Master in Engineering Design 1. Introduction. 2. Work Description

58
Master in Engineering Design Design of Thermal Systems Report: ACADS Modeling, Sizing and Simulation. Group: José Gaspar IN+ Center for Innovation, Technology and Policy Research, Instituto Superior Técnico, Universidade Técnica de Lisboa August 2005 1. Introduction. This work had two objectives: student evaluation; sizing of the ACADS air conditioning system. Some important results were found, on the context of the ACADS project. The variable air volume control – VAV - is the better solution on HAVC energy consumption because the electric power required by the supply fan varies with the cube of the fan rpm. The fresh air supplied to each person is about 8 liters/s. Hence if a space has 308 seats we have 308 * 8 liters/s of air supply on a CAV – constant air volume control – system. But on an ACADS (VAV optimization) system we will have a variable air volume that supplies air only to the real room occupancy. As the room occupancy diminishes, also the air supply and fan electric power diminishes. The VAV control operates based on the temperature sensor. The ACADS control adds to the temperature sensor the room occupancy information – ticket service. The Fan rotation is controlled by the occupancy information, and the cooling/heating coil is controlled by the temperature sensor, to make corrections and maintain the temperature set point. The program simulates and establishes the best system operation scheduling from the information gathered from the people, light and thermostat scheduling. But these schedules vary on the real life by a great set of factors. Hence if the real system automation doesn’t take this in to account the best results are impossible to accomplish. In real life this problem is solved by the ACADS solution 2. Work Description The work was divided in three steps: Input data to the Carrier HAP – Hourly Analysis Program; Sizing of the HVAC components; System simulation. These three steps were executed on the same program. The next step is the equipment selection and installation by the HAVC company service – from the project (specifications) final report. Future energy analysis will be made on the solar radiation gains to heat the cinema room (see last append).

Transcript of Master in Engineering Design 1. Introduction. 2. Work Description

Page 1: Master in Engineering Design 1. Introduction. 2. Work Description

Master in Engineering Design Design of Thermal Systems Report: ACADS Modeling, Sizing and Simulation. Group: José Gaspar

IN+ Center for Innovation, Technology and Policy Research, Instituto Superior Técnico, Universidade Técnica de Lisboa

August 2005

1. Introduction.

This work had two objectives: student evaluation; sizing of the ACADS air conditioning system. Some important results were found, on the context of the ACADS project. The variable air volume control – VAV - is the better solution on HAVC energy consumption because the electric power required by the supply fan varies with the cube of the fan rpm. The fresh air supplied to each person is about 8 liters/s. Hence if a space has 308 seats we have 308 * 8 liters/s of air supply on a CAV – constant air volume control – system. But on an ACADS (VAV optimization) system we will have a variable air volume that supplies air only to the real room occupancy. As the room occupancy diminishes, also the air supply and fan electric power diminishes. The VAV control operates based on the temperature sensor. The ACADS control adds to the temperature sensor the room occupancy information – ticket service. The Fan rotation is controlled by the occupancy information, and the cooling/heating coil is controlled by the temperature sensor, to make corrections and maintain the temperature set point. The program simulates and establishes the best system operation scheduling from the information gathered from the people, light and thermostat scheduling. But these schedules vary on the real life by a great set of factors. Hence if the real system automation doesn’t take this in to account the best results are impossible to accomplish. In real life this problem is solved by the ACADS solution

2. Work Description

The work was divided in three steps: Input data to the Carrier HAP – Hourly Analysis Program; Sizing of the HVAC components; System simulation. These three steps were executed on the same program. The next step is the equipment selection and installation by the HAVC company service – from the project (specifications) final report. Future energy analysis will be made on the solar radiation gains to heat the cinema room (see last append).

Page 2: Master in Engineering Design 1. Introduction. 2. Work Description

3. Input Data

3.1. Local Weather

The first data to be transferred in to the HAP program was the information about geographical location of the building, the nature of local time and soil properties. Parameters like the temperature, humidity and solar radiation conditions are central to the sizing and simulation processes. Two distinct kinds of weather data exist:

3.1.1. Design Weather Data

Used to perform cooling and heating design load estimates (see append A).

3.1.2. Simulation Weather Data

Required to perform 8760 hour energy simulations. Results of these simulations were used to compute annual energy use and energy.

3.2. Cinema Theatre Space

The cinema space must be defined so system design calculations or energy simulations can be performed. A space consists of a number of walls, roofs, windows and internal heat gains that influence heat transfer into and out of the space (see append B)

3.3. Schedules

Schedules define the hourly and daily behavior of the characteristics of a building and its HVAC equipment. Each profile contains data for one 24 hour period and are assigned to the different days of the week and months of the year (see append L).

3.4. Systems

The components included on the program were fans, coils, ductwork, supply terminals and controls. Also when performed the energy analysis of other components like heat pumps, electric resistances and combustion heating components the information collected from there were considered by the program (see append C).

3.5. Plants

A Plant is the equipment and controls which provide chilled water to cooling coils, or hot water or steam to heating coils. Examples include chiller plants, hot water boiler plants and steam boiler plants (see append D).

4. Sizing

This is a calculation process to determine the equipment specifications like airflow rates, supply terminal characteristics and coil capacities for HAVC systems (see append E).

Page 3: Master in Engineering Design 1. Introduction. 2. Work Description

5. Simulations System simulation reports provide information about system and plant operation and energy use during a typical year (see append F, G, H, I).

6. Results The simulation results and benchmarking were made only for cooling (this is a Carrier Developed Program). The results are described for each component: Supply Fan:

• CAV (Constant Air Volume); Floor Air Supply: 2403,5 €/year; • CAV (Constant Air Volume); Ceiling Air Supply: 1998,6 €/year (16,85 % less); • VAV (Variable Air Volume); Floor Air Supply: 261,1 €/year (89,14 % less ); • VAV (Variable Air Volume); Ceiling Air Supply: 213,1 €/year (91,13 % less );

Chiller Plant:

• CAV (Constant Air Volume); Floor Air Supply: 684,8 €/year; • VAV (Variable Air Volume); Ceiling Air Supply: 423,5 €/year (38,16 % less); • CAV (Constant Air Volume); Ceiling Air Supply: 415,1 €/year (39,38 % less); • VAV (Variable Air Volume); Floor Air Supply: 333,3 €/year (51,33 % less );

Final Results:

• CAV (Constant Air Volume); Floor Air Supply: 3088,3 €/year; • CAV (Constant Air Volume); Ceiling Air Supply: 2413,7 €/year (21,84 % less); • VAV (Variable Air Volume); Ceiling Air Supply: 636,6 €/year (79,39 % less ); • VAV (Variable Air Volume); Floor Air Supply: 594,4 €/year (80,75 % less );

Also it’s important to compare the loads between cooling and heating coils: Cooling Coil Loads:

• CAV; Floor Air Supply: 16709 kWh / year 3088,3 €/year; • VAV; Ceiling Air Supply: 6515 kWh / year 423,5 €/year; • CAV; Ceiling Air Supply: 9431 kWh / year 415,1 €/year; • VAV; Floor Air Supply: 5703 kWh / year 333,3 €/year.

Heating Coil Loads:

• CAV; Floor Air Supply: 35055 kWh / year • VAV; Ceiling Air Supply: 0 kWh / year (Not Simulated) • CAV; Ceiling Air Supply: 57783 kWh / year • VAV; Floor Air Supply: 0 kWh / year (Not Simulated)

Page 4: Master in Engineering Design 1. Introduction. 2. Work Description

7. Conclusion

On the last paragraph the best results presented are those of the variable air volume control applied to the air supply fan. The energy consumption reduction is enormous on the fan electric motor component when compared to the rest of the HAVC components. Thus the best solution for this type of spaces is the VAV control. This solution increase on importance with the space volume. Other advantages are the noise reduction and improve the life cycle.

Appends

A (Weather Data) B (Space Data) C (System Data Input Parameters) D (Plant Data Input Parameters) E (Air System & Plant Sizing Data) F (Air System & Plant Simulation Results) G (Air System Design Load Summary) H (Air System Psychrometrics) I (Hourly Air System Design Day Loads) J (Hourly Zone Design Day Loads) L (Schedules) M (System Benchmarking) N (Solar Radiation Gain)

Page 5: Master in Engineering Design 1. Introduction. 2. Work Description

Append A - Weather Data

Page 6: Master in Engineering Design 1. Introduction. 2. Work Description

Design Weather Parameters & MSHGs Design Parameters: City Name ................................................................................. Lisbon Location ................................................................................. Portugal Latitude ......................................................................................... 38.4 Deg. Longitude ........................................................................................ 9.1 Deg. Elevation ....................................................................................... 10.0 m Summer Design Dry-Bulb ............................................................. 32.0 °C Summer Coincident Wet-Bulb ....................................................... 20.8 °C Summer Daily Range .................................................................... 10.5 °K Winter Design Dry-Bulb ................................................................... 3.5 °C Winter Design Wet-Bulb .................................................................. 2.3 °C Atmospheric Clearness Number ................................................... 1.00 Average Ground Reflectance ........................................................ 0.20 Soil Conductivity ......................................................................... 1.385 W/(m-°K) Local Time Zone (GMT +/- N hours) ................................................ 0.0 hours Consider Daylight Savings Time ..................................................... No Simulation Weather Data ............................................... Lisbon (TRY) Current Data is .............................................................. User Modified Design Cooling Months .................................... January to December Design Day Maximum Solar Heat Gains: (The MSHG values are expressed in W/m² )

Month N NNE NE ENE E ESE SE SSE S January 30.1 30.1 30.1 127.4 234.9 309.6 362.1 376.6 375.0 February 36.5 36.5 85.0 184.1 289.7 348.5 370.5 361.6 350.6

March 43.6 43.6 149.8 256.1 319.7 356.6 344.2 313.5 296.9 April 53.8 116.0 220.5 305.9 354.2 348.5 315.4 259.7 231.3 May 62.5 174.2 277.1 338.0 368.6 343.9 285.6 210.8 174.8 June 90.6 219.6 326.1 387.3 409.5 370.7 297.1 206.1 165.9 July 96.5 265.0 406.1 508.4 546.2 502.2 419.8 307.2 255.2

August 87.0 177.4 323.4 458.8 525.2 518.2 467.8 385.1 343.8 September 64.6 64.6 189.4 343.2 438.7 480.5 475.3 434.4 411.9

October 45.9 45.9 87.0 230.5 329.9 407.3 430.7 423.6 414.2 November 30.7 30.7 30.7 121.3 229.7 309.4 354.2 367.3 370.3 December 27.4 27.4 27.4 97.7 209.6 288.3 350.4 372.9 376.7

Month SSW SW WSW W WNW NW NNW HOR Mult January 373.9 356.6 316.3 228.4 130.5 30.1 30.1 209.3 0.47 February 362.1 370.9 343.8 290.1 195.8 76.8 36.5 276.6 0.47

March 316.6 348.6 353.7 326.7 249.2 153.1 43.6 338.7 0.47 April 260.7 315.6 352.0 353.3 300.9 225.2 112.9 403.7 0.50 May 211.1 285.3 344.9 367.3 340.3 278.2 172.2 448.0 0.53 June 206.9 295.6 373.2 405.0 392.3 328.2 213.7 510.3 0.60 July 309.3 418.0 509.8 538.9 509.7 414.6 254.0 667.1 0.80

August 388.0 469.1 523.0 524.7 447.8 337.0 172.0 609.9 0.77 September 433.7 474.4 481.9 437.2 343.8 192.4 64.6 467.9 0.67

October 423.3 431.8 408.7 334.1 222.5 97.8 45.9 331.1 0.57 November 369.9 356.2 303.5 231.9 119.1 30.7 30.7 209.4 0.47 December 371.5 350.2 290.3 210.3 90.1 27.4 27.4 181.1 0.47

Mult. = User-defined solar multiplier factor.

Page 7: Master in Engineering Design 1. Introduction. 2. Work Description

Cooling Design Temperature Profiles

Location: Lisbon, Portugal

( Dry and Wet Bulb temperatures are expressed in °C )

Hr January February March April May June DB WB DB WB DB WB DB WB DB WB DB WB

0000 14.3 10.4 15.9 10.9 19.0 13.3 21.1 14.2 26.1 16.8 26.5 18.2 0100 14.0 10.3 15.5 10.7 18.6 13.1 20.7 14.1 25.7 16.7 26.2 18.0 0200 13.7 10.1 15.2 10.6 18.3 13.0 20.2 13.9 25.4 16.5 25.8 17.9 0300 13.4 9.9 14.9 10.4 18.0 12.8 19.9 13.7 25.1 16.4 25.6 17.8 0400 13.3 9.8 14.7 10.3 17.8 12.7 19.7 13.6 24.9 16.3 25.4 17.7 0500 13.2 9.8 14.6 10.3 17.7 12.7 19.6 13.6 24.8 16.3 25.3 17.7 0600 13.3 9.9 14.7 10.4 17.8 12.8 19.8 13.7 24.9 16.4 25.4 17.8 0700 13.6 10.1 15.1 10.5 18.2 12.9 20.2 13.8 25.3 16.5 25.8 17.9 0800 14.2 10.4 15.7 10.8 18.9 13.2 20.9 14.2 26.0 16.8 26.4 18.1 0900 15.0 10.8 16.7 11.3 19.8 13.6 21.9 14.6 26.9 17.1 27.2 18.5 1000 15.9 11.4 17.7 11.8 20.9 14.1 23.2 15.1 28.0 17.6 28.2 18.8 1100 16.9 11.9 18.9 12.3 22.2 14.6 24.5 15.7 29.2 18.0 29.4 19.3 1200 17.9 12.5 20.1 12.8 23.3 15.0 25.8 16.2 30.3 18.5 30.5 19.6 1300 18.6 12.8 20.9 13.2 24.2 15.4 26.8 16.6 31.2 18.8 31.3 19.9 1400 19.1 13.1 21.5 13.4 24.8 15.6 27.5 16.8 31.8 19.0 31.8 20.1 1500 19.3 13.2 21.7 13.5 25.0 15.7 27.7 16.9 32.0 19.1 32.0 20.2 1600 19.1 13.1 21.5 13.4 24.8 15.6 27.5 16.8 31.8 19.0 31.8 20.1 1700 18.7 12.9 21.0 13.2 24.3 15.4 26.9 16.6 31.3 18.8 31.3 20.0 1800 18.0 12.5 20.2 12.9 23.5 15.1 26.0 16.2 30.5 18.5 30.6 19.7 1900 17.2 12.1 19.3 12.5 22.5 14.7 24.9 15.8 29.6 18.2 29.7 19.4 2000 16.4 11.7 18.4 12.0 21.6 14.3 23.9 15.4 28.6 17.8 28.9 19.1 2100 15.8 11.3 17.6 11.7 20.8 14.0 23.0 15.0 27.8 17.5 28.1 18.8 2200 15.2 10.9 16.9 11.4 20.0 13.7 22.2 14.7 27.1 17.2 27.4 18.5 2300 14.7 10.7 16.3 11.1 19.5 13.4 21.5 14.4 26.5 17.0 26.9 18.3

Hr July August September October November December DB WB DB WB DB WB DB WB DB WB DB WB

0000 26.8 18.0 27.4 19.2 26.9 18.7 25.4 17.5 18.4 13.5 14.1 10.6 0100 26.4 17.9 27.1 19.1 26.6 18.5 25.0 17.4 18.1 13.3 13.8 10.4 0200 26.1 17.7 26.8 19.0 26.3 18.4 24.5 17.2 17.7 13.2 13.5 10.3 0300 25.9 17.6 26.6 18.9 26.0 18.3 24.2 17.1 17.5 13.0 13.2 10.1 0400 25.7 17.5 26.5 18.8 25.9 18.2 24.0 17.0 17.3 12.9 13.1 10.0 0500 25.6 17.5 26.4 18.8 25.8 18.2 23.9 17.0 17.2 12.9 13.0 10.0 0600 25.7 17.6 26.5 18.8 25.9 18.3 24.1 17.1 17.3 13.0 13.1 10.1 0700 26.0 17.7 26.8 18.9 26.2 18.4 24.5 17.2 17.7 13.1 13.4 10.2 0800 26.6 18.0 27.3 19.1 26.8 18.6 25.2 17.5 18.3 13.4 14.0 10.5 0900 27.5 18.4 28.0 19.4 27.6 18.9 26.2 17.9 19.1 13.8 14.7 10.9 1000 28.4 18.8 28.9 19.7 28.5 19.3 27.5 18.3 20.1 14.3 15.6 11.4 1100 29.5 19.3 29.8 20.0 29.6 19.7 28.8 18.8 21.3 14.8 16.7 11.9 1200 30.5 19.8 30.7 20.4 30.6 20.1 30.1 19.3 22.4 15.3 17.6 12.3 1300 31.3 20.1 31.4 20.6 31.3 20.3 31.1 19.6 23.2 15.7 18.3 12.7 1400 31.8 20.3 31.8 20.7 31.8 20.5 31.8 19.8 23.7 15.9 18.8 12.9 1500 32.0 20.4 32.0 20.8 32.0 20.6 32.0 19.9 23.9 16.0 19.0 13.0 1600 31.8 20.3 31.8 20.7 31.8 20.5 31.8 19.8 23.7 15.9 18.8 12.9 1700 31.4 20.1 31.4 20.6 31.4 20.4 31.2 19.6 23.2 15.7 18.4 12.7 1800 30.7 19.8 30.8 20.4 30.7 20.1 30.3 19.3 22.5 15.4 17.7 12.4 1900 29.8 19.4 30.1 20.1 29.9 19.8 29.2 18.9 21.6 15.0 17.0 12.0 2000 29.0 19.1 29.4 19.9 29.1 19.5 28.2 18.6 20.8 14.6 16.2 11.6 2100 28.3 18.8 28.8 19.7 28.4 19.2 27.3 18.3 20.0 14.2 15.5 11.3 2200 27.6 18.5 28.2 19.5 27.8 19.0 26.5 18.0 19.3 13.9 14.9 11.0 2300 27.1 18.2 27.7 19.3 27.3 18.8 25.8 17.7 18.8 13.7 14.4 10.8

Page 8: Master in Engineering Design 1. Introduction. 2. Work Description

Design Temperature Profiles

Location: Lisbon, Portugal

July

18

20

22

24

26

28

30

32

Temperature ( °C )

Hour 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Dry Bulb Wet Bulb

Page 9: Master in Engineering Design 1. Introduction. 2. Work Description

Design Solar Fluxes for August

Location: Lisbon, Portugal

( Values for each exposure are expressed in W/m² )

Hour N NNE NE ENE E ESE SE SSE 0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0400 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0600 34.7 80.8 116.9 136.9 137.1 117.4 81.5 35.5 0700 63.2 232.6 377.2 472.6 502.0 460.1 354.5 203.5 0800 69.2 207.0 393.9 534.0 603.3 589.6 495.3 337.0 0900 82.9 122.5 313.8 473.9 576.3 603.5 550.6 426.9 1000 95.6 99.8 190.1 349.2 472.5 539.5 539.0 470.9 1100 103.7 103.7 109.0 190.6 320.5 419.6 471.8 468.4 1200 106.9 106.9 106.9 110.8 143.1 262.7 360.9 421.9 1300 105.2 105.2 105.2 105.2 105.2 112.2 220.0 337.6 1400 98.5 98.5 98.5 98.5 98.5 98.5 104.6 225.2 1500 87.2 87.2 87.2 87.2 87.2 87.2 87.2 97.6 1600 74.1 71.3 71.3 71.3 71.3 71.3 71.3 73.8 1700 55.9 50.3 50.3 50.3 50.3 50.3 50.3 50.3 1800 61.2 20.7 20.7 20.7 20.7 20.7 20.7 20.7 1900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Hour S SSW SW WSW W WNW NW NNW HOR 0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0400 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0600 9.6 9.2 9.2 9.2 9.2 9.2 9.2 9.6 26.6 0700 47.1 42.5 42.5 42.5 42.5 42.5 42.5 42.5 185.0 0800 141.4 65.5 65.5 65.5 65.5 65.5 65.5 65.5 345.0 0900 253.5 88.9 82.9 82.9 82.9 82.9 82.9 82.9 484.7 1000 346.9 187.4 99.6 95.6 95.6 95.6 95.6 95.6 594.1 1100 409.9 306.0 173.7 108.2 103.7 103.7 103.7 103.7 665.7 1200 435.7 400.0 320.7 210.7 113.8 106.9 106.9 106.9 694.7 1300 421.8 458.7 442.2 375.1 268.4 139.3 108.6 105.2 679.2 1400 369.6 475.0 524.0 508.2 430.4 303.6 148.5 101.4 620.1 1500 284.4 445.2 553.6 591.2 551.5 441.3 279.4 94.8 521.5 1600 176.3 369.0 520.0 603.7 605.5 525.1 376.5 185.0 390.0 1700 63.0 248.4 408.2 515.5 551.6 509.9 398.1 235.5 234.9 1800 22.0 87.3 180.8 251.7 287.6 282.1 236.2 158.1 70.6 1900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Page 10: Master in Engineering Design 1. Introduction. 2. Work Description

Design Beam Solar Heat Gains for August

Location: Lisbon, Portugal

( Values for each exposure are expressed in W/m² )

Hour N NNE NE ENE E ESE SE SSE 0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0400 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0600 10.6 54.2 86.2 102.7 102.8 86.6 54.9 11.2 0700 1.3 128.9 263.1 346.2 370.1 335.5 243.1 100.1 0800 0.0 67.0 246.5 371.4 431.9 420.0 337.6 192.0 0900 0.0 4.0 143.6 298.3 389.1 412.9 366.6 254.6 1000 0.0 0.0 26.4 161.7 281.9 343.2 342.7 280.4 1100 0.0 0.0 0.0 21.6 123.6 221.2 271.8 268.5 1200 0.0 0.0 0.0 0.0 2.8 68.3 159.0 219.4 1300 0.0 0.0 0.0 0.0 0.0 0.0 38.1 138.3 1400 0.0 0.0 0.0 0.0 0.0 0.0 0.0 47.0 1500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1600 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1700 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1800 13.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Hour S SSW SW WSW W WNW NW NNW HOR 0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0400 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0600 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0700 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 84.9 0800 19.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 222.4 0900 86.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 349.2 1000 159.3 24.9 0.0 0.0 0.0 0.0 0.0 0.0 449.0 1100 211.5 109.9 13.6 0.0 0.0 0.0 0.0 0.0 515.5 1200 233.0 197.7 119.9 30.9 0.0 0.0 0.0 0.0 542.3 1300 221.4 257.4 241.5 175.2 74.8 2.4 0.0 0.0 528.0 1400 178.0 280.8 326.0 311.7 238.1 113.7 6.4 0.0 473.1 1500 109.5 266.4 364.6 397.5 362.7 262.7 104.8 0.0 382.5 1600 36.7 214.6 352.5 425.8 427.4 357.0 222.0 42.9 263.3 1700 0.2 130.0 279.9 373.8 404.0 369.0 271.1 117.2 124.9 1800 0.0 33.4 122.9 185.2 214.6 210.5 171.7 101.9 16.5 1900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Page 11: Master in Engineering Design 1. Introduction. 2. Work Description

Design Diffuse Solar Heat Gains for August

Location: Lisbon, Portugal

( Values for each exposure are expressed in W/m² )

Hour N NNE NE ENE E ESE SE SSE 0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0400 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0600 12.7 16.4 20.0 22.3 22.3 20.1 16.4 12.7 0700 51.4 63.0 76.3 86.6 90.0 85.2 74.0 60.7 0800 73.1 84.8 99.8 113.5 121.1 119.5 109.5 94.8 0900 87.5 97.4 110.2 123.9 134.0 136.8 131.3 119.6 1000 101.0 105.4 114.5 125.7 136.1 142.3 142.3 135.9 1100 109.5 109.5 115.1 122.7 131.6 139.4 143.9 143.6 1200 112.9 112.9 112.9 117.1 123.2 130.7 137.8 142.7 1300 111.1 111.1 111.1 111.1 111.1 118.5 126.1 134.3 1400 104.1 104.1 104.1 104.1 104.1 104.1 110.5 119.7 1500 92.1 92.1 92.1 92.1 92.1 92.1 92.1 100.5 1600 78.3 75.3 75.3 75.3 75.3 75.3 75.3 77.9 1700 59.0 53.1 53.1 53.1 53.1 53.1 53.1 53.1 1800 27.2 21.8 21.8 21.8 21.8 21.8 21.8 21.8 1900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Hour S SSW SW WSW W WNW NW NNW HOR 0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0400 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0600 10.1 9.7 9.7 9.7 9.7 9.7 9.7 10.1 15.3 0700 49.7 44.9 44.9 44.9 44.9 44.9 44.9 44.9 56.4 0800 80.5 69.2 69.2 69.2 69.2 69.2 69.2 69.2 72.8 0900 105.8 94.0 87.5 87.5 87.5 87.5 87.5 87.5 80.7 1000 125.5 114.3 105.3 101.0 101.0 101.0 101.0 101.0 84.9 1100 138.6 130.5 121.7 114.4 109.5 109.5 109.5 109.5 87.1 1200 143.9 140.9 134.8 127.3 120.3 112.9 112.9 112.9 87.8 1300 141.0 144.2 142.8 137.2 129.3 121.3 114.8 111.1 87.4 1400 130.2 139.2 143.7 142.2 135.3 125.2 115.0 107.1 85.7 1500 112.4 125.5 135.7 139.5 135.5 125.1 112.0 100.2 82.3 1600 88.7 103.2 117.4 126.3 126.4 117.9 103.9 89.3 75.8 1700 59.7 72.2 86.6 98.0 102.1 97.4 85.6 71.2 62.8 1800 23.2 29.0 36.7 44.0 48.2 47.5 42.3 34.6 31.9 1900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Page 12: Master in Engineering Design 1. Introduction. 2. Work Description

Design Total Solar Heat Gains for August

Location: Lisbon, Portugal

( Values for each exposure are expressed in W/m² )

Hour N NNE NE ENE E ESE SE SSE 0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0400 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0600 20.4 66.8 101.6 119.9 120.0 102.1 67.5 21.0 0700 40.9 177.4 321.8 412.9 439.4 401.1 300.1 146.8 0800 56.3 132.3 323.4 458.8 525.2 512.1 421.9 265.0 0900 67.4 79.0 228.5 393.7 492.3 518.2 467.8 346.7 1000 77.8 81.2 114.6 258.5 386.7 452.8 452.2 385.1 1100 84.3 84.3 88.7 116.1 224.9 328.5 382.5 379.0 1200 87.0 87.0 87.0 90.2 97.7 168.9 265.1 329.3 1300 85.6 85.6 85.6 85.6 85.6 91.2 135.2 241.7 1400 80.2 80.2 80.2 80.2 80.2 80.2 85.1 139.2 1500 70.9 70.9 70.9 70.9 70.9 70.9 70.9 77.4 1600 60.3 58.0 58.0 58.0 58.0 58.0 58.0 60.0 1700 45.4 40.9 40.9 40.9 40.9 40.9 40.9 40.9 1800 33.9 16.8 16.8 16.8 16.8 16.8 16.8 16.8 1900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Hour S SSW SW WSW W WNW NW NNW HOR 0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0400 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0600 7.8 7.5 7.5 7.5 7.5 7.5 7.5 7.8 15.1 0700 38.3 34.6 34.6 34.6 34.6 34.6 34.6 34.6 128.3 0800 81.7 53.3 53.3 53.3 53.3 53.3 53.3 53.3 278.5 0900 167.8 72.4 67.4 67.4 67.4 67.4 67.4 67.4 411.3 1000 256.0 112.9 81.1 77.8 77.8 77.8 77.8 77.8 514.4 1100 318.2 210.4 107.3 88.1 84.3 84.3 84.3 84.3 582.6 1200 343.8 306.2 223.7 128.9 92.6 87.0 87.0 87.0 609.9 1300 330.0 368.5 351.4 280.9 174.4 95.8 88.4 85.6 595.3 1400 278.3 388.0 436.6 421.2 342.3 210.1 95.0 82.5 539.1 1500 196.0 363.0 469.1 505.0 467.1 359.1 191.0 77.2 445.8 1600 105.0 294.1 442.9 523.0 524.7 447.8 301.9 111.6 321.7 1700 46.2 185.6 346.6 449.2 482.7 443.9 337.0 172.0 173.3 1800 17.9 55.7 151.2 219.1 251.7 247.1 204.3 128.6 41.1 1900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Page 13: Master in Engineering Design 1. Introduction. 2. Work Description

Append B – Space Data

Page 14: Master in Engineering Design 1. Introduction. 2. Work Description

Auditory

1. General Details: Floor Area ................................................ 266.0 m² Avg. Ceiling Height ....................................... 6.0 m Building Weight ........................................ 634.7 kg/m²

1.1. OA Ventilation Requirements: Space Usage ............. THEATERS: Auditorium OA Requirement 1 ........................................ 8.0 L/s/person OA Requirement 2 ...................................... 0.00 L/(s-m²)

2. Internals: 2.1. Overhead Lighting: Fixture Type .................. Recessed (Unvented) Wattage ...................................................... 5.00 W/m² Ballast Multiplier ......................................... 1.20 Schedule ................................ Light – Auditory

2.2. Task Lighting: Wattage ...................................................... 0.00 W/m² Schedule ................................................... None

2.3. Electrical Equipment: Wattage ...................................................... 0.00 W/m² Schedule ................................................... None

2.4. People: Occupancy .................................................. 308 People Activity Level ............................. Seated at Rest Sensible ..................................................... 67.4 W/person Latent ......................................................... 35.2 W/person Schedule .............................. People – Auditory

2.5. Miscellaneous Loads: Sensible .......................................................... 0 W Schedule ................................................... None Latent .............................................................. 0 W Schedule ................................................... None

3. Walls, Windows, Doors:

Exp. Wall Gross Area (m²) Window 1 Qty. Window 2 Qty. Door 1 Qty.

S 98.0 0 0 0

3.1. Construction Types for Exposure S

4. Roofs, Skylights: (No Roof or Skylight data). 5. Infiltration: Design Cooling ........................................... 0.00 L/s Design Heating ........................................... 0.00 L/s Energy Analysis ......................................... 0.00 L/s Infiltration occurs only when the fan is off. 6. Floors: Type ................................ Slab Floor On Grade Floor Area ................................................ 266.0 m² Total Floor U-Value .................................. 0.550 W/(m²-°K) Exposed Perimeter ..................................... 66.0 m Edge Insulation R-Value ............................. 1.82 (m²-°K)/W

7. Partitions: (No partition data).

Page 15: Master in Engineering Design 1. Introduction. 2. Work Description

Exterior Wall - Auditory Wall Details Outside Surface Color ............................... Light Absorptivity ............................................... 0.450 Overall U-Value ........................................ 0.091 W/(m²-°K) Wall Layers Details (Inside to Outside)

Thickness Density Specific Ht. R-Value Weight Layers mm kg/m³ kJ / (kg - °K) (m²-°K)/W kg/m² Inside surface resistance 0.000 0.0 0.00 0.12064 0.0 Revestimento - Madeira 20.000 550.0 0.88 0.86957 11.0 Isolamento Acústico 260.000 40.0 1.17 6.50000 10.4 Reboco Interior 10.000 1950.0 0.87 0.00869 19.5 Isolamento - Poliuretano 100.000 35.0 0.92 3.33333 3.5 Tijolo - 15cm 150.000 1900.0 0.84 0.13043 285.0 Reboco Exterior 10.000 1950.0 0.87 0.00869 19.5 Outside surface resistance 0.000 0.0 0.00 0.05864 0.0

Totals 550.000 - 11.02999 348.9

Roof - Auditory Roof Details Outside Surface Color ............................... Light Absorptivity ............................................... 0.450 Overall U-Value ........................................ 0.080 W/(m²-°K) Roof Layers Details (Inside to Outside)

Thickness Density Specific Ht. R-Value Weight Layers mm kg/m³ kJ / (kg - °K) (m²-°K)/W kg/m² Inside surface resistance 0.000 0.0 0.00 0.12064 0.0 Revestimento - Madeira 20.000 550.0 0.88 1.84000 11.0 Isolamento - Acústico 400.000 40.0 0.92 10.00000 16.0 Lage 100.000 2300.0 0.84 0.05778 230.0 Impermeabilização 10.000 1050.0 1.47 0.41082 10.5 Chapa de Zinco 6.000 7130.0 0.94 0.00054 42.8 Outside surface resistance 0.000 0.0 0.00 0.05864 0.0

Totals 536.000 - 12.48842 310.3

Door - Auditory - Exterior Door Details: Gross Area ................................................... 2.3 m² Door U-Value ........................................... 2.300 W/(m²-°K) Glass Details: Glass Area ................................................... 0.0 m² Glass U-Value .......................................... 3.293 W/(m²-°K) Glass Shade Coefficient ........................... 0.880 Glass Shaded All Day? ................................. No

Page 16: Master in Engineering Design 1. Introduction. 2. Work Description

Append C – System Data Input Parameters

Page 17: Master in Engineering Design 1. Introduction. 2. Work Description

1. General Details: Air System Name ............................................................... Auditório Equipment Class ................................................. Chilled Water AHU Air System Type ..................................................... Single Zone CAV Number of zones .............................................................................. 1 2. System Components: Ventilation Air Data: Airflow Control .................................... Constant Ventilation Airflow Ventilation Sizing Method ...................... Sum of Space OA Airflows Unocc. Damper Position ......................................................... Closed Damper Leak Rate ........................................................................... 5 % Outdoor Air CO2 Level ................................................................. 400 ppm Ventilation Reclaim Data: Reclaim Type .............................................................. Sensible Heat Thermal Efficiency .......................................................................... 50 % Input kW ........................................................................................ 0.0 kW Schedule ............................................................... JFMAMJJASOND Central Cooling Data: Supply Air Temperature .............................................................. 15.0 °C Coil Bypass Factor .................................................................... 0.100 Cooling Source ............................................................ Chilled Water Schedule ............................................................... JFMAMJJASOND Capacity Control .... Temperature Reset by Greatest Zone Demand Max. Supply Temperature ........................................................... 15.0 °C Central Heating Data: Supply Temperature .................................................................... 40.0 °C Heating Source ................................................................. Hot Water Schedule ............................................................... JFMAMJJASOND Capacity Control .... Temperature Reset by Greatest Zone Demand Min. Supply Temperature ............................................................ 35.0 °C Supply Fan Data: Fan Type ................................................................. Forward Curved Configuration ..................................................................... Draw-thru Fan Performance ......................................................................... 800 Pa Overall Efficiency ........................................................................... 54 % Duct System Data: Supply Duct Data: Duct Heat Gain ................................................................................. 0 % Duct Leakage ................................................................................... 0 % Return Duct or Plenum Data: Return Air Via ............................................................. Ducted Return Return Fan Data: Fan Type ................................................................. Forward Curved Fan Performance ......................................................................... 400 Pa Overall Efficiency ........................................................................... 54 %

Page 18: Master in Engineering Design 1. Introduction. 2. Work Description

3. Zone Components: Space Assignments:

Zone 1: Zone 1 Auditorio x1

Thermostats and Zone Data: Zone ............................................................................................... All Cooling T-stat: Occ. ..................................................................... 24.0 °C Cooling T-stat: Unocc. ................................................................. 28.0 °C Heating T-stat: Occ. .................................................................... 20.0 °C Heating T-stat: Unocc. ................................................................. 18.0 °C T-stat Throttling Range ................................................................ 1.50 °K Diversity Factor ............................................................................ 100 % Direct Exhaust Airflow ................................................................... 0.0 L/s Direct Exhaust Fan kW .................................................................. 0.5 kW Thermostat Schedule ................................... Termostato - Auditório Unoccupied Cooling is ......................................................... Available Supply Terminals Data: Zone ............................................................................................... All Terminal Type ....................................................................... Diffuser Minimum Airflow ............................................................................ 0.0 L/s Zone Heating Units: Zone ............................................................................................... All Zone Heating Unit Type ............................................................ None Zone Unit Heat Source ...................................................... Hot Water Zone Heating Unit Schedule ................................. JFMAMJJASOND 4. Sizing Data (Computer-Generated): System Sizing Data: Cooling Supply Temperature ....................................................... 15.0 °C Supply Fan Airflow .................................................................. 2464.0 L/s Ventilation Fan Airflow ............................................................. 2464.0 L/s Heating Supply Temperature ...................................................... 40.0 °C Hydronic Sizing Specifications: Chilled Water Delta-T .................................................................... 5.0 °K Hot Water Delta-T ......................................................................... 5.0 °K Safety Factors: Cooling Sensible .............................................................................. 5 % Cooling Latent .................................................................................. 5 % Heating ............................................................................................. 5 % Zone Sizing Data: Zone Airflow Sizing Method ....................... Peak zone sensible load Space Airflow Sizing Method ...................... Coincident space loads

Zone Supply Airflow Zone Htg Unit Reheat Coil - (L/s) (kW) (kW) (L/s)

1 2464.0 - - 5. Equipment Data No Equipment Data required for this system.

Page 19: Master in Engineering Design 1. Introduction. 2. Work Description

Append D – Plant Data Input Parameters

Page 20: Master in Engineering Design 1. Introduction. 2. Work Description

1. General Details: Plant Name .................................................. Auditory Cooling Plant Plant Type ..................................................................... Chiller Plant 2. Air Systems served by Plant:

Air System Name Mult. Auditório 1

3: Configuration Number of Chillers ............................................................................ 1 Plant Control .......................................................... Equal Unloading Design LCHWT ............................................................................. 7.0 °C Maximum LCHWT ......................................................................... 8.0 °C Cooling Tower Configuration .......... One tower for each W/C chiller 4: Schedule of Equipment

Sequence Chiller Name Full Load Capacity (kW)

Cooler Flow Rate (L/s)

Condenser Flow Rate

(L/s)

Cooling Tower Name

Tower Flow Rate

(L/s)

CH-1 Chiller3 52.0 2.5 0.0 <none> 0.0 Totals: 52.0 2.5 0.0 Totals: 0.0

Est. Max Load ............................................................................. 57.7 kW 5: Distribution Distribution System Type .................... Primary/Secondary, Variable Speed Secondary Coil Delta-T at Design ................................................................... 5.6 °K Pipe Heat Gain Factor ................................................................... 0.0 % Fluid Properties Name .............................................................................. Fresh Water Density ...................................................................................... 999.6 kg/m³ Specific Heat ............................................................................... 4.19 kJ / (kg - °K) Primary Loop

Pump for Flow (L/s)

Head (kPa)

Mechanical Efficiency (%)

Electrical Efficiency (%)

CH-1 2.5 150.0 80.0 94.0 Secondary Loop

Flow (L/s)

Head (kPa)

Mechanical Efficiency (%)

Electrical Efficiency (%)

Design 2.5 150.0 80.0 94.0 Control Head ............................................................................. 150.0 kPa Minimum Pump Flow ................................................................... 20.0 %

Page 21: Master in Engineering Design 1. Introduction. 2. Work Description

Append E – Air System & Plant Sizing Data

Page 22: Master in Engineering Design 1. Introduction. 2. Work Description

Cinema VAC Ceiling - Air System Sizing

Page 23: Master in Engineering Design 1. Introduction. 2. Work Description

Cinema VAV Ceiling - Air System Sizing

Page 24: Master in Engineering Design 1. Introduction. 2. Work Description

Cinema VAC Floor - Air System Sizing

Page 25: Master in Engineering Design 1. Introduction. 2. Work Description

Cinema VAV Floor - Air System Sizing

Page 26: Master in Engineering Design 1. Introduction. 2. Work Description

Append F – Air System & Plant Simulation Results

Page 27: Master in Engineering Design 1. Introduction. 2. Work Description

Cinema VAC Ceiling - Air System Simulation Results

Month

Central Cooling Coil

Load (kWh)

Central Heating Coil Load

(kWh) Supply Fan

(kWh) Return Fan

(kWh)

Vent. Reclaim Device (kWh)

Lighting (kWh)

Electric Equipment

(kWh)

January 0 9274 1358 339 0 312 0

February 0 7416 1227 307 0 282 0

March 53 7894 1358 339 0 312 0

April 261 4766 1314 329 0 302 0

May 243 4176 1358 339 0 312 0

June 1187 2049 1314 329 0 302 0

July 2714 1151 1358 339 0 312 0

August 3125 891 1358 339 0 312 0

September 1718 1391 1314 329 0 302 0

October 106 3712 1358 339 0 312 0

November 23 6782 1314 329 0 302 0

December 0 8282 1358 339 0 312 0

Total 9431 57783 15989 3997 0 3670 0

Cinema VAC Ceiling – Cooling Plant Simulation Resul ts

Month

Cooling Coil Load (kWh)

Plant Load (kWh)

Chiller Output (kWh)

Chiller Input (kWh)

Primary Chilled Water Pump

(kWh)

Secondary Chilled Water

Pump (kWh)

January 0 0 0 0 0 0

February 0 0 0 0 0 0

March 53 56 56 19 2 1

April 261 284 284 96 18 7

May 243 265 265 91 17 7

June 1187 1267 1267 451 61 26

July 2714 2855 2855 1028 105 47

August 3125 3284 3284 1181 118 53

September 1718 1826 1826 646 80 35

October 106 115 115 40 7 3

November 23 27 27 9 3 1

December 0 0 0 0 0 0

Total 9431 9979 9979 3561 410 180

Page 28: Master in Engineering Design 1. Introduction. 2. Work Description

Cinema VAC Floor - Air System Simulation Results

Month

Central Cooling Coil

Load (kWh)

Central Heating Coil Load

(kWh) Supply Fan

(kWh) Return Fan

(kWh)

Vent. Reclaim Device (kWh)

Lighting (kWh)

Electric Equipment

(kWh)

January 0 6684 1633 408 0 312 0

February 0 5061 1475 369 0 282 0

March 187 5321 1633 408 0 312 0

April 783 2734 1580 395 0 302 0

May 601 2082 1633 408 0 312 0

June 2303 682 1580 395 0 302 0

July 4321 279 1633 408 0 312 0

August 4912 144 1633 408 0 312 0

September 3079 344 1580 395 0 302 0

October 370 1654 1633 408 0 312 0

November 153 4386 1580 395 0 302 0

December 0 5685 1633 408 0 312 0

Total 16709 35055 19228 4807 0 3670 0

Cinema VAC Floor – Cooling Plant Simulation Results

Month

Cooling Coil Load (kWh)

Plant Load (kWh)

Chiller Output (kWh)

Chiller Input (kWh)

Primary Chilled Water Pump

(kWh)

Secondary Chilled Water

Pump (kWh)

January 7 10 10 3 2 1

February 4 6 6 2 2 1

March 257 268 268 75 8 5

April 1216 1304 1304 414 65 30

May 908 982 982 322 55 25

June 3127 3312 3312 1087 134 64

July 5571 5848 5848 1912 196 100

August 6395 6700 6698 2174 216 112

September 4316 4559 4559 1464 175 86

October 683 764 764 252 61 26

November 235 254 254 84 14 6

December 0 0 0 0 0 0

Total 22718 24007 24004 7789 928 456

Page 29: Master in Engineering Design 1. Introduction. 2. Work Description

Cinema VAV Ceiling - Air System Simulation Results

Month

Central Cooling Coil

Load (kWh)

Supply Fan (kWh)

Return Fan (kWh)

Vent. Reclaim Device (kWh)

Lighting (kWh)

Electric Equipment

(kWh)

January 5 140 35 0 312 0

February 5 127 32 0 282 0

March 61 139 35 0 312 0

April 403 139 35 0 302 0

May 280 144 36 0 312 0

June 785 140 35 0 302 0

July 1498 148 37 0 312 0

August 1799 148 37 0 312 0

September 1347 142 35 0 302 0

October 269 145 36 0 312 0

November 62 136 34 0 302 0

December 1 140 35 0 312 0

Total 6515 1689 422 0 3670 0

Cinema VAV Ceiling – Cooling Plant Simulation Resul ts

Month

Cooling Coil Load (kWh)

Plant Load (kWh)

Chiller Output (kWh)

Chiller Input (kWh)

Primary Chilled Water Pump

(kWh)

Secondary Chilled Water

Pump (kWh)

January 5 9 9 3 3 1

February 5 14 14 4 6 3

March 61 79 79 27 14 6

April 403 499 499 168 73 30

May 280 382 382 128 78 33

June 785 971 971 338 142 59

July 1498 1761 1761 631 200 84

August 1799 2084 2084 753 216 90

September 1347 1592 1592 554 187 78

October 269 388 388 129 90 38

November 62 89 89 30 21 9

December 1 8 8 2 5 2

Total 6515 7877 7877 2768 1035 432

Page 30: Master in Engineering Design 1. Introduction. 2. Work Description

Cinema VAV Floor - Air System Simulation Results

Month

Central Cooling Coil

Load (kWh)

Supply Fan (kWh)

Return Fan (kWh)

Vent. Reclaim Device (kWh)

Lighting (kWh)

Electric Equipment

(kWh)

January 3 171 43 0 312 0

February 2 155 39 0 282 0

March 47 171 43 0 312 0

April 337 173 43 0 302 0

May 234 180 45 0 312 0

June 724 174 43 0 302 0

July 1398 185 46 0 312 0

August 1600 185 46 0 312 0

September 1112 176 44 0 302 0

October 194 181 45 0 312 0

November 52 168 42 0 302 0

December 0 171 43 0 312 0

Total 5703 2089 522 0 3670 0

Cinema VAV Floor – Cooling Plant Simulation Results

Month

Cooling Coil Load (kWh)

Plant Load (kWh)

Chiller Output (kWh)

Chiller Input (kWh)

Primary Chilled Water Pump

(kWh)

Secondary Chilled Water

Pump (kWh)

January 3 5 5 2 2 1

February 2 5 5 2 2 1

March 47 57 57 19 7 3

April 337 400 400 134 48 20

May 234 292 292 99 44 19

June 724 856 856 300 100 42

July 1398 1588 1588 572 144 60

August 1600 1804 1804 653 155 65

September 1112 1286 1286 449 132 55

October 194 264 264 88 53 22

November 52 67 67 23 11 5

December 0 0 0 0 0 0

Total 5703 6625 6625 2341 700 292

Page 31: Master in Engineering Design 1. Introduction. 2. Work Description

Append G – Air System Design Load Summary

Page 32: Master in Engineering Design 1. Introduction. 2. Work Description

Cinema VAC Floor - Air System Design Load Summary for Auditory

DESIGN COOLING DESIGN HEATING

COOLING DATA AT Aug 1400 HEATING DATA AT DES HTG COOLING OA DB / WB 31.8 °C / 20.7 °C HEATING OA DB / WB 3.5 °C / 2.3 °C

Sensible Latent Sensible Latent ZONE LOADS Details (W) (W) Details (W) (W) Window & Skylight Solar Loads 0 m² 0 - 0 m² - -

Wall Transmission 98 m² 55 - 98 m² 147 -

Roof Transmission 0 m² 0 - 0 m² 0 -

Window Transmission 0 m² 0 - 0 m² 0 -

Skylight Transmission 0 m² 0 - 0 m² 0 -

Door Loads 0 m² 0 - 0 m² 0 -

Floor Transmission 266 m² 0 - 266 m² 575 -

Partitions 0 m² 0 - 0 m² 0 -

Ceiling 0 m² 0 - 0 m² 0 -

Overhead Lighting 1596 W 1183 - 0 0 -

Task Lighting 0 W 0 - 0 0 -

Electric Equipment 0 W 0 - 0 0 -

People 308 20754 10842 0 0 0

Infiltration - 0 0 - 0 0

Miscellaneous - 0 0 - 0 0

Safety Factor 5% / 5% 1100 542 5% 36 0

>> Total Zone Loads - 23092 11384 - 757 0

Zone Conditioning - 28759 11384 - 758 0

Plenum Wall Load 0% 0 - 0 0 -

Plenum Roof Load 0% 0 - 0 0 -

Plenum Lighting Load 0% 0 - 0 0 -

Return Fan Load 2963 L/s 549 - 2963 L/s -549 -

Ventilation Load 2464 L/s 9104 -11384 2464 L/s 24850 0

Supply Fan Load 2963 L/s 2195 - 2963 L/s -2195 -

Space Fan Coil Fans - 0 - - 0 -

Duct Heat Gain / Loss 0% 0 - 0% 0 -

>> Total System Loads - 40607 0 - 22864 0

Central Cooling Coil - 40607 0 - 0 0

Central Heating Coil - 0 - - 22864 -

>> Total Conditioning - 40607 0 - 22864 0

Key: Positive values are clg loads Positive values are htg loads Negative values are htg loads Negative values are clg loads

Page 33: Master in Engineering Design 1. Introduction. 2. Work Description

Cinema VAC Floor – Space Load Summary for Auditory

TABLE 1.1.A. COMPONENT LOADS FOR SPACE '' Audit orio '' IN ZONE '' Zone 1 ''

DESIGN COOLING DESIGN HEATING

COOLING DATA AT Sep 2300 HEATING DATA AT DES HTG COOLING OA DB / WB 27.3 °C / 18.8 °C HEATING OA DB / WB 3.5 °C / 2.3 °C OCCUPIED T-STAT 24.0 °C OCCUPIED T-STAT 20.0 °C

Sensible Latent Sensible Latent

SPACE LOADS Details (W) (W) Details (W) (W) Window & Skylight Solar Loads 0 m² 0 - 0 m² - -

Wall Transmission 98 m² 59 - 98 m² 147 -

Roof Transmission 0 m² 0 - 0 m² 0 -

Window Transmission 0 m² 0 - 0 m² 0 -

Skylight Transmission 0 m² 0 - 0 m² 0 -

Door Loads 0 m² 0 - 0 m² 0 -

Floor Transmission 266 m² 0 - 266 m² 575 -

Partitions 0 m² 0 - 0 m² 0 -

Ceiling 0 m² 0 - 0 m² 0 -

Overhead Lighting 1596 W 1303 - 0 0 -

Task Lighting 0 W 0 - 0 0 -

Electric Equipment 0 W 0 - 0 0 -

People 308 20755 10842 0 0 0

Infiltration - 0 0 - 0 0

Miscellaneous - 0 0 - 0 0

Safety Factor 5% / 5% 1106 542 5% 36 0

>> Total Zone Loads - 23223 11384 - 757 0

TABLE 1.1.B. ENVELOPE LOADS FOR SPACE '' Audito rio '' IN ZONE '' Zone 1 ''

COOLING COOLING HEATING

Area U-Value Shade TRANS SOLAR TRANS

(m²) (W/(m²-°K)) Coeff. (W) (W) (W) S EXPOSURE

WALL 98 0.091 - 59 - 147

Page 34: Master in Engineering Design 1. Introduction. 2. Work Description

Append H – Air System Psychrometrics

Page 35: Master in Engineering Design 1. Introduction. 2. Work Description

Cinema VAC Floor – System Psychrometrics for Auditory

August DESIGN COOLING DAY, 1400 TABLE 1: SYSTEM DATA Dry-Bulb Specific Sensible Latent Temp Humidity Airflow CO2 Level Heat Heat Component Location (°C) (kg/kg) (L/s) (ppm) (W) (W) Ventilation Air Inlet 31.8 0.01078 2464 400 9104 -11384

Ventilation Reclaim Outlet 28.8 0.01078 2464 400 9104 0

Vent - Return Mixing Outlet 28.3 0.01104 2963 494 - -

Central Cooling Coil Outlet 16.9 0.01104 2963 494 40607 0

Central Heating Coil Outlet 16.9 0.01104 2963 494 0 -

Supply Fan Outlet 17.5 0.01104 2963 494 2195 -

Cold Supply Duct Outlet 17.5 0.01104 2963 494 - -

Zone Air - 25.5 0.01235 2963 959 28759 11384

Return Plenum Outlet 25.5 0.01235 2963 959 0 -

Return Fan Outlet 25.7 0.01235 2963 959 549 - Air Density x Heat Capacity x Conversion Factor: At sea level = 1.207; At site altitude = 1.206 W/(L/s-K) Air Density x Heat of Vaporization x Conversion Factor: At sea level = 2947.6; At site altitude = 2944.1 W/(L/s) Site Altitude = 10.0 m TABLE 2: ZONE DATA Zone Terminal Zone Sensible Zone Zone Zone CO2 Heating Heating Load T-stat Cond Temp Airflow Level Coil Unit Zone Name (W) Mode (W) (°C) (L/s) (ppm) (W) (W) Zone 1 23092 Cooling 28759 25.5 2963 959 0 0

1. Outdoor Air 2. Ventilation Reclaim Outlet 3. Mixed Air 4. Central Cooling Coil Outlet 5. Supply Fan Outlet 6. Room Air 7. Return Fan Outlet

1234 5

6 7

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0 5 10 15 20 25 30 35

Location: Lisbon, PortugalAltitude: 10.0 m.Data for: August DESIGN COOLING DAY, 1400

Specific H

umidity ( kg/kg )

Temperature ( °C )

Page 36: Master in Engineering Design 1. Introduction. 2. Work Description

Cinema VAC Floor – System Psychrometrics for Auditory

WINTER DESIGN HEATING TABLE 1: SYSTEM DATA Dry-Bulb Specific Sensible Latent Temp Humidity Airflow CO2 Level Heat Heat Component Location (°C) (kg/kg) (L/s) (ppm) (W) (W) Ventilation Air Inlet 3.5 0.00397 2464 400 -24850 0

Ventilation Reclaim Outlet 11.9 0.00397 2464 400 -24850 0

Vent - Return Mixing Outlet 13.3 0.00397 2963 402 - -

Central Cooling Coil Outlet 13.3 0.00397 2963 402 0 0

Central Heating Coil Outlet 19.7 0.00397 2963 402 22864 -

Supply Fan Outlet 20.3 0.00397 2963 402 2195 -

Cold Supply Duct Outlet 20.3 0.00397 2963 402 - -

Zone Air - 20.1 0.00397 2963 411 -758 0

Return Plenum Outlet 20.1 0.00397 2963 411 0 -

Return Fan Outlet 20.2 0.00397 2963 411 549 - Air Density x Heat Capacity x Conversion Factor: At sea level = 1.207; At site altitude = 1.206 W/(L/s-K) Air Density x Heat of Vaporization x Conversion Factor: At sea level = 2947.6; At site altitude = 2944.1 W/(L/s) Site Altitude = 10.0 m TABLE 2: ZONE DATA

Zone Terminal Zone

Sensible Zone Zone Zone CO2 Heating Heating

Load T-stat Cond Temp Airflow Level Coil Unit Zone Name (W) Mode (W) (°C) (L/s) (ppm) (W) (W) Zone 1 -757 Deadband -758 20.1 2963 411 0 0

Page 37: Master in Engineering Design 1. Introduction. 2. Work Description

Append I - Hourly Air System Design Day Loads for A uditory

Page 38: Master in Engineering Design 1. Introduction. 2. Work Description

0

5

10

15

20

25

30

Data for January

Load

( k

W )

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Total Cooling Total Heating

0

5

10

15

20

25

30

Data for February

Load

( k

W )

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Total Cooling Total Heating

Page 39: Master in Engineering Design 1. Introduction. 2. Work Description

0

5

10

15

20

25

30

Data for March

Load

( k

W )

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Total Cooling Total Heating

0

5

10

15

20

25

30

35

Data for April

Load

( k

W )

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Total Cooling Total Heating

Page 40: Master in Engineering Design 1. Introduction. 2. Work Description

0

5

10

15

20

25

30

35

40

Data for May

Load

( k

W )

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Total Cooling Total Heating

0

5

10

15

20

25

30

35

40

Data for June

Load

( k

W )

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Total Cooling Total Heating

Page 41: Master in Engineering Design 1. Introduction. 2. Work Description

0

5

10

15

20

25

30

35

40

Data for July

Load

( k

W )

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Total Cooling Total Heating

0

5

10

15

20

25

30

35

40

Data for August

Load

( k

W )

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Total Cooling Total Heating

Page 42: Master in Engineering Design 1. Introduction. 2. Work Description

0

5

10

15

20

25

30

35

40

Data for September

Load

( k

W )

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Total Cooling Total Heating

0

5

10

15

20

25

30

35

40

Data for October

Load

( k

W )

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Total Cooling Total Heating

Page 43: Master in Engineering Design 1. Introduction. 2. Work Description

0

5

10

15

20

25

30

Data for November

Load

( k

W )

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Total Cooling Total Heating

0

5

10

15

20

25

30

Data for December

Load

( k

W )

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Total Cooling Total Heating

Page 44: Master in Engineering Design 1. Introduction. 2. Work Description

Append J - Hourly Zone Design Day Loads

Page 45: Master in Engineering Design 1. Introduction. 2. Work Description

0

5000

10000

15000

20000

25000

Zone: Zone 1Data for January

W

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Zone Sensible Zone Conditioning

0

5000

10000

15000

20000

25000

Zone: Zone 1Data for February

W

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Zone Sensible Zone Conditioning

Page 46: Master in Engineering Design 1. Introduction. 2. Work Description

0

5000

10000

15000

20000

25000

Zone: Zone 1Data for March

W

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Zone Sensible Zone Conditioning

0

5000

10000

15000

20000

25000

Zone: Zone 1Data for April

W

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Zone Sensible Zone Conditioning

Page 47: Master in Engineering Design 1. Introduction. 2. Work Description

0

5000

10000

15000

20000

25000

Zone: Zone 1Data for May

W

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Zone Sensible Zone Conditioning

0

5000

10000

15000

20000

25000

Zone: Zone 1Data for June

W

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Zone Sensible Zone Conditioning

Page 48: Master in Engineering Design 1. Introduction. 2. Work Description

0

5000

10000

15000

20000

25000

Zone: Zone 1Data for July

W

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Zone Sensible Zone Conditioning

0

5000

10000

15000

20000

25000

Zone: Zone 1Data for August

W

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Zone Sensible Zone Conditioning

Page 49: Master in Engineering Design 1. Introduction. 2. Work Description

0

5000

10000

15000

20000

25000

Zone: Zone 1Data for September

W

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Zone Sensible Zone Conditioning

0

5000

10000

15000

20000

25000

Zone: Zone 1Data for October

W

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Zone Sensible Zone Conditioning

Page 50: Master in Engineering Design 1. Introduction. 2. Work Description

0

5000

10000

15000

20000

25000

Zone: Zone 1Data for November

W

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Zone Sensible Zone Conditioning

0

5000

10000

15000

20000

25000

Zone: Zone 1Data for December

W

Hour of Day00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Zone Sensible Zone Conditioning

Page 51: Master in Engineering Design 1. Introduction. 2. Work Description

Append L - Schedules

Page 52: Master in Engineering Design 1. Introduction. 2. Work Description

Light - Auditory (Fractional) Hourly Profiles: 1:Diario

Hour 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Value 10 10 100 0 0 0 0 0 0 0 0 0 0 50 100 10 10 100 10 10 100 10 10 100 8:Profile Eight

Hour 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Value 10 10 100 10 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 100 Assignments:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Design 8 8 8 8 8 8 8 8 8 8 8 8

Monday 1 1 1 1 1 1 1 1 1 1 1 1 Tuesday 1 1 1 1 1 1 1 1 1 1 1 1

Wednesday 1 1 1 1 1 1 1 1 1 1 1 1

Thursday 1 1 1 1 1 1 1 1 1 1 1 1

Friday 1 1 1 1 1 1 1 1 1 1 1 1

Saturday 1 1 1 1 1 1 1 1 1 1 1 1

Sunday 1 1 1 1 1 1 1 1 1 1 1 1

Holiday 1 1 1 1 1 1 1 1 1 1 1 1

Thermostat - Auditory (Fan / Thermostat) Hourly Profiles: 1:Termostato

Hour 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Value O O O U U U U U U U U U U U O O O O O O O O O O 2:Profile Two

Hour 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Value O O O O O O O O O O O O O O O O O O O O O O O O 3:Profile Three

Hour 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Value O O O O O O O O O O O O O O O O O O O O O O O O 4:Profile Four

Hour 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Value O O O O O O O O O O O O O O O O O O O O O O O O O = Occupied; U = Unoccupied Assignments:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Design 1 1 1 1 1 1 1 1 1 1 1 1

Monday 2 2 2 2 2 2 2 2 2 2 2 2

Tuesday 2 2 2 2 2 2 2 2 2 2 2 2

Wednesday 2 2 2 2 2 2 2 2 2 2 2 2

Thursday 2 2 2 2 2 2 2 2 2 2 2 2

Friday 2 2 2 2 2 2 2 2 2 2 2 2

Saturday 3 3 3 3 3 3 3 3 3 3 3 3

Sunday 4 4 4 4 4 4 4 4 4 4 4 4

Holiday 4 4 4 4 4 4 4 4 4 4 4 4

Page 53: Master in Engineering Design 1. Introduction. 2. Work Description

People - Auditory (Fractional) Hourly Profiles: 1:Monday

Hour 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Value 50 50 0 0 0 0 0 0 0 0 0 0 0 0 0 50 50 0 80 80 0 100 100 0 2:Tuesday

Hour 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Value 30 30 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 0 20 20 0 30 30 0 3:Wednesday

Hour 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Value 40 40 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 0 20 20 0 40 40 0 4:Thursday

Hour 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Value 40 40 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 0 30 30 0 40 40 0 5:Friday

Hour 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Value 80 80 0 0 0 0 0 0 0 0 0 0 0 0 0 20 20 0 50 50 0 60 60 0 6:Saturday

Hour 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Value 80 80 0 0 0 0 0 0 0 0 0 0 0 0 0 30 30 0 50 50 0 80 80 0 7:Sunday

Hour 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Value 40 40 0 0 0 0 0 0 0 0 0 0 0 0 0 50 50 0 60 60 0 60 60 0 8:Profile Eight

Hour 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Value 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 Assignments:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Design 8 8 8 8 8 8 8 8 8 8 8 8

Monday 1 1 1 1 1 1 1 1 1 1 1 1

Tuesday 2 2 2 2 2 2 2 2 2 2 2 2

Wednesday 3 3 3 3 3 3 3 3 3 3 3 3

Thursday 4 4 4 4 4 4 4 4 4 4 4 4

Friday 5 5 5 5 5 5 5 5 5 5 5 5

Saturday 6 6 6 6 6 6 6 6 6 6 6 6

Sunday 7 7 7 7 7 7 7 7 7 7 7 7 Holiday 6 6 6 6 6 6 6 6 6 6 6 6

Page 54: Master in Engineering Design 1. Introduction. 2. Work Description

Append M - System Benchmarking

Page 55: Master in Engineering Design 1. Introduction. 2. Work Description

Supply Fan VAV_Ceilling VAV_Floor CAV_Ceilling CAV_Floor Total [kWh] 2131 2611 19986 24035 Cost [euro] 213.1 261.1 1998.6 2403.5 Savings [euro] 2190.4 2142.4 404.9 0 Savings (%) 91.13 89.14 16.85 0 Benchmarking 1 2 3 4 Chiller Plant (only for cooling) VAV_Ceilling VAV_Floor CAV_Ceilling CAV_Floor Total [kWh] 4235 3333 4151 6848 Cost [euro] 423.5 333.3 415.1 684.8 Savings [euro] 261.3 351.5 269.7 0 Savings (%) 38.16 51.33 39.38 0 Benchmarking 3 1 2 4 Final Result (only for cooling) VAV_Ceilling VAV_Floor CAV_Ceilling CAV_Floor Total [kWh] 6366 5944 24137 30883 Cost [euro] 636.6 594.4 2413.7 3088.3 Savings [euro] 2451.7 2493.9 674.6 0 Savings (%) 79.39 80.75 21.84 0 Benchmarking 2 1 3 4 Cooling Coil Loads VAV_Ceilling VAV_Floor CAV_Ceilling CAV_Floor 6515 5703 9431 16709 Heating Coil Loads VAV_Ceilling VAV_Floor CAV_Ceilling CAV_Floor 0 0 57783 35055

0.1 euro per 1 kWh

Page 56: Master in Engineering Design 1. Introduction. 2. Work Description

Append N – Solar Radiation Gain

Page 57: Master in Engineering Design 1. Introduction. 2. Work Description
Page 58: Master in Engineering Design 1. Introduction. 2. Work Description

References Carrier Hourly Analysis Program, Version 4.22 (Help information)