Massive Objects at the Centers of Galaxies Roger Blandford KIPAC Stanford.

22
Massive Objects at the Centers of Galaxies Roger Blandford KIPAC Stanford

Transcript of Massive Objects at the Centers of Galaxies Roger Blandford KIPAC Stanford.

Massive Objects at the Centers of Galaxies

Roger Blandford

KIPAC

Stanford

An History

• …• 1961-2 Hoyle, Fowler - radio sources are

powered by explosions involving superstars• 1963 Hazard, Schmidt - quasars• 1963 Kerr metric• 1964 Zel’dovich & Novikov, Salpeter et al -

black holes• 1965 Dent - variability

More history

• 1966 Rees - superluminal expansion

• 1968 Wheeler - Black Hole

• 1969 - Whitney….. - SLE measured

• 1969 Lynden-Bell - dead quasars, disks

• 1974 Balick & Brown, Lynden Bell & Rees

• 1975 Kellermann Cygnus A - pc scale collimation => black hole

Observational Evidence

• Accretion disks– NGC 4258 masers => Keplerian– Molecular disks

• Stellar Orbits – Velocity dispersion and rotation– Individual, disruption?

• X-rays from inner disks– MCG 6-30-15 Fe =>maximal rotation?– Comptonized, synchrotron, inverse Compton

• Variability– Blazar jets– Disks?

• Winds– BALQ– ?

M87

Halca

Black Holes

• Kerr Metric (not Kerr-Newman)– Mass m=M8AU=500M8s[=5Gm=17s]– Spin = a / 2mr+

• Ergosphere• Reducible mass• Shrink smallest stable circular orbit

– GR untested

• Black hole is strongly curved space(time) outside horizon - not just the horizon– Use infalling coordinate systems not just Boyer-Lindquist

Spin energy of a black hole

71.0 Or

;2 mra O

Irreducible RadiusIrreducible Mass

Specific Angular Momentum

Rotational Speed

Gravitational mass mmm

m OO 71.0;

1 2

OO mA

r 24

21

Kerr Spacetime• Dragging of inertial frames

– Physics of ergosphere very important– Need numerical simulation - MHD

• Thin disk efficiency probably irrelevant to real disks; binding energy curve very shallow– Accretion Gap– Proper distance between horizon and

marginally stable orbit 7m - 2m as a -> m

Modes of Accretion and Sgr A*

• LE ~1046M8 erg s-1 [~3 x 1044 erg s-1]

• M’E ~1025M8 g s-1[~3 x 1023 g s-1]

• Mass supply– M’ < 0.1 M’E : Thick, ion-supported disks [~1021 g s-1]

• Mass accretion << Mass supply [~1018g s-1]

– 0.1 M’E < M’ < 10 M’E : Thin, radiative disks

– 10M’E < M’ : Thick, radiation-dominated disks

-4 -2 0 2-8

0

-4

-6

-2

M’S / M’E

L / LE

Sgr A*

Brightest quasarsLuminosity vs Supply Rate

Ion-Supported Thick Disks

• Low mass supply and efficient angular momentum transport, low radiative efficiency– Adiabatic/altruistic/demand-limited accretion (ADIOS)– Most mass escapes in a wind carrying off the energy

liberated by the accreting gas– Wind may be matter-dominated or magnetically-

dominated [~ 1039 erg s-1]

Transition radius

Self-similar disk models

•Gas dynamical model•Convective Disk•Gyrentropic structure

•S(L), B(L)•Meridional circulation•Thermal Front

•Mass, momentum, energy conserved

•Outflow carries off energy•Centrifugal funnel

Relativistic Ion-supported Torus

•Gyrentropic - S(L)•Asymptotes to self-similar non-relativistic disk•Similar discussion for transition to thin disk

Magnetic Field

• Magnetorotational Instability

• Disk-Hole Connection

• Magnetized Outflows

• Extraction from Hole

BMW

Emission from Ion Torus

• Trans-sonic, Alfvenic, relativistic differentially-rotating flow– =>particle acceleration easy!– =>Nonthermal emission

• X-rays not thermal bremsstrahlung

• cm emission from outer disk (jet?)

• Radio/mm polarization

Jets and Radio Sources

• Energy (+ mass, angular momentum) exhausts – Fluid

• Ions

– Hydromagnetic – Relativistic MHD / Electromagnetic

• Disordered• Ordered

– Jets highlight the current flow– Sgr A* jet ?

• Evolution of mass, momentum, energy along jet– Entrainment, dissipation and radiation

3-D, adiabatic MHD model

Hawley, Balbus & Stone 01

DENSITY PRESSURE

p, Contours similar: BARYTROPIC

Rotation on cylinders:Von Zeipel

(azimuthally averaged)

3-D, adiabatic MHD model

Hawley & Balbus 02 NRMHD wind plus RMHD/EM jetCentrifugal force important

n~108cm-3 P ~ 1 Pa

Pictor A

Magnetically-pinched current?Magnetic reservoirOhmic dissipation . B constant

Sgr A* Jet?B~100G, ~3PVI~300TALEM~1030W

• Powerful compact radio sources

• Superluminal jets V ~ 0.99 c

• Variable GeV-ray source – eg 3C 279 - L ~ 1049 f erg/s >> Lrad

• MKN 421 - 30 min variability at 1 TeV!

• Intraday variability => V ~ 0.999(9) c– Refractive scintillation– Coherent emission?

• Gyrocyclotron by mildly relativistic electrons?

• Sgr A*may be a TeV source

Ultrarelativistic Jets

Why is Sgr A* interesting?• Very dark energy!• Why is the sun interesting?• Extreme accretion mode• Quantitative?!• Stellar dynamics

– Cradle to grave– Things unseen

• Complexity– Molecular gas, orientation, IRS13, SNR, magnetic environment…..

• Black holes - strong field test of GR– (Sub)mmVLBI for black hole shadow– Periodicities?

Summary

• Sgr A* paradigm for slow accretion• Detailed MHz - TeV observation• Possibly best (and cheapest) laboratory for strong

field GR– Radio astronomers have produced almost all the good,

quantitative affirmations of weak field relativity. Why stop now?

• Complexity of circum-nuclear gas flow, stellar dynamics