Matching Methods for Causal Inference with Time-Series ...

26
Matching Methods for Causal Inference with Time-Series Cross-Sectional Data Kosuke Imai In Song Kim Erik Wang Harvard MIT Princeton California Center for Population Research University of California, Los Angeles January 23, 2019 Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 1 / 26

Transcript of Matching Methods for Causal Inference with Time-Series ...

Page 1: Matching Methods for Causal Inference with Time-Series ...

Matching Methods for Causal Inference withTime-Series Cross-Sectional Data

Kosuke Imai In Song Kim Erik Wang

Harvard MIT Princeton

California Center for Population ResearchUniversity of California, Los Angeles

January 23, 2019

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 1 / 26

Page 2: Matching Methods for Causal Inference with Time-Series ...

Motivation and Overview

Matching methods have become part of toolkit for social scientists1 reduces model dependence in observational studies2 provides diagnostics through balance checks3 clarifies comparison between treated and control units

Yet, almost all existing matching methods deal with cross-sectionaldata

We propose a matching method for time-series cross-sectional data1 create a matched set for each treated observation2 refine the matched set via any matching or weighting method3 compute the difference-in-differences estimator

Provide a model-based standard error

Develop an open-source software package PanelMatch

Empirical applications:

Democracy and economic growth (Acemoglu et al.)Interstate war and inheritance tax (Scheve & Stasavage)

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 2 / 26

Page 3: Matching Methods for Causal Inference with Time-Series ...

Democracy and Economic Growth

Acemoglu et al. (2017): an up-to-date empirical study of thelong-standing question in political economy

TSCS data set: 184 countries from 1960 to 2010

Dynamic linear regression model with fixed effects:

Yit = αi + γt + βXit +4∑`=1

{ρ`Yi ,t−` + ζ>` Zi ,t−`

}+ εit

Xit : binary democracy indicatorYit : log real GDP per capitaZit : time-varying covariates (population, trade, social unrest, etc.)

Sequential exogeneity assumption:

E(εit | {Yit′}t−1t′=1, {Xit′}tt′=1, {Zit′}t−1t′=1, αi , γt) = 0

Nickell bias GMM estimation with instruments (Arellano & Bond)

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 3 / 26

Page 4: Matching Methods for Causal Inference with Time-Series ...

Regression Results

ATE (β̂)0.787 0.875 0.666 0.917

(0.226) (0.374) (0.307) (0.461)

ρ̂11.238 1.204 1.100 1.046

(0.038) (0.041) (0.042) (0.043)

ρ̂2−0.207 −0.193 −0.133 −0.121(0.043) (0.045) (0.041) (0.038)

ρ̂3−0.026 −0.028 0.005 0.014(0.028) (0.028) (0.030) (0.029)

ρ̂4−0.043 −0.036 0.003 −0.018(0.017) (0.020) (0.024) (0.023)

country FE Yes Yes Yes Yestime FE Yes Yes Yes Yes

time trends No No No Nocovariates No No Yes Yesestimation OLS GMM OLS GMM

N 6,336 4,416 6,161 4,245

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 4 / 26

Page 5: Matching Methods for Causal Inference with Time-Series ...

Treatment Variation Plot

Regression models does not tell uswhere the variation comes from

Estimation of counterfactualoutcomes requires comparisonbetween treated and controlobservations

Identification strategy:

within-unit over-time variationwithin-time across-unitsvariation 1960 1970 1980 1990 2000 2010

Year

Cou

ntrie

s

Autocracy (Control) Democracy (Treatment)

Democracy as the Treatment

Ireland

Netherlands

Switzerland

Sweden

Norway

Denmark

Belgium

Japan

USA

UK

France

Austria

Finland

New zealand

Italy

Canada

Korea

Australia

Germany

1850 1900 1950 2000

Year

Cou

ntrie

s

Peace (Control) War (Treatment)

War as the Treatment

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 5 / 26

Page 6: Matching Methods for Causal Inference with Time-Series ...

R Package PanelMatchData

> tail(dem)

wbcode2 year dem y tradewb auth

9379 202 2005 0 589.3235 75.11845 1

9380 202 2006 0 586.1276 78.45123 1

9381 202 2007 0 582.7930 84.64986 1

9382 202 2008 0 563.5891 87.85439 1

9383 202 2009 0 569.2211 97.33238 1

9384 202 2010 0 577.0730 107.33904 1

wbcode2: country code

year: year

dem: binary democracy indicator

y: log real GDP per capita (a measure of growth)

tradewb: trade volume

auth: 1-dem

R Code

DisplayTreatment(unit.id = "wbcode2",

time.id = "year", legend.position = "none",

xlab = "year", ylab = "Country Code", y.size=.5,

treatment = "dem", data = dem)

+ theme(axis.text.y = element_blank(), axis.ticks.y = element_blank())

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 6 / 26

Page 7: Matching Methods for Causal Inference with Time-Series ...

War and Taxation

Inheritance tax plays a central role in wealth accumulations andincome inequality

Scheve and Stasavage (2012): war increases inheritance taxation

TSCS Data: 19 countries over 185 years from 1816 to 2000

Static model:

Yit = αi + γt + βXi ,t−1 + δ>Zi ,t−1 + λi t + εit

Xi,t−1: interstate war for country i in year t − 1Yit : top rate of inheritance taxZi,t−1: time-varying covariates (leftist executive, a binary variable forthe universal male suffrage, and logged real GDP per capita)Strict exogeneity:

E(εit | Xi ,Zi , αi , γt , λi ) = 0

where Xi = (Xi1,Xi2, . . . ,XiT ) and Zi = (Z>i1,Z>i2, . . . ,Z

>iT )>

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 7 / 26

Page 8: Matching Methods for Causal Inference with Time-Series ...

Dynamic model without country fixed effects:

Yit = γt + βXi ,t−1 + ρYi ,t−1 + δZi ,t−1 + λi t + εit

where the strict exogeneity assumption is now given by,

E(εit | Xi ,Zi ,Yi ,t−1, γt , λi ) = 0

Regression results:

ATE (β̂)6.775 1.745 5.970 1.636

(2.392) (0.729) (2.081) (0.757)

ρ̂10.908 0.904

(0.014) (0.014)country FE Yes No Yes No

time FE Yes Yes Yes Yestime trends Yes Yes Yes Yescovariates No No Yes Yes

N 2,780 2,537 2,779 2,536

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 8 / 26

Page 9: Matching Methods for Causal Inference with Time-Series ...

1960 1970 1980 1990 2000 2010

Year

Cou

ntrie

s

Autocracy (Control) Democracy (Treatment)

Democracy as the Treatment

Ireland

Netherlands

Switzerland

Sweden

Norway

Denmark

Belgium

Japan

USA

UK

France

Austria

Finland

New zealand

Italy

Canada

Korea

Australia

Germany

1850 1900 1950 2000

Year

Cou

ntrie

s

Peace (Control) War (Treatment)

War as the Treatment

Treatment is concentratedin a few years

How should we estimatecounterfactual outcomes?

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 9 / 26

Page 10: Matching Methods for Causal Inference with Time-Series ...

Quantity of Interest and Assumptions

Choose number of lags L = 2, . . ., for confounder adjustmentChoose number of leads, F = 0, 1, . . ., for short or long term effectsAverage Treatment Effect of Policy Change for the Treated (ATT):

E{Yi ,t+F

(Xit = 1,Xi ,t−1 = 0, {Xi ,t−`}L`=2

)−

Yi ,t+F

(Xit = 0,Xi ,t−1 = 0, {Xi ,t−`}L`=2

)| Xit = 1,Xi ,t−1 = 0

}Assumptions:

1 No spillover effect2 Limited carryover effect (up to L time periods)3 Parallel trend after conditioning:

E[Yi ,t+F

(Xit = Xi ,t−1 = 0, {Xi ,t−`}L`=2

)− Yi ,t−1

| Xit = 1,Xi ,t−1 = 0, {Xi ,t−`,Yi ,t−`}L`=2, {Zi ,t−`}L`=0]

= E[Yi ,t+F

(Xit = Xi ,t−1 = 0, {Xi ,t−`}L`=2

)− Yi ,t−1

| Xit = 0,Xi ,t−1 = 0, {Xi ,t−`,Yi ,t−`}L`=2, {Zi ,t−`}L`=0]

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 10 / 26

Page 11: Matching Methods for Causal Inference with Time-Series ...

Constructing Matched Sets

Control units with identical treatment history from time t − L to t − 1

Construct a matched set for each treated observation

Formal definition:

Mit = {i ′ : i ′ 6= i ,Xi ′t = 0,Xi ′t′ = Xit′ for all t′ = t − 1, . . . , t − L}

Some treated observations have no matched control change the quantity of interest by dropping them

Similar to the risk set of Li et al. (2001) but we do not exclude thosewho already receive the treatment

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 11 / 26

Page 12: Matching Methods for Causal Inference with Time-Series ...

An Example of Matched Set

Country Year Democracy logGDP Population Trade

1 Argentina 1974 1 888.20 29.11 14.452 Argentina 1975 1 886.53 29.11 12.613 Argentina 1976 0 882.91 29.15 12.114 Argentina 1977 0 888.09 29.32 15.155 Argentina 1978 0 881.99 29.57 15.546 Argentina 1979 0 890.24 29.85 15.937 Argentina 1980 0 892.81 30.12 12.238 Argentina 1981 0 885.43 30.33 11.399 Argentina 1982 0 878.82 30.62 13.40

10 Thailand 1974 1 637.24 43.32 37.7611 Thailand 1975 1 639.51 42.90 41.6312 Thailand 1976 0 645.97 42.44 42.3313 Thailand 1977 0 653.02 41.92 43.2114 Thailand 1978 1 660.57 41.39 42.6615 Thailand 1979 1 663.64 40.82 45.2716 Thailand 1980 1 666.57 40.18 46.6917 Thailand 1981 1 670.27 39.44 53.4018 Thailand 1982 1 673.52 38.59 54.22

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 12 / 26

Page 13: Matching Methods for Causal Inference with Time-Series ...

Find Matched Set using PanelMatch Package

R Code

> thailand.1978.index

<- which(names(msets) == "177.1978")

> thailand.1978.index

[1] 111

> print(msets[111], verbose = TRUE)

$‘177.1978‘

[1] 6

attr(,"lag")

[1] 4

attr(,"t.var")

[1] "year"

attr(,"id.var")

[1] "wbcode2"

attr(,"treated.var")

[1] "dem"

DisplayTreatment(unit.id = "wbcode2",

time.id = "year",

legend.position = "none",

xlab = "year",

ylab = "Country Code",

treatment = "dem", data = dem,

matched.set = msets[111])

23192128353743515354627187889395102103106114117129140148152156157161171172173175176178179180182184185190193196197200126712536981221629229718610515838131659620231818215515916084118576411613313847115187199163474511011212315016812856651201411691741097015181198310413514715478201134101124142401741166258014416426617769505255753414944143188167597273162183192910111420232730323339424648495860638586899091929499100107108111121127130131136137139145146170181189191194

1960

1970

1980

1990

2000

2010

year

Cou

ntry

Cod

e

Treatment Distribution Across Units and Time

highlighted matched set for unit id: 177 at time t = 1978 and lag = 4

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 13 / 26

Page 14: Matching Methods for Causal Inference with Time-Series ...

Refining Matched Sets

Make additional adjustments for past outcomes and confounders

Use any matching or weighting method

Mahalanobis distance matching:1 Compute the distance between treated and matched control obs.

Sit(i′) =

1

L

L∑`=1

√(Vi,t−` − Vi ′,t−`)>Σ−1i,t−`(Vi,t−` − Vi ′,t−`)

where Vit′ = (Yit′ ,Z>i,t′+1)> and Σit′ = Cov(Vit′)2 Match the most similar J matched control observations

Propensity score weighting:1 Estimate propensity score

eit({Vi,t−`}L`=1) = Pr(Xit = 1 | {Vi,t−`}L`=1)

2 Weight each matched control observation

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 14 / 26

Page 15: Matching Methods for Causal Inference with Time-Series ...

R Code

arg.id <- which(names(msets) == "6.1983")

DisplayTreatment(unit.id = "wbcode2",

time.id = "year",

legend.position = "none",

xlab = "year",

ylab = "Country Code",

treatment = "dem",

data = dem,

matched.set = msets[arg.id])

R Code

pm.obj <- PanelMatch2(lag = 4,

time.id = "year",

unit.id = "wbcode2",

treatment = "dem",

outcome = "y",

refinement.method =

"ps.weight",

data = dem,

match.missing = T,

covs.formula =

~ tradewb +

lag("tradewb", 1:4) +

lag("y", 1:4))

pm.obj[[arg.1983.idx]]2319212835374351535462718788939510210310611411712914014815215615716117117217317517617817918018218418519019319619720012671253698122162922971861051583813165962023181821551591608411857641161331384711518719916347

4511011212315016812856651201411691741097015181198310413514715478201134101124142401741166258014416426617769505255753414944143188167597273162183192910111420232730323339424648495860638586899091929499100107108111121127130131136137139145146170181189191194

1960

1970

1980

1990

2000

2010

year

Treatment Distribution Across Units and Time

highlighted matched set for unit id: 6 at time t = 1983 and lag = 4

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 15 / 26

Page 16: Matching Methods for Causal Inference with Time-Series ...

An Example of Refinement

Country Year Democracy logGDP Population Trade Weight1 Argentina 1979 0 890.24 29.85 15.93 1.002 Argentina 1980 0 892.81 30.12 12.23 1.003 Argentina 1981 0 885.43 30.33 11.39 1.004 Argentina 1982 0 878.82 30.62 13.40 1.005 Argentina 1983 1 881.09 30.75 16.46 1.006 Argentina 1984 1 881.76 30.77 15.67 1.007 Mali 1979 0 542.02 43.80 31.18 0.268 Mali 1980 0 535.65 43.96 41.82 0.269 Mali 1981 0 529.10 44.07 41.92 0.26

10 Mali 1982 0 522.25 44.45 42.53 0.2611 Mali 1983 0 524.84 44.74 43.65 0.2612 Mali 1984 0 527.13 44.95 45.92 0.2613 Chad 1979 0 506.71 44.61 44.80 0.2714 Chad 1980 0 498.36 44.84 45.75 0.2715 Chad 1981 0 497.18 45.07 51.58 0.2716 Chad 1982 0 500.07 45.44 43.97 0.2717 Chad 1983 0 512.20 45.76 29.22 0.2718 Chad 1984 0 511.63 46.04 29.91 0.2719 Uruguay 1979 0 858.39 27.23 41.51 0.4720 Uruguay 1980 0 863.39 27.04 37.99 0.4721 Uruguay 1981 0 864.28 26.93 36.20 0.4722 Uruguay 1982 0 853.36 26.86 35.84 0.4723 Uruguay 1983 0 841.87 26.83 33.36 0.4724 Uruguay 1984 0 840.08 26.82 42.98 0.47

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 16 / 26

Page 17: Matching Methods for Causal Inference with Time-Series ...

The Difference-in-Differences Estimator

Compute the weighted average of difference-in-differences amongmatched control observations

Weights are based on refinement marginal structural models forthe long-term effect of a fixed treatment sequence

A synthetic control for each treated observation

The DiD estimator:

1∑Ni=1

∑T−Ft=L+1 Dit

N∑i=1

T−F∑t=L+1

Dit

{(Yi,t+F − Yi,t−1)−

∑i ′∈Mit

w i ′

it (Yi ′,t+F − Yi ′,t−1)

}

Equivalent to the weighted two-way fixed effects estimator:

argminβ

N∑i=1

T∑t=1

Wit{(Yit − Y∗i − Y

∗t + Y

∗)− β(Xit − X

∗i − X

∗t + X

∗)}2

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 17 / 26

Page 18: Matching Methods for Causal Inference with Time-Series ...

Checking Covariate Balance and Computing Standard Error

Balance for covariate j at time t − ` in each matched set:

Bit(j , `) =Vi ,t−`,j −

∑i ′∈Mit

w i ′it Vi ′,t−`,j√

1N1−1

∑Ni ′=1

∑T−Ft′=L+1Dit′(Vi ′,t′−`,j − V t′−`,j)2

Average this measure across all treated observations:

B(j , `) =1

N1

N∑i=1

T−F∑t=L+1

DitBit(j , `)

Standard error calculation consider weight as a covariate

1 Block bootstrap2 Model-based cluster robust standard error within the GMM framework

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 18 / 26

Page 19: Matching Methods for Causal Inference with Time-Series ...

Empirical Application (1)

ATT with L = 4 and F = 1, 2, 3, 4

We consider democratization and authoritarian reversal

Examine the number of matched control units

18 (13) treated observations have no matched control

Democratization

0 20 40 60 80 100 120

010

2030

40

One Year Lag

Four Year Lags

Fre

quen

cy

Authoritarian Reversal

0 20 40 60 80 100 120

010

2030

40Four Year

Lags

One Year LagF

requ

ency

Starting War

0 5 10 15 20

010

2030

40

One Year LagFour Year Lags

Fre

quen

cy

Ending War

0 5 10 15 20

010

2030

40

One Year LagFour Year

Lags

Fre

quen

cy

Ace

mog

lu e

t al.

(201

8)S

chev

e &

Sta

sava

ge (

2012

)

Number of matched control units

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 19 / 26

Page 20: Matching Methods for Causal Inference with Time-Series ...

Improved Covariate Balance−

2−

10

12

−4 −3 −2 −1

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Dem

ocra

tizat

ion

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Dem

ocra

tizat

ion

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Dem

ocra

tizat

ion

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Dem

ocra

tizat

ion

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Dem

ocra

tizat

ion

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Dem

ocra

tizat

ion

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Dem

ocra

tizat

ion

−2

−1

01

2

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Aut

horit

aria

n R

ever

sal

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Aut

horit

aria

n R

ever

sal

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Aut

horit

aria

n R

ever

sal

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Aut

horit

aria

n R

ever

sal

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Aut

horit

aria

n R

ever

sal

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Aut

horit

aria

n R

ever

sal

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Aut

horit

aria

n R

ever

sal

−2

−1

01

2

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Sta

rtin

g W

ar

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Sta

rtin

g W

ar

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Sta

rtin

g W

ar

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Sta

rtin

g W

ar

−2

−1

01

2

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

Mahalanobis Distance Matching

Propensity Score Matching

Propensity Score Weighting

Before Matching

Before Refinement

Ace

mog

lu e

t al.

(201

8)S

chev

e &

Sta

sava

ge (

2012

)

Years relative to the administration of treatmentImai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 20 / 26

Page 21: Matching Methods for Causal Inference with Time-Series ...

Estimated Causal Effects

● ● ● ● ●

Up to 5 matches

●Treatment reversal allowed

Treatment reversal not allowed

−0.

2−

0.1

00.

050.

1

0 1 2 3 4

● ● ● ● ●

Up to 10 matches

0 1 2 3 4

● ● ● ● ●

Up to 5 matches

0 1 2 3 4

● ● ● ●●

Up to 10 matches

0 1 2 3 4

● ● ● ● ●

0 1 2 3 4

● ● ●●

−0.

2−

0.1

00.

050.

1

0 1 2 3 4

● ● ● ●

0 1 2 3 4

● ● ●●

0 1 2 3 4

● ● ●●

0 1 2 3 4

●● ● ● ●

0 1 2 3 4

Mahalanobis Matching Propensity Score Matching Propensity Score Weighting

Est

imat

ed E

ffect

of

Dem

ocra

tizat

ion

Est

imat

ed E

ffect

of

Aut

horit

aria

n R

ever

sal

Years relative to the administration of treatment

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 21 / 26

Page 22: Matching Methods for Causal Inference with Time-Series ...

Computing Estimates using PanelMatch PackageR Code

pm.obj <- PanelMatch2(4, "year", "wbcode2", "auth", "y",

refinement.method = "CBPS.weight",

data = dem, match.missing = T,

covs.formula = ~ tradewb + lag("tradewb", 1:4) +

lag("y", 1:4))

res <- PanelEstimate2(lead = 0:4, inference = "bootstrap",

qoi = "att", sets = pm.obj, data = dem,

outcome.variable = "y")

plot(res,ylim = c(-10, 5), main = "CBPS weighting",

ylab ="Authoritarian reversal effect")

● ●●

−10

−5

05

CBPS weighting

Effe

cts

of D

emoc

ratiz

atio

n on

Gro

wth

t+0 t+1 t+2 t+3 t+4

●●

● ●

−20

−15

−10

−5

05

CBPS weighting

Aut

horit

aria

n re

vers

al e

ffect

t+0 t+1 t+2 t+3 t+4

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 22 / 26

Page 23: Matching Methods for Causal Inference with Time-Series ...

Empirical Application (2)

Democratization

0 20 40 60 80 100 120

010

2030

40

One Year Lag

Four Year Lags

Fre

quen

cy

Authoritarian Reversal

0 20 40 60 80 100 120

010

2030

40

Four Year Lags

One Year Lag

Fre

quen

cy

Starting War

0 5 10 15 20

010

2030

40

One Year LagFour Year Lags

Fre

quen

cy

Ending War

0 5 10 15 20

010

2030

40

One Year LagFour Year

Lags

Fre

quen

cy

Ace

mog

lu e

t al.

(201

8)S

chev

e &

Sta

sava

ge (

2012

)

Number of matched control units

−2

−1

01

2

−4 −3 −2 −1

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Dem

ocra

tizat

ion

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Dem

ocra

tizat

ion

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Dem

ocra

tizat

ion

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Dem

ocra

tizat

ion

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Dem

ocra

tizat

ion

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Dem

ocra

tizat

ion

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Dem

ocra

tizat

ion

−2

−1

01

2−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Aut

horit

aria

n R

ever

sal

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Aut

horit

aria

n R

ever

sal

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Aut

horit

aria

n R

ever

sal

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Aut

horit

aria

n R

ever

sal

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Aut

horit

aria

n R

ever

sal

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Aut

horit

aria

n R

ever

sal

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Aut

horit

aria

n R

ever

sal

−2

−1

01

2

−4 −3 −2 −1−

2−

10

12

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Sta

rtin

g W

ar

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Sta

rtin

g W

ar

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Sta

rtin

g W

ar

Sta

ndar

dize

d M

ean

Diff

eren

ces

for

Sta

rtin

g W

ar

−2

−1

01

2

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1−

2−

10

12

−4 −3 −2 −1

−2

−1

01

2

−4 −3 −2 −1

Mahalanobis Distance Matching

Propensity Score Matching

Propensity Score Weighting

Before Matching

Before Refinement

Ace

mog

lu e

t al.

(201

8)S

chev

e &

Sta

sava

ge (

2012

)

Years relative to the administration of treatment

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 23 / 26

Page 24: Matching Methods for Causal Inference with Time-Series ...

Estimated Causal Effects

●●

● ● ●

Up to 1 matches

●Treatment reversal allowedTreatment reversal not allowed

−8

−4

04

812

16

0 1 2 3 4

● ●

Up to 3 matches

0 1 2 3 4

●●

●●

Up to 1 matches

0 1 2 3 4

● ●

Up to 3 matches

0 1 2 3 4

●●

● ●

0 1 2 3 4

●●

● ● ●

−8

−4

04

812

16

0 1 2 3 4

● ●

● ●

0 1 2 3 4

●● ●

● ●

0 1 2 3 4

●●

●● ●

0 1 2 3 4

●●

● ●

0 1 2 3 4

Mahalanobis Matching Propensity Score Matching Propensity Score Weighting

Est

imat

ed e

ffect

of w

arE

stim

ated

effe

ct o

f war

One

Yea

r La

gF

our

Year

Lag

s

Years relative to the administration of treatment

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 24 / 26

Page 25: Matching Methods for Causal Inference with Time-Series ...

Concluding Remarks

Matching as transparent and simple methods for causal inference

Yet, matching has not been applied to time-series cross-sectional data

We propose a matching framework for TSCS data1 construct matched sets2 refine matched sets3 compute difference-in-differences estimator

Checking covariates and computing standard errors

R package PanelMatch implements all of these methods

Ongoing research: addressing possible spillover effects

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 25 / 26

Page 26: Matching Methods for Causal Inference with Time-Series ...

Send comments and suggestions to:

[email protected]

More information about this and other research:

https://imai.fas.harvard.edu/

Imai, Kim, and Wang (HU/MIT/PU) Matching for TSCS Data UCLA (Jan 23, 2019) 26 / 26