL| buffer rod#

M rod S] ^-^1 # ^ ^ - nle} ^ 4 *

^ s f | ^ ^ c K • a t ^ ^ S MHz

Q71-

fe Q

2. J i ^ - s F g - ^ ^ ^ •^ 'H l^^ Q-factor

Q-factor

§ }. Q-factor fe ^-«g i ^ j

(FWHM; Full Width Half Maximum) J£fe ^/r •# ( / = ^ -^ ^rSHr, r =

- 28 -

Page 39: Materials Characterization by Resonant Ultrasonic Spectroscopy

J7Sfl

(thermodynamic dissipation)^- JS/ sfl

^ ^ • 4 ^*|fe <as. ^^£)<H i ^ J^ fe JL3}<H1 911-^A^ t};g;§ ^-^- g r a in

boundary 4I?>, ^ 1 grain size7> ^ flS«Hl #*j7l-

dissipation »] o}ij4.

ring ^Efl 5)^2} ^o] nodal direction^- 7f?li:}.

Q-factor ^

(FWHM), ^ ^ ^ J # ^ ^ * f e 5 ^ £ ^ Q-factor

, ii) #Q2§ (grain boundary, inclusion, defect

., (elastic and non-dissipative) JS.71,

radiation,

- 29

Page 40: Materials Characterization by Resonant Ultrasonic Spectroscopy

mm 3.7}$]

radiation^

7}

Shear SJE.

T&$] 3.717}

$\ 3.7]±r gas

lfe ^ ^ r 0.1 N x]

^ radiation o|

moUnt $} A | ^

^r dipole-like radiation^ 'ti^.T'lS

) radiation match7} ofl

chamber 3.7]SJ

^ torr ^§S.S ^ ^ " 3 71^)1^ radiation

order ^cflA]^ ^ 51^}. 7 1 ^ 1 cfl^; Q

50K ol^} ^£6l|XI 7l<& (He

Q-factor ^ A^l &x\}7\ ^ c } . Isaak, Cynn, and Andeson [ 9 ] ^

^1 3*} fHJ 7^1^(third order elastic constant)# ^ •W&fe- tfl

bar *W ^ ^ 1 ^ 1 fe *^> Q ^ *i

- 30 -

Page 41: Materials Characterization by Resonant Ultrasonic Spectroscopy

l ^ ^ ^ r Fig. 4-1*11

synthesizer,

l^^ l B > Silfe § V § ! ^ g ^ | ( ] ^ Quatrosonic

Ruspec ^H])6fl 4 i ^ 7f<iS. ^ ^rJE 1<H ^ 1 # ¥ ^

Curie

-£-.§. wave guideS 4~§-*H 5.-B"47> furnace

^ ^ ] f e F i g .

wave guided] ^ ^ * H 4 ^ ^

31 W a M wave guide#

& holding ^ f e ^

fe 1000 °C 7}*1

- <% 500 °C ^ ^ 4 ^

31 ^ r ^ ^ ^ l 7fe*}J£-^ ^SftcK Fig. 4-3 £ 4-4 afl

Q ^ i

o}e\*} *}*£& ^^611 «><g*>7l ^ l ^ H 2*1- te^l^ife ^ ^ load cell-i

- 31 -

Page 42: Materials Characterization by Resonant Ultrasonic Spectroscopy

MicrcPro©

Prir

>essor

r

iter

p Synthesizer

DigitizerL

Receiver

Test 7Object VS.

Driver—, Transducer

spa Receive

Transducer

Fig. 4-1. Block diagram of resonant ultrasound spectroscopy (RUS).

32 -

Page 43: Materials Characterization by Resonant Ultrasonic Spectroscopy

ReceivingTransducer

Specimen

Wave Guide(Alumina Rod)

Thermocouple

TransmittingTransducer

Fig. 4-2. A design of high temperature device for RUS experiment.

- 33 -

Page 44: Materials Characterization by Resonant Ultrasonic Spectroscopy

Fig 4-3.

Fig. 4-4. furnace il wave guided SA 508

- 34 -

Page 45: Materials Characterization by Resonant Ultrasonic Spectroscopy

5 ^

1. #*}$.

1.1. *m

. alfe -#-§- 3»*>S ^^-§-71 (reactor pressure

vessel, RPV)fe ASME SA 508 Cl. 3 i&£#(Mn-Mo-Ni

(heat affected zone, HAZH tflsfl

[10.11].

[12].

1 6 l € - £ J. D. Maynard [13]

Holland [4]^- Demarest [5]fe ^ > ^ ^ ^ - S ^ » o ^ ^ l ^ ^

cfl ol ^ a j ^ g ; Ohno [6]ofl

Visscher

7>*1 Ji-i-31}- u o ^ 7> rc-il 3.^-2> ^ - ^ ^ (resonant ultrasound

- 35 -

Page 46: Materials Characterization by Resonant Ultrasonic Spectroscopy

spectroscopy ; RUS)-b

^ * 1 H * ! £ ?}¥*}** i < 8 ^ 371(1 mm

[14].

(anisotropic elastic constant)^ ^-^^fe ^ d ] 7 } ^ H [15,16]

3.7} 5

a]el

5J r>S.

1.2.

xf-g-51 ^ 1 ^ ^ ^ i ^S-8 - ASME SA 508 Cl. 3 ^ Mn-Mo-Ni Tfl

^: Table 5 - 1 ^ £v\ [17]. ^4^}S-§- ^ ^ ^ - ^ S^flfe i 6 j 5l

^•(quenching & tempering)<Hl ^*H S^Bfe tempered bainite

T:}. *>^ o]$\ - § - ^ ^ - ^ S^f|5l ^^7)1 220 mm!- <$ 130 pass

(post weld heat treatment)^ 7 l ^ ^ ^.d

(unit

- 36 -

Page 47: Materials Characterization by Resonant Ultrasonic Spectroscopy

SI Fig. 5-

Table 5-

mm X 3.5 mm X 4.0 mm

si 3.0

- 37 -

Page 48: Materials Characterization by Resonant Ultrasonic Spectroscopy

Table 5-1. Chemical composition of SA 508-3 steel

Elements

wt. %

C

0.19

Si

0.08

Mn

1.35

P

0.006

S

0.002

Ni

0.82

Cr

0.17

Mo

0.51

Table 5-2.

-*1 1 Identification

SI

S2

S3

S4

S5

S6

S7

S8

Thermal cycle simulation

(I*} 3l 2*} thermal cycle

1350° C

1350° C

1350° C

900° C

900° C

700° C

650° C

Base c

& 1350 ° C

& 950 ° C

& 750 ° C

& 900 ° C

& 700 ° C

& 700 ° C

& 680 ° C

naterial

CGTM

(TM)+TB

(TM) + TB

FGTB

FGTB + (TB

TB + (F) +

TB+CC

TB

+ F

* F)

CC

%CGTM: Coarse Grained Tempered Martensite

*TM: Tempered Martensite

*TB: Tempered bainite

*F: Ferrite

$FGTB: Fine Grained Tempered bainite

*CC: Coarse Carbide

- 38 -

Page 49: Materials Characterization by Resonant Ultrasonic Spectroscopy

S1(CGTM) S2 ((CGTM)+TB) S3 ((CGTM)+TB+F) S4(FGTB)

S5 (FGTB+CTB+F)) S6 (TB+(F)+CC) S7(TB+CC) S8CTB)

Fig. 5-1. Microstructures in various HAZ regions in SA 508 RPV weld.

- 39 -

Page 50: Materials Characterization by Resonant Ultrasonic Spectroscopy

1.3.

7M2

[14].

^ Levenberg-Marquardt»g#

merits a]

* H

Fig.5-2<H1

3 .3^ 'RPMODEL' 3:71

H7f degenrate

*1H4.5 mm

'RUSPEC'#

figure of

£.7]

Tfl

^ 3 . 5 mm X 4 . 0 mm X

2 " g 'RPR' JEEfe 'RPMODEL'

Levenberg-Marquardt^<^1

97fl<y orthorhombic symmetry

7 ^ * 1 SA 508 Cl. 2

- 40 -

Page 51: Materials Characterization by Resonant Ultrasonic Spectroscopy

Determine MaterialsStructure

(Isotropic, Cubic, Etc)

Prepare RectangularParallelepiped Sample

Determine Initial Estimateof Mode Resonant Frequencies

'btain Measured Frequencies

Run RPMODEL &Evaluate Error

\

Input Measured Frequenciesinto RPR using RPMODEL as

the Interface

Remeasure Missing or LargeError Mode Frequencies

\

/

Output Elastic Moduli

- Literature- lab Experience-Other Measurement

- Input Weight or Densityand Dimension to betterthan 0.1% Accuracy- Input Elastic Moduli "Guesses"Obtained from Literature orother Experiments

Iterate UntilError is

Acceptable

Fig. 5-2.

- 41 -

Page 52: Materials Characterization by Resonant Ultrasonic Spectroscopy

1) E - 207.200 - 57.09 T/1000 (GPa, T=° C /# ^ - § - « H [18], 25°

Young's modulus-H -r^}1?!,

E = 205. 77275 Gpa.

2) -&uo^ I ^ ^ I T 1 5i PQisson's ratio 2/ = 0.30 3. 7}^}3. 4 4 shear

modulus (7, Lame constant ^ , elastic stiffness eu , c12/ £44 -

= 75. 143 GPa,

*= MX. ,V1_O.A ~ 118- 7 1 5 °Pa>

1.4.

7.001 Gpa,

c12 = A = 118.715 GPa,

cu = -i- (c u - c12) - 79.143 GPa.

- 42 -

H (k)

Page 53: Materials Characterization by Resonant Ultrasonic Spectroscopy

5 -

4 -

2 -

1 -

0 -

500.0k 1.0M 1.5M

Frequency2.0M

Fig. 5-3. Typical resonance spectrum of SA 508 rectangular parallelepiped

shaped specimen.

- 43 -

Page 54: Materials Characterization by Resonant Ultrasonic Spectroscopy

SA 508 Cl. 3 #aovt8 *flfi°fi tfl*> ^ 4 * 1 ^ ^ 4 ^ - ^ ^ r ^ ^ S ) ^ ^ Fig

J ^ Table 5-3 <Ml ^ ^ 4 * 3 3 } } l

^ H r ^ o f l *NI3$i * § * A^KRMS e r r o r ) ^ ^ 4 i 0.07

0.14XS. ^-^SlSacK «aa>4AS. ^ 5 : ^.^}7> 0.2% fl

Fig. 5-4 91 Fig. 5-5<Hl Young's modulus ^ shear modulus

C>. 4 *]^ofl cflt!: Young's modulus $} shear modulus^ -H

JiSJ^K S?> Young's modulus^ ^.7] ^^§^2f -g^l ^ a H - H] Lsfl j £ £ 205

GPa ^ § £ S ^ ^ § € ^o l ^ ^ . a ^ i g ^ ^ i g ^ S ^ ^ « > ^-?-^lfe 209 ~ 212 GPa

71 >0

Fig. 5-4 5l Fig. 5-5<Hl-H 4 4 ^ o f l ^ ^ Young's modulus Q shear

modulus

J i 6 | a | o] ^ ^ - ^ % > ^ Young's modulus^)- shear modulus<Ml

fi^ 1350

l K ^ ^ 900°

2^}

S6-S7-S: 750

^7iuK5»), ^Bfl7f £]x l^ *tSJt^1^ tempering

(57)olc}. ^#^<?1 nl^l ^ 4 ^ ^ ^ # Table 5-2*11

5} ^t:]-. o]z\Q n}4] 3L^$] X}O]^. E > A ^ ^ ] ^ ^ <£3f*H A ^ tempered

martensite(57-S3) J£t:]-b tempered bainite(5^~55)^

tempered bainite ^ 4

S5, S6, S7

- 44 -

Page 55: Materials Characterization by Resonant Ultrasonic Spectroscopy

Table 5-3.

Speimen

No.

SA5O8_1A

SA5O8_1A1

SA5O8_1B

SA508 1B1SA508 1CSA508 1C1SA508 IDSA508 1D1SA508 2ASA508 2A1SA508 2BSA508 2B1SA508 2CSA5O8_2C1SA508_2DSA508 2D1SA508 3ASA508 3A1SA508 3BSA508 3C1SA508 3CSA508 3C1SA508 3DSA508 3D1SA508_4ASA508 4A1SA508_4BSA5O8_4B1SA508_4CSA508 4C1SA508_4DSA5O8_4D1SA508_5ASA5O8_5A1SA508 5BISA5O8_5B1SA508_5CSA508 5C1SA508_5D

[1012

dyn/cm2]

2.7661

c12 [ lO"

dyn/cm2]

1.1244

2.76461 1.125

2.7654

2.7611

1.1282

1.12392.7681 1.12872.7546J 1.11612.7554J 1.1182.75872.724

2.72262.7398

1.12171.09571.0931

1.112.7419J 1.11062.7528 1.12362.7678 1.13772.7732| 1.14722.7801 1.15342.7565 1.1265

2.757J 1.12672.76781 1.13832.7658! 1.13592.75511 1.12542.7567i 1.12592.758 1.1273

2.7619 1.13062.7534 1.12432.7566; 1.1263

2.757: 1.12922.7567 1.12822.7602 11.12752.7629 1.13242.7613 1.13242.7681 1.13842.7687: 1.12992.7653 1.12612.7676 1.1278

2.77 1.1292.7685 1.12942.7718 1.13082.7723 1.1324

ISA508 5D1 j 2.7668 1.127

c« [10"dyn/cm2]

0.8208

0.8198

0.8186

0.81860.81970.81920.81870.81850.81420.81480.81490.81560.81460.8151

0.8130.8134

0.8150.81520.8147

0.8150.81490.81540.81530.81570.81456.81520.81390.81420.81630.81530.81450.81490.81940.81960.81990.82050.81960.8205

0.820.8199

Young's

Modulus,

E (Gpa)

211.607

211.383

211.159

211.083211.425211.086211.001

211.02209.548209.641209.971210.147210.143210.506210.181210.379210.288210.337210.426210.451210.244210.371210.374210.522210.134210.329210.078210.133210.611

210.46210.273210.471211.376211.355211.456211.617211.412211.649211.559211.441

Shear

Mudulus

(Gpa)

82.08

81.98

81.86

81.8681.9781.9281.8781.8581.4281.4881.4981.5681.4681.5181.3

81.3481.5

81.5281.4781.5

81.4981.5481.5381.5781.4581.5281.3981.4281.6381.5381.4581.4981.9481.9681.9982.0581.9682.05

8281.99

BulkModulus,B (Gpa)

167.17

167.153

167.393

166.963167.517166.233166.38

166.737163.84163.62

165.327165.443166.667

168.1168.92

169.557166.983167.007168.153167.913166.857166.95

167.093167.43166.74

166.967167.18167.11167.18

167.582167.53

168.159167.617167.25167.44167.6

167. 57167. 78

167.897167.36

Poisson'sj RN6Ratio j error

<*)

0.28903J 0.106

0.28923J 0.0816

0.28976J 0.0909|0.28929J 0-0807

0.28965J 0.11880.28836J 0.08020.28864J 0.08460.28907| 0.08040.28684| 0.22790.28646| 0.19280.28833] 0.14780.28883J 0.14540.28986J 0.12140.291291 0.12640.29262[_0.13270.293211 0.12120.290111 0.10530.29009| 0.10160.29143| 0.1210.2911l| 0.1145

0.29| 0.08450.289991 6.08630.290161 0.11690.29044J 0.10610.289961 6.10710.29005! 0.11580.29057| 0.09860.29043 0.09640.29004J 0.11960.290691 0.07780.29081 j 0.10130.29139J 0.09890.289821 0.08090.289381 0.06890.289521 0.07050.28956! 0.06940.289731 0.07390.28976! 0.08280.289991 0.09330.289431 0.07

Density[g/cm3]

7.8838187.883818

7.837368

7.8373687.8497.849

7.8579267.8579267.8425497.8425497.8893137.88313

7.8502967.8502967.8221547.8221547.8384667.8384667.8346247.8346247.8460367.8460367.8483987.8483987.8387967.8387967.8219427.8219427.8656657.8656657.8443277.8443277.8369497.8369497.8694137.8694137.8527157.8527157.8481727.848172

Index

1

1

1

111112222222233333333444J

1 444445555555

5

- 45 -

Page 56: Materials Characterization by Resonant Ultrasonic Spectroscopy

Table 5-3. (?lHf).

Speimen

No.

en L10 |Ci2 LIU

dyn/cm ] dyn/cm ]

=„ [10"dyn/cm2]

Young's

Modulus,

E (Gpa)

Shear

Mudulus

(Gpa)

Bulk Poisson' RMS

Modulus, !s Ratio error

B (Gpa) I (%)

Density | Index I

[g/cm3] i

SA5O8 6A 2.76051 1.1221 0.8192 211.191 81.92J 166.8231 0.28901; 0.0642 7.83646JSA508 6A1 2.7636J 1.1237 0.82 211.404 82| 167.0271 0.28905: 0.0696 7.83646!SA508 6B 2.754J 1.1164 0.8188 210.996 81.88! 166.2271 0.28845; 0.0864 7.823086 6!SA508 6B1 2.7573! 1.1203 0.8185 210.996 81.85! 166.597| 0.28892; 0.0594 7.823046SA508_6C 2.75661 1.118 0.8193 211.141 81.93! 166.42] 0.28855; 0.0841 7.843055

81.98! 166.733] 0.28878i 0.10247.843327SA508 6D 2.7604! 1.1208 0.8198 211.308 6!SA508 6D1 2.764SA5O8 7A 2.7459SA508 7A1 2.7477!

SA508 7B 2.7571;SA5O8_7B1SA508 7C

2.7608

1.1252 0.8194 211.293 81.941 167.147| 0.28931 j 0.0696 7.8433271.1116 0.8172 210.535 81.72! 165.63J 0.28815; 0.0795 71.1125 0.8176 210.646 81.76i 165.757 0.28882! 0.075471.1212 0.8179 210.873 81.79; 166.657

2.7462!1J2571.1096

JUS1750.8183

210.86210.757

81^75!81.83!"

167.080.289111 0.11437

165.513|0.28966J

~o] 28777!0.088170."'1024 7,

,817048.817048!"817048f8170481823595F

_77

it7!

SA508 7C1 2.7506 1.1148 0.8179 210.757 81.79J 166.0071 0.28841 0.07487.823595]U

SA508_7D 2.7519 1.1148 0.8186 210.919 81.86| 166.043! 0.28829;SA5O8_7D1ISA508 8A

2/7551J2.74681

0.8182 210.897 81.82; 166.417!1.1121 0.8174 210.59 81.74J

81.79"165.93j

0.28879;0.28817!

7.818946[ 707967.818946! 7

0.10410.0.0743 7.829797!

SA508 8A1 2.7479! 1.112 0.8179 210.709 165.737! 0.28811; 0.0739 7.829797!;SA5O8_6C1SA508 8B

2.7563! 1.1181 0.81912.7612; 1.1268 0.8172

211.096210.807

81.9181.72

166.4171167.16!

0.2885910J28981!

0^057370.0805 7

843055!8178351

SA508 8B1 2.762! 0.818 210.98 81.8 167.133! 0.28961! 0.08 7.817835!SA508_8CSA5O8_8C1SA508_8D "SA508 8D1

2. 7553; 0.8181 210.881 81.81 166.45! 0.28884; 0.0844 7.822957!2. 7537;2.750H

1.11691.116

0.8184 210.911 81.84U

0.8171 210.59 81.71166.25! 0.28856! 0.0753 7.822957;166. 711 0.28864r~0.0753I7.813875!

2.7527! 1.1167 0.818 210.815 81.8 0.2886 0.0834 7.813875! 8!

- 46 -

Page 57: Materials Characterization by Resonant Ultrasonic Spectroscopy

212.0i

O)

0 1 2 3 4 5 6 7 8 9

Specimen Group

Fig. 5-4. Young's modulus of SA 508 Cl. 3 alloy by WS.D

! I! I

i !

0 1 2 3 4 5 6 7 8 9

Specimen Groups

Fig. 5-5. Shear modulus of SA 508 Cl. 3 alloy by RUS.

5 i: 1350C-1350C,S Z 1350C-900C,S Z 1350C-750C,S £ 900C-900C,S S 900C-750C,S 6:750C 750C,S T. 680C-680C,S X raw material

47 -

Page 58: Materials Characterization by Resonant Ultrasonic Spectroscopy

tempered martensite(Si ~S3)$) t M ^ ^ f e ^ ^ -3.7H cflfjflA-J <*>;?>

7fl^r7} pearlite-bainite-martensite£) ^A-j.3. 4 4 : * H tempered

martens i t e ^ H f e v}X\ ^7>*>t|- pearliteS}

2 ^ [19] <£xmr.\.

Fig. 5-6 51 Fig- 5-7<Hl 4 4 ^1^*1) ^«>

^ 7 | « t > « ^ I ^ S . C^- A)^#2ffe ^51 SI*]} tbQ cUr

scattering*}3. Sl-c- 1 d]*fl tfltl ^ ^ 1 ^ : ^ r^^l ?it:>. J£SV Young's modulus

7} specimen group<Hl v%$ ^ ^ « > * H t ^ - ° f e ^ ^ °H1 ^ S " * f e cu^r C>

^}^^} . °lfe stiffness ^ ^ , cs <$W off-diagonal ty<& c122] «g

Young's modulus, E-b c,y5| ^*J^^1 S« # ^ S l ¥) £ = 1 / S U

&<$ da # 0 61 ^ . f Cll2f^ c}^ . ^o ] Tfl^ig ^ jJlcK C44

shear modulus(Fig. 5-5)^-

Sife tfl Fig. 5-8 gj Fig. 5-9<Hl 4 4

Tfl s ca t t e r ing*^ $1^ cfl < lfe

^ 44

* f e cfl dl<>1lfe 1) martensite^l tetragonality£] 4 ^ 5J ^ T S , 2) #$1 4

4i, 3) carbide <Qx}*\ "&% ^ 7-AoV f ^ & ^ ^ « ^r Slc}[20].

martensite S ^ J i c f e bainite 2I^°L3. %^r^, £3!^SJ 3.7]7\ 4

S73} •%•*}# tempered bainite

307fl

- 48 -

Page 59: Materials Characterization by Resonant Ultrasonic Spectroscopy

2.78-

2.77-

V" 2.76-

jo" 2.75-O

S, 2.74-

° 2.73-

2.72-

2.71-

:

s

J•1

•I

i ,i<

ii •

; :

tt

at••

••

1 2 3 4 5 6

Specimen Group

Fig. 5-6. Elastic stiffness ( cn) of SA508 Cl. 3 alloy by

1.16-j

1.15-

1.14-

"t 1.13-o

I 1.12-j

>< 1-11-

o" 1.10-

1.09-

1.082 3 4 5

Specimen Group

Fig. 5-7. Elastic stiffness ( C-Q) of SA508 Cl. 3 alloy by RUS.

S l: 1350C-1350C,S 2: 1350C-900C,S 3: 1350C-750C,S 4: 900C-900C,S 5: 900C-750C,S 6: 750C 750C,S 7: 680C-680C,S 8: raw material

- 49 -

Page 60: Materials Characterization by Resonant Ultrasonic Spectroscopy

5970

5960-

!F 5950-

— 5940-

'o•§ 5930-

o>5 5920-

73

O) 5900-o

5890

: !

3 4 5 6

Specimen Group

Fig. 5-8. Longitudinal wave velocity of SA 508 Cl. 3 alloy by RUS. 3)

I1IS

3235-

3230-

3225-

3220-

3215-

3210-

••

!

s•t•••

••••

1 1

1•1

• •

• ••

3 4 5 6

Specimen Group

Fig. 5-9. Shear wave velocity of SA 508 Cl. 3 alloy by RUS.

S i: 1350C-1350C,S Z 1350C-9WC,S X 1350C-750C,S 4: 900C-900C,S S 900C-750C,S K 750C 750C,S 7. 680C-680C,S & raw material

- 50 -

Page 61: Materials Characterization by Resonant Ultrasonic Spectroscopy

v}*\] ^2:5} lattice distortion, ^ ^ ^ 37] ^

K Palanichamy et al.^r [21, 22] i ^ M ^ B

lattice distortion, ^ ^ ^ , *1# - <>1 db*f7j nfi^-0!^^! JL2.*}9Ji:f. Ahn

and et al.^r [23] t>*fi ^^>^ 7O H1^ ^ ^ 4 ^ £ 5 } ^ ^ ^ j 3.7],

} martensite ll<Hl ^ S ^ U ^ 3 .71^ - - Bfl < 1 <H1 ^cfl»> austenite

37)$} 2*^*1 # ^ Sife cfl ^ 1 3 . bainiteU martensite

fe ferrite+pearlite

ferrite+pearlite+bainite S ^ , bainite+martensite

[24] <HH-£ retained austenite + martensite

3 . martensite ^ , martensite + bainite -#,

ferrite + pearlite + bainite ^h ferrite + pearlite

Fig. 5-10 ?1 5-llofl ^ r £ ^5f<Hl 4^r Young's modulus «! shear modulus^]

l A ^ Fig. 5-12 iJ 5-136fl £5. ^Sf6fl tc>s. ^ , 4 ^ £ ^ ^ 1

-S.O}- Young's modulusif shear modulus^

nfl -ofl ^}5|*1 ^4>o) ^>EJ) Al^oj) 5 | ^ ^%>?]x] ^ ^ * > data scattering

Fig. 5-lOofl-M 7 l ? H A|^6]l S]*> Young's modulus^ £5. S]^ Tfl^ £• 207.200 - 57.09 T/1000 (GPa, T=° C)

- 51 -

Page 62: Materials Characterization by Resonant Ultrasonic Spectroscopy

^ l ^ ^ -57.09 MPa/°

^ -70.27 MPa/° CS.

- 52 -

Page 63: Materials Characterization by Resonant Ultrasonic Spectroscopy

215-,

210-

185-

SA5081BSA508 1A

s.to33

lod

(0"CDc

1

205-

200-

195-

190-

E=207.2-0.05709T

. E=214.54-0.07087T

0 50 100 150 200 250 300 350 400 450

Temperature [C]

Fig 5-10. Variation of Youngs modulus of SA508 Cl. 3 steel.

[GP

a]M

odul

usS

hear

8 2 -

8 0 -

7 8 -

7 6 -

7 4 -

7 2 -

7 0 -

t

t

SA508 1BSA508 1A

• #

50 100 150 200 250 300 350 400 450

Temperature [C]

Fig 5-11. Variation of shear modulus of SA508 Cl. 3 steel.

- 53 -

Page 64: Materials Characterization by Resonant Ultrasonic Spectroscopy

5950-

5900-

5850-

5800-

t

2 5750-

5700-

5650

• SA5081B• SA5081A

50 100 150 200 250 300 350 400 450

Temperature [C]

Fig 5-12. Variation of longitudinal wave velocity of SA508 Cl. 3 steel.

3250-,

3200-

3150-

"o

I0) 31C

Ira^ 3050-

co

3000-

SA5081BSA5081A

0 50 100 150 200 250 300 350 400 450

Temperature [C]

Fig 5-13. Variation of shear wave velocity of SA508 Cl. 3 steel.

- 54 -

Page 65: Materials Characterization by Resonant Ultrasonic Spectroscopy

Zirconium ^ # 2 } ?l7ll^4; 3.-g-£(Terminal Solid Solubility: TSS)

1.5. £^

M *> ^ ] B I SA 508 Cl. 3

4 ^r*

*>Sgl .t -^^ -i-^ Young's modulus 209 -212 GPa^ ^^m^l 3L7]

205 GPa 1 4 ^>^V ^5tt4.

— ^ tempered martensite S^jjtcl- tempered bainite

3. ^i-sVg-ig& S L ^ % 4 ^ S f e ^ ^ ^ ' ^ 3717} # i * K ^ , martensite

bainite 2 2 , ' ^ ^ ^ ^ - ^-^<>1 ^7>*

4. Young's modulus gj shear modulus^-

5.

- 55 -

Page 66: Materials Characterization by Resonant Ultrasonic Spectroscopy

Zirconium ^^$] rS.<H] ty^ Sb!|*f4i 5L%&.(Terminal

Solid Solubility: TSS)£| ^ifi ^ - ^ # t\<gQ ^-§-o] 7 > ^ * H ^*1 7]^]X\

- 56 -

Page 67: Materials Characterization by Resonant Ultrasonic Spectroscopy

7ii

. o]

- 57 -

Page 68: Materials Characterization by Resonant Ultrasonic Spectroscopy

mechanical Q-factor7} iLt:>

«fl ti4tt ^ ^ ^ Q-factor#

Q-factor

wave guide

71

1) Load cell#

2) 1^- l^^l

Ef o Qo o

. -§-71 71

- 58 -

Page 69: Materials Characterization by Resonant Ultrasonic Spectroscopy

1. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed.

(Pergamon Press, London, 1986).

2. J. D. Maynard, "Resonant ultrasound spectroscopy", Phys. Today, 49, pp.

26-31 (1996).

3. D. B. Frazer and R. C. LeCrew,"Novel method of measuring elastic and

anelastic properties of solids",Rev. Sci. Instrum., 35 (9) pp.1113-1115

(1964).

4. R. Holland,"Resonant properties of piezoelectric ceramic rectangular

parallelepipeds", J. Acoust. Soc. Am., 43 (5) pp. 988-997 (1968).

5. H. H. Demarest,"Cube-resonance method to determine the elastic

constants of solids", J. Acoust. Soc. Am., 49 (3) Pt. 2, pp. 768-775

(1971).

6. I. Ohno,"Free vibration of a rectangular parallelepiped crystal and its

application to determination of elastic constants of orthorhombic

crystals", J. Phys. Earth, 24, pp. 355-379 (1976).

7. E. Mochizuki,"Sphere-resonance method to determine elastic constants

of crystal", J. Appl. Phys. 63 (12) pp.5668-5673 (1988).

8. W. W. Visscher, A. Migliori, T. M. Bell, R. A. Reinert, "On the normal

modes of free vibration of inhomogeneous and anisotropic elastic

objects", J. Acoust. Soc. Am., 90 (4) Pt. 1, pp. 2154-2162 (1991).

9. D. G. Isaak, 0. L. Anderson, J. D. Carnes, and H. Cynn, "Elasticity of

fused silica shperes under pressure using resonant ultrasound

spectroscopy", J. Acoust. Soc. Am. 104 (4) pp2200-2206 (1998).

IRHAZ £| n | 4

37 (8) pp. 1000-1007 (1999).

11. 3 ^ , ^ « h " S A 508 Cl. 3*}s§3} n]M] 3 ] ^Sf", cfl^^^-^SIxl, 36 (8) pp. 1329-1337 (1998).

12. A. Miglioli, W. M. Visscher, S. E. Brown, Z. Fisk, S. -W. Cheong, B.

- 59 -

Page 70: Materials Characterization by Resonant Ultrasonic Spectroscopy

Alten, E. T. Ahrens, K. A. Kubat-Martin, "Elastic constants and

specific-heat measurements on single crystals of La2CuO4", Phys. Rev. B,

41 (4) pp. 2098-2102 (1990).

13. J. D. Maynard, "The use of piezoelectric film and ultrasonic resonance

to determine the complete elastic tensor in one measurement", J. Acoust.

Soc. Am., 91 (3) pp. 1754-1762 (1992).

14. A. Miglioro, J. Sarrao,"Resonant ultrasound spectroscopy", John Wiley

& Sons Inc. (1997).

15. Y. -M. Cheong, S. -C. Kwon, H. -K. Jung,"Determination of anisotropic

elastic moduli of Zr-2.5Nb CANDU pressure tube materials", J. Mater.

Sci., 35 (5) pp. 1195-1200 (2000).

16. ;§-§-?-, 1 , £<3*J, ^ W , " ^ * } ^ ^ ^ o]-§- Zr-2.5Nb ^

pp.13-27 (1999).

17. ASME B & PV Code Sec. II, Part A, SA 508 (1995).

18. D. R. Ireland, W. L. Server, R. A. Wullaert, ETI Technical Report No.

75-43, pp.5-10 (1975).

19. E. P. Papadakis,"Ultrasonic attenuation and velocity in three

transformation products in steel", J. Appl. Phys., 35 (5) pp.1474-1482

(1964).

20. R. Prasad, S. Kumar,"An investigation into the ultrasonic behavior of

cast and heat-treated structures in steel", British J. NDT, 33 (10)

PP. 506-509 (1991).

21. P. Palanicharmy, M. Vasudevan, T. Jayakumar, S. Venugopal, B.

Raj,"Ultrasonic velocity measurements for characterizing the annealing

behavior of cold worked austenitic stainless steel", NDT&E Int., 33, pp.

253-259 (2000).

22. P. Palanichamy, A. Joseph, T. Jayakumar, B. Raj, "Ultrasonic velocity

measurements for estimation of grain size in austenitic stainless

steel", NDT&E Int., 28 (3) pp.179-185 (1995).

23. B. -Y. Ahn, S. S. Lee, S. T. Hong, H. C. Kim, S. -J. L.

Kang,"Application of the acoustic resonance method to evaluate the grain

- 60 -

Page 71: Materials Characterization by Resonant Ultrasonic Spectroscopy

size of low carbon steel", NDT&E Int., 32, pp. 85-89 (1999)

24. *]&q, *}&<$. ^ , tf<3«. ^^<i,. pp. 27 (1995).

- 61 -

Page 72: Materials Characterization by Resonant Ultrasonic Spectroscopy

1=1 ^h

- 62 -

Page 73: Materials Characterization by Resonant Ultrasonic Spectroscopy

97-150C VDNJA

DPEN-T

• liESg•-'I-

Ilid

VILTICIUt ««3EI£ltH

•Q.,0,

C-3 TYPE

PROGRAM 903P1000 M KT MOLING HEATER g CASE

(300VX300DX15TF1100 a a 100V, IP, 2KV 300X100

AH JEDN INDUSTRIAL CDU LTD.SCALEDATE 970614

TITLE RUS . 2SSSKITUBE (100X1300T/C

Page 74: Materials Characterization by Resonant Ultrasonic Spectroscopy

97-120B

OPEN-T

PRDGRAMCASE

903P1000 •£, KT MOLING HEATER n1100 2 a! 100V, IP, 2KV 300X100

AH JEDN INDUSTRIAL CD., LTD.SCALEDATE 970614

TITLE RUSg <300WX300I)X15r>'TUBE <1O0X15OL>

T/C

3E mm

Page 75: Materials Characterization by Resonant Ultrasonic Spectroscopy

220V, POVERT R

fan

pt -ogran PID

controller 903P

0 220 4-S0nA

S, C, R

unl-t

v lv£v3d

power Unit

1 2neter

0 220volt ne220 0

efurnace CDUPLL"

©

JEDN INDUSTRIAL CO.L.TD

SCALE

DATE 970813TITLE

97-120

DPEN-C

- 65 -

Page 76: Materials Characterization by Resonant Ultrasonic Spectroscopy

»i—ami»i

.en t ™ " we wattm-ro 3 ne art

nuns swri

TO/ $y is

r•;ioq i»nfpy

W I raw I B5* i Wiw* * « |

Page 77: Materials Characterization by Resonant Ultrasonic Spectroscopy

- 67 -

Page 78: Materials Characterization by Resonant Ultrasonic Spectroscopy

- 68 -

Page 79: Materials Characterization by Resonant Ultrasonic Spectroscopy

_L

- in

- 69 -

Page 80: Materials Characterization by Resonant Ultrasonic Spectroscopy

SM40C, 1EA

qo1

129

34 85 1Q

oodI

I .1EA

17

22

~M5 TAP

©SUS304,1EA

r- W TAP

65

' «§ , 1E/0 §, 1EA22

4,4.4

/-M10

©SUS304,1EA

-M5

, 4EAI,4EA ©SUS304.2EA

M4 TAP

68

Page 81: Materials Characterization by Resonant Ultrasonic Spectroscopy

SUS304, 1EA SUS304, 1EA @SUS304, 1EA

0 O

S

gd1

*

5311 32

-M3 TAP

10

odI

•0

M6-

18

4. 10:.4

12

-M6

q6in«

(1§)SUS304, 1EA70

60

e , 2EA

AL6061, 1EA

1830

A*pn 7_/

d

. «22

/

5

///////

SUS304, 8EA

© SUS304, 4EA31

5 22 A26

qd•H

Page 82: Materials Characterization by Resonant Ultrasonic Spectroscopy

- 72

Page 83: Materials Characterization by Resonant Ultrasonic Spectroscopy

KAERI/RR -2077/2000:

» , ^

72 p. i

^A{ o ), i

« O»M<D

% Q-fectror # ^ - i - ^-

s:

£

o 1 t1

.1 4 a « --I

* * " l i L * ^ * ^ 7 i <

^1-^-tj-71^-711^-^), ^<^'^-(KALIMER7l-

>>^45.ol -§-7] #7fl ^"^ )

- S.

-( ),

^ « ^ | *

>), &M ) ! 3.

i

i

Li^^r^-, ^ ^ I ' T 1 , ?§£. 1 - ^ 3^7^ ^x>

INIS

r 7m

« !

i

2001

Cm.

& ^ ^ - 7>

Page 84: Materials Characterization by Resonant Ultrasonic Spectroscopy

BIBLIOGRAPHIC INFORMATION SHEET

Performing Org.

Report No.

Sponsoring Org.

Report No.Stamdard Report No. ! INIS Subject Code

KAERI/RR-2077/20001l

Title / SubtitleMaterials Characterization by Resonant Ultrasound

Spectroscopy Method

Yong-Moo Cheong(NucIear Materials Technology)Project Manager

and DepartmentResearcher and JH.K. Jung(Quantum Optics Lab.), Y.S. Joo(KALIMER), C. M.

Department ]Sim(HANARO),

Publication

Place

Page

Taejon i Publisher KAERIPublication

p. 72 !! 111. & Tab. | Yes( o), No ( )

! Date

I Size

2001

Cm.

Note

Classified Open( o ), Restricted( ),

Class DocumentReport Type Research Report

Sponsoring Org. Contract No.Abstract (15-20;

Lines) j

A high temperature resonant ultrasound spectroscopy(RUS) was developed. The dynamic

elastic constant of RPV weld, which has various different microstructure was determined by

RUS. It was confirmed the RUS method is very sensitive to the microstractures of the

material. RUS can be used to monitor the degradation of nuclear materials including neutron

irradiation embrittlement through the measurement of dynamic elastic constants, elastic

anisotropy, high temperature elastic constant and Q-factor.

Subject Keywords

(About 10 words)

Resonant Ultrasound Spectroscopy, Elastic Constant, Material

Characterization, Nuclear Materials