Mass Transfer - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/Mass Transfer...

32
Mass Transfer transport of one constituent from a region of higher concentration to that of a lower concentration

Transcript of Mass Transfer - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/Mass Transfer...

  • Mass Transfer

    transport of one constituent from a region of higher concentration to that of a lower concentration

  • mass average velocity1 1

    1

    v v

    v

    n n

    i i i i

    i in

    i

    i

    molar average velocity1 1

    1

    v v

    V

    n n

    i i i i

    i in

    i

    i

    c c

    cc

    absolute velocity of species i relative to stationary coordinate axs

    molar flux relative to the molar average velocity

    mass flux relative to the molar average velocity

    molar flux relative to a set of stationary axes

    mass flux relative to a set of stationary axes

    ,A

    A z AB

    dcJ D

    dz

    ,A

    A z AB

    dj D

    dz

    , , ,N N NAA z AB A A z B zdy

    cD ydz

    n n nA AB A A A BD

    concentration gradient contribution

    bulk motion contribution

    1

    N Nn

    A AM A A i

    i

    cD y y

    for multicomponent mixture

  • convective mass transfer A c AN k c

    molar mass transfer relative to fixed spacial coordinates

    convective mass transfer coeff.

    concentration difference between the boundary surface conc and the average conc of the fluid stream

  • Differential equation for mass transfer

    equation of continuity for component A n 0AA Art

    equation of continuity for the mixture v 0t

    rate of mass production

    in terms of molar units

    equation of continuity for component A

    equation of continuity for the mixture

    N 0AA Ac

    Rt

    V 0A Bc

    c R Rt

    rate of molar production

    depends on stoichiometry

    if density is constant, 2v AA AB A Ac

    c D c Rt

    2 2 2

    2 2 2A A A A

    AB

    c c c cD

    t x y z

    2 2 2

    2 2 2 2

    1 1A A A A AAB

    c c c c cD

    t r rr r z

  • Boundary conditions

    1. Concentration at a boundary surface is specified

    - A pure component in one phase and a mixture in the second phase, the concentration is at thermodynamic saturation conditions- For a gas mixture in contact with a pure volatile liquid or solid A, the partial pressure of A in the gas at the surface is saturation vapor pressure- For a liquid mixture in contact with a pure solid A, the concentration of A in the liquid at the surface is the solubility limit of A in the liquid- For a contacting gas and liquid, if both species in the liquid phase are volatile, the boundary condition at the gas-liquid surface is defined by Raoult’s law- For solutions where species A is only weakly soluble in the liquid, Henry’s law may be used

    As A Ap x P

    A Ap H x

  • Boundary conditions

    2. A reacting surface boundary is specified

    - The flux of aone species may be related to the flux of another species by chemical reaction stoichiometry- A finite rate of chemical reaction might exist at the surface- The reaction may be so rapid that CAs=0

    2 3 ; 2 , 3B A C AA B C N N N N

    A c AszN k c

    3. The flux is zero at a boundary or at a centerline of symmetry

    00 0

    0 or 0A AA ABzz z

    c cN D

    z z

    4. The convective mass transfer flux at the boundary surface is specified

    0A c As Az

    N k c c

  • Fabrication of silicon wafer by CVD

    A1; rxn occurs only at the suface of growing Si thin film -> no homogeneous rxn

    A2; gas phase is not externally mixed -> molecular diffusion dominates

    A3; feed gas provides silane in high excess -> silance conc at boundary is constant

    A4; flux is 1-dimensionalA5; thickness of Si film is very thin

    -> diffusion path length (δ) is constantA6; mass transfer process within diffusion zone is at steady state

  • , , ,AA z AB A A z B zdy

    N cD y N Ndz

    0AyAx Az A

    A

    NN N cR

    x y z t

    ,0

    A zdN

    dz

    , 4

    , 2

    1 1

    2 2

    A z

    B z

    N mol SiH reacted

    N mol H formed

    , , ,21

    A AB AA z AB A A z A z

    A

    dy cD dyN cD y N N

    dz y dz

    0,

    0 1

    As

    A

    yAB

    A z Ay

    A

    cDN dz dy

    y

    0

    ,

    1ln

    1

    AABA z

    As

    ycDN

    y

  • formation of a tungsten thin film on a silicon wafer by CVD

    2 63 ( ) ( ) ( ) 6 ( )H g WF g W s HF g

    , , , ,AA z A mix A A z B z C zdy

    N cD y N N Ndz

    , 6

    , 2

    1 1

    3 3

    A z

    B z

    N molWF reacted

    N mol H reacted

    ,1 2

    A mix AA z

    A

    cD dyN

    y dz

    , 6

    ,

    1 1

    6 6

    A z

    C z

    N molWF reacted

    N mol HF formed

    , , , ,3 6AA z A mix A A z A z A zdy

    N cD y N N Ndz

  • steady state molecular diffusion (1-D, no chemical rxn)

    N 0AA Ac

    Rt

    , , ,AA z AB A A z B zdy

    N cD y N Ndz

    unimolecular diffusion

    0AyAx Az A

    A

    NN N cR

    x y z t

    ,0

    A zdN

    dz

    A vaporizes and diffuses into the gas phaseGas B has a negligible solubility in liquid A, and is chemically inert to A

    , 0B zd

    Ndz

    NB,z at z=z1 is zero -> NBz (net flux of B) is zero

    ,1

    AB AA z

    A

    cD dyN

    y dz

    -> B is a stagnant gas

  • ,1

    AB AA z

    A

    cD dyN

    y dz

    11 A Az z y y 22 A Az z y y

    2 2

    1 1

    ,1

    A

    A

    z yA

    A z ABz y

    A

    dyN dz cD

    y

    2

    1

    ,

    2 1

    1ln

    1

    AABA z

    A

    ycDN

    z z y

    2 1

    2 1

    ,ln /

    B B

    B lm

    B B

    y yy

    y y

    2 1 1 2

    2 1 2 1

    ,

    1 1

    ln 1 / 1 ln 1 / 1

    A A A A

    B lm

    A A A A

    y y y yy

    y y y y

    1 2

    ,

    2 1 ,

    A AABA z

    B lm

    y ycDN

    z z y

    For an ideal gas,n P

    cV RT

    AAp

    yP

    1 2

    ,

    2 1 ,

    A AABA z

    B lm

    p pD PN

    RT z z p

    Steady state diffusion of one gas through a second stagnant gas;Absorption, humidification

  • ,0

    A zdN

    dz ,

    1

    AB AA z

    A

    cD dyN

    y dz

    0

    1

    AB A

    A

    d cD dy

    dz y dz

    10

    1

    A

    A

    d dy

    dz y dz

    1 2ln 1 Ay c z c 11 A Az z y y 22 A Az z y y

    1 2 1

    2

    1 1

    /11

    1 1

    z z z z

    AA

    A A

    yy

    y y

    1 2 1

    2

    1 1

    /z z z z

    BB

    B B

    yy

    y y

    2

    1

    2

    1

    z

    Bz

    B z

    z

    y dzy

    dz

    average concentration of one of the species along the diffusion path

    1 2 1

    22

    11

    1

    2 1 2 1

    2 1 2 1

    /

    2 1

    2 1

    2 1

    ,

    ln / ln /

    z z z z

    z B

    zB

    B B

    B B B B

    B B B B

    B lm

    ydz

    yy y

    z z

    y y z z y y

    y y z z y y

    y

  • Vapor degreaser; cleaning metal parts

    regulation; greaser cannot emit more than 1.0 kg TCE per day

    Mw=131.4g/molvapor pressure=115.5mmHgDAB=0.088cm

    2/s

    2

    1

    ,

    2 1

    1ln

    1

    AABA z

    A

    ycDN

    z z y

    3

    10.0396

    (0.082)(273 35)

    P kg molc

    RT m

    1

    115.5 10.152

    1 760

    AA

    P mmHg atmy

    P atm mmHg

    48

    ,

    1 0(0.0396)(0.088 10 )ln 1.197 10

    5.0 0.2 1 0.152A zN

    2

    , 0.4234

    A A z

    D kgTCEW N

    day

  • 1 2

    ,

    2 1 ,

    A AABA z

    B lm

    p pD PN

    RT z z p

    film theory

    1 2,

    ,

    ABA z A A

    B lm

    D PN p p

    RTp

    1 2 1 2,c

    A z c A A A A

    kN k c c p p

    RT

    ,

    ABc

    B lm

    D Pk

    p

    kc is a function of the diffusion coefficient raised to an exponent varying from 0.5 to 1.0

  • pseudo-steady-state diffusion

    when the length of the diffusion path changes a small amount over a long period of time

    1 2

    ,

    2 1 ,

    A AABA z

    B lm

    y ycDN

    z z y

    1 2

    ,

    ,

    AB A A

    A z

    B lm

    cD y yN

    zy

    ,,

    A LA z

    A

    dzN

    M dt

    molar density of A in the liquid phase

    1 2,

    ,

    AB A AA L

    A B lm

    cD y ydz

    M dt zy

    01 2

    , ,

    0

    /

    t

    t

    t zA L B lm A

    t zAB A A

    y Mdt z dt

    cD y y

    0

    1 2

    2 2

    , , /

    2

    t tA L B lm A

    AB A A

    z zy Mt

    cD y y

    0

    1 2

    2 2

    , , /

    2

    t tA L B lm AAB

    A A

    z zy MD

    c y y t

  • Formation of SiO2 thin film on a Si wafer - fabrication of solid state microelectronic devices

    A1; oxidation of Si to SiO2 occurs only at Si/SiO2 interface-> unreacted Si serves as the sink for molecular mass transfer of O2 through the film

    A2; O2 in the gas phase represents an infinite source for O2 transferA3; rate of SiO2 formation is controlled by the rate of molecular diffusion of O2 through the solid SiO2 layerA4; rxn is very rapid -> concentration of O2 at interface is zeroA5; the flux of O2 (A) through SiO2 (B) layer is 1-dimensionalA6; the rate of SiO2 film formation is slow

    -> no accumulation of reactants or products within the SiO2 film

  • , 0A zd

    Ndz

    , , ,( )A A

    A z AB A z B z

    dc cN D N N

    dz c

    ,A

    A z AB

    dcN D

    dz as conc of O2 in SiO2 layer is dilute

    0

    ,

    0 As

    A z AB A

    c

    N dz D dc

    , AB AsA zD c

    N

    δ increases slowly with time -> pseudo-steady-state assumption

    (molar rate of SiO2 formation) = (molar rate of accumulation of SiO2)

    ,AB As

    A z

    D cN S S

    B

    B

    Sd

    M

    dt

    0 0

    t

    B AB As

    B

    M D cd dt

    2 B AB As

    B

    M D ct

  • equimolar counterdiffusion , ,A z B zN N

    , , ,AA z AB A A z B zdc

    N D y N Ndz

    ,A

    A z AB

    dcN D

    dz

    2 2

    1 1

    ,

    A

    A

    z c

    A z AB Az c

    N dz D dc

    1 2,

    2 1

    ABA z A A

    DN c c

    z z

    A AA

    n pc

    V RT for ideal gas,

    1 2,

    2 1

    ABA z A A

    DN p p

    RT z z

    , 0A zd

    Ndz

    2

    20A

    d c

    dz 1 2Ac C z C 1

    1 2

    1

    1 2

    A A

    A A

    c c z z

    c c z z

  • One dimensional systems with chemical reaction

    homogeneous rxn; occurs uniformly throughout a given phaseheterogeneous rxn; takes place in a restricted region within or at a

    boundary of the phase

    N 0AA Ac

    Rt

    only for homogenous rxn

    diffusion controlled; when the rxn rate is instantaneous relative to the rate of diffusion

    reaction controlled; when the rxn rate at the surface limits the mass transfer rate

  • diffusion with heterogeneous 1st order chemical reaction

    diffusion controlled

    2 23 ( ) 2.5 ( ) 2 ( ) ( )C s O g CO g CO g

    no homogeneous chemical rxn occurs along the diffusion path -> RO2=0

    As the coal particle is oxidized, the particle shrinks with time. It is desired to predict the size of the particle with time

    22

    sin1 1 10

    sin sin

    Ar AAAA

    r N NNcR

    t r r rr

    22

    10

    Ard r N

    drr

    2 2

    2 24 4 0O r O rr r r

    N r r N r

    2

    2

    0O rd r N

    dr 2 2

    2 2O r O r

    r Rr N R N

  • 1

    N Nn

    A AM A A i

    i

    cD y y

    2 2 22.5 and 1.25O r COr O r CO rN N N N

    2 23 ( ) 2.5 ( ) 2 ( ) ( )C s O g CO g CO g

    22 2 2 2 2 2mix

    O

    O r O O O r COr CO r N

    dyN cD y N N N N

    dr

    2

    2 2 2 2 2 2mix

    1 10

    2.5 1.25

    O

    O r O O O r O r O r

    dyN cD y N N N

    dr

    2

    2 2 2 2mix0.2

    O

    O r O O O r

    dyN cD y N

    dr

    2 2

    2

    2

    mix

    1 0.2

    O O

    O r

    O

    cD dyN

    y dr

    2

    0Or R y

    2, 0.21Or y

    2

    2

    0O rd r N

    dr

    2 22

    2

    0.21-mix2

    2 0

    0.2

    0.2 1 0.2

    O O

    O rR

    O

    cD dydrr N

    yr

    2

    2

    -mix2 1 1ln0.2 1.042

    O

    O r

    cDr N

    R

    instantaneous rxn

  • the moles of oxygen transferred per time is the product of the oxygen flux and the cross sectional area

    22 2

    -mix24 4 ln 1.0420.2

    O

    O O r

    cDW r N R

    negative because the direction of oxygen flux from the bulk gas to the surface is opposite to the increasing r direction from r=R to infinity

    the material balance for carbon

    22 2

    -mix3 3 34 ln 1.042

    2 2.5 2.5 0.2

    O

    C CO O

    cDW W W R

    (input carbon rate) – (output carbon rate) = rate of carbon accumulation

    output rate of carbon

    2 23 ( ) 2.5 ( ) 2 ( ) ( )C s O g CO g CO g

    carbon accumulation rate24C C

    C C

    dV dRR

    M dt M dt

    2-mix 230 4 ln 1.042 4

    2.5 0.2

    O C

    C

    cD dRR R

    M dt

    2

    2 2

    -mix12 ln 1.042

    Ci f

    C

    O

    R RM

    cD

  • 2 23 ( ) 2.5 ( ) 2 ( ) ( )C s O g CO g CO g

    for alternative rxn with instantaneous rxn at the surface

    2 2C s +O g CO g

    22 2 2 2 2 2mix

    O

    O r O O O r COr CO r N

    dyN cD y N N N N

    dr

    2

    2 2 -mix

    O

    O r O

    dyN cD

    dr

    2 2 2-mix4O O OW RcD y

    2

    2 2

    -mix24 4 ln 1.0420.2

    O

    O O r

    cDW r N R

    if the rxn is not instantaneous

    2 2 2 2-mix

    4O O O O sW RcD y y

    As s AsRN k c

    2 2

    2

    O s O R

    O s

    s

    c Ny

    c k c 2

    2 2 2-mix4

    O R

    O O O

    s

    NW RcD y

    k c

    2 2 2

    2 24 4O O R O rW R N r N 2

    2 2 2

    -mix2-mix1

    O

    O R O O

    s

    DR N RcD y

    k R

    2 2

    2

    2

    -mix

    -mix

    4

    1

    O O

    OO

    s

    RcD yW

    D

    k R

  • diffusion with homogeneous 1st order chemical reaction

    one of the constituents of a gas mixture is preferentially dissolved in a contacting liquid(absorption of A into B)

    0Ac

    , , ,AA z AB A A z B zdc

    N D y N Ndz

    if there is little fluid motion and if the concentration of A is small

    ,A

    A z AB

    dcN D

    dz

    N 0AA Ac

    Rt

    1A AR k c , 0A z A

    dN R

    dz 1 0

    AAB A

    d dcD k c

    dz dz

    1 1 2 1cosh / sinh /A AB ABc c k D z c k D z

    0at 0 A Az c c

    at 0Az c

    0

    0

    1

    1

    1

    sinh /cosh /

    tanh /

    A AB

    A A AB

    AB

    c k D zc c k D z

    k D

    0 1, 0

    1

    /

    tanh /

    AB A ABA z z

    AB

    D c k DN

    k D

    molar mass flux at the liquid surface

  • penetration theory

    0 1, 0

    1

    /

    tanh /

    AB A ABA z z

    AB

    D c k DN

    k D

    as the rxn rate increases, 0, 10

    0A z AB AzN D k c

    1 2,A z c A AN k c c

    ,

    ABc

    B lm

    D Pk

    p film theory;

    boundary layer theory; 1/2 1/3Sh 0.664Re Scc L LAB

    k L

    D Sc

    ABD

    2/3~c ABk D

    1/ 2~c ABk D

    ~c ABk D

  • two- and three-dimensional systems

    2 2

    2 20A A

    c c

    x y

    ,Ac x y X x Y y

    1

    sin sinhA nn

    n x n yc A

    W W

    1

    sin sinhA A nn

    n x n Lc c x A

    W W

  • simultaneous heat and mass transfer

    vapor condensation on a cold surface

    N 0AA Ac

    Rt

    , 0A z

    dN

    dz

    if A is diffusing through a stagnant gas

    ,1

    AB AA z

    A

    cD dyN

    y dz

    if the temperature profile is of the form

    1 1

    nT z

    T z

    1 1

    3/2 3 /2

    1 1

    n

    AB AB ABT T

    T zD D D

    T z

    1 1/n

    P Pc

    RT RT z z

    1

    /2

    ,

    1 11

    nAB T A

    A z

    A

    PD z dyN

    RT y z dz

  • 1/4

    4/99/16

    0.670RaNu 0.68

    1 0.492 / Pr

    LL

    over a small temperature range

    avg

    ,1

    AB AA z

    A

    cD dyN

    y dz

    1 2avg

    ,

    2 1 ,

    AB A A

    A z

    B lm

    cD y yN

    z z y

    total energy flux

    liquid 2 3 1 2 , 1 2z

    c A z A

    qh T T h T T N M H H

    A

    enthalpy of A per unit mass

    assume T2 , ( )c AB avgh cD

    2

    2 or

    A AA

    p Py

    P P

    1 2avg

    ,

    2 1 ,

    AB A A

    A z

    B lm

    cD y yN

    z z y

    check ; liquid 2 3 1 2 , 1 2z

    c A z A

    qh T T h T T N M H H

    A

  • simultaneous momentum and mass transfer;

    dissolution of one of the components of a gas mixture by a liquidtime of contact is short

    0AyAx Az A

    A

    NN N cR

    x y z t

    ,,0

    A yA x NN

    x y

    , , ,AA x AB A A x B xc

    N D x N Nx

    , , ,AA y AB A A y B yc

    N D x N Ny

    , , ,A x A A x B x A xN x N N c v

    ,A

    A y AB

    cN D

    y

    2

    20A Ax AB

    c cv D

    x y

    2 2

    max 2

    12

    2

    A AAB

    y y c cv D

    x y

  • 2 2

    max 2

    12

    2

    A AAB

    y y c cv D

    x y

    at 0 0Ax c

    at 0 0Ac

    yy

    0at A Ay c c

    5.1213 39.318

    0

    105.64

    204.75

    0.7857 0.1001

    0.03500

    0.01811

    A Ax L y n n

    A Ax y

    n

    n

    c ce e

    c c

    e

    e

    if solute A penetrates only a short distance into the liquid film

    2

    max 2A A

    AB

    c cv D

    x y

    0

    max,

    ABA y Ay

    D vN c

    x

    0

    max

    , 1 erf4

    A A

    AB

    c x cD x

    v

    exp

    ABc

    Dk

    t

  • unsteady state diffusion

    diffusion in a semi-infinite medium

    2

    2A A

    AB

    c cD

    t z

    0, ,0 for all A Aot c z c z

    at 0, 0, for 0A Asz c t c t

    at , , for all A Aoz c t c t

    erf2

    As A

    As Ao AB

    c c z

    c c D t

    , 0

    ABA z As Aoz

    DN c c

    t

    diffusion in a finite-dimensional medium

    2

    2A A

    AB

    c cD

    t z

    at 0 for 0A Aoc c t z L

    at 0 for 0A Asc c z t

    at for 0A Asc c t L t

    2

    /2

    1

    4sin , 1,3,5,...D

    n XA As

    nAo As

    c c n ze n

    c c L

    2

    /2

    1

    4cos , 1,3,5,...D

    n XABAz As Ao

    n

    D n zN c c e n

    L L

    2

    4 ABD

    D tX

    L