Masonry Out-of- Plane Walls Ultimate Limit States: Flexure and Shear · 2018. 5. 3. · Flexure and...

29
Engineered Masonry Design Course Friday April 27, 2018 © 2018 Canada Masonry Design Centre 1 Masonry Out-of- Plane Walls Ultimate Limit States: Flexure and Shear 12:30 PM – 2:00 PM Bennett Banting Lecture Outline 1. Overview (10) 2. Flexure and Axial Load Resistance a) Fully-Grouted Wall Close-Spaced Reinforcement (35) b) Fully-Grouted Wall Wide-Spaced Reinforcement (15) c) Partially-Grouted Wall Wide-Spaced Reinforcement (15) d) Eccentric Reinforcement (5) 3. Shear Resistance a) Fully- and Partially-Grouted Shear Walls (10)

Transcript of Masonry Out-of- Plane Walls Ultimate Limit States: Flexure and Shear · 2018. 5. 3. · Flexure and...

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  1

    Masonry Out-of-Plane Walls Ultimate Limit States: Flexure and Shear12:30 PM – 2:00 PMBennett Banting

    Lecture Outline1. Overview (10)2. Flexure and Axial Load Resistance

    a) Fully-Grouted Wall Close-Spaced Reinforcement (35)b) Fully-Grouted Wall Wide-Spaced Reinforcement (15)c) Partially-Grouted Wall Wide-Spaced Reinforcement (15)d) Eccentric Reinforcement (5)

    3. Shear Resistancea) Fully- and Partially-Grouted Shear Walls (10)

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  2

    Flexure

    • One-way Bending• Weak axis bending of masonry walls

    • Wind• Earthquake• Lateral Earth

    • Unit Wall Design• Design for a “per meter” equivalent wall• Effective Compression Zone Width

    Axial Load

    • Loadbearing vs. Non-loadbearing• Concentric vs. Eccentric vs. Virtual

    Eccentric• Euler Buckling• Second Order Slenderness Effects

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  3

    Flexure and Axial Load Interaction• Interaction Diagrams Useful• Complex Relationship• General Solution Strategy

    • Solve Force Equilibrium for Pf = Pr• Solve Mr

    • Equivalent Compression Block• In face shell versus in grouted cell

    Slenderness Effects• Slenderness Ignored• Slenderness Considered• Special Provisions for Slenderness

    • Wall Loads versus Wall Resistance• Wall Resistance Focus Here

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  4

    Outside Scope

    Two-way BendingTwo-way Bending

    Walls with OpeningsWalls with Openings

    Blast LoadingBlast Loading

    Wall Resistance

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  5

    Flexure & Axial Load Resistance:

    -Fully-Grouted -Out-of-Plane Walls-Closely-Spaced Reinforcement

    (Pages 376-380)Cl. 10 CSA S304

    Masonry Out-of-Plane Loads

    • Factored Axial Load• Applied Wind Load on Face

    • Determine Moment Resistance• 6.0 m Long• 25 cm Units, tf = 38.6 mm• 30 MPa Block, Type S Mortar, Fully-Grouted• 15M Vertical Reinforcement @ 0.2 m

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  6

    Determine Moment Capacity of Cross-section

    Normal to Bed Joints

    Out-of-Plane Wall Reinforcement• Single Bar Equivalent • Single Layer

    • Double Layer in Some Instances (e.g. 30 cm units)

    • Tolerances • Tension Reinforcement is not Required to Yield

    • … except for Slender Walls with kh/t > 30 • Compression Reinforcement not Typical

    • Difficult to provide

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  7

    Design Assumptions

    Equivalent Section for Analysis• Need not analyze entire wall

    length• Determine equivalent “per

    meter” effective cross-section

    • Aligns with distributed loadsbeff = 1,000 mm/m

    f′m,gr

    f′m,gr

    As, eff As 1,000mm/m

    s

    d

    d

    As = 200 mm2200 mm

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  8

    No Axial LoadLet Pf = 0

    Assumptions1. β1c < tf (solving with f′m,ug)2. εs > εy

    εmu

    εs

    C

    T

    εc

    εd c

    f′m,gr or f′m,ug

    Strain Compatibility

    Force Equilibrium

    When Compression Block Lies in Face Shell

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  9

    Moment Resistance

    C

    TMr C d

    β1c2

    Property Wall6.0 m

    Equivalent 1,000mm/m(Including Grout)

    Equivalent 1,000mm/m(Neglecting Grout)

    b 6,000 mm 1,000 mm/mAs 200 mm2 1,000 mm2/ms 200 mm 1,000 mm/m

    β1c 49.4 mm 38.1 mm

    εs 0.0028 0.00456

    C 2,040.6 kN 340 kN/mMr 194.4 kNꞏm 206.0 kNꞏm 32.4 kNꞏm/m 34.3 kNꞏm/mPr 0 kN 0 kN/m 0 kN/m

    When Ignoring

    Grout Improves

    Wall Capacity

    f′m,ug

    f′m,gr

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  10

    Moderate Axial LoadLet Pf = 170 kN/m

    Assumptions1. β1c > tf2. εs < εy

    εmu

    C

    T

    εc

    εd cεs

    Pf

    fsε d c

    c Es

    Ignoring Grout

    • Maximum compressive force β1c = tf• c > cb

    • cgr = 79.0 mm• cug = 89.4 mm

    C T P

    ϕm0.85 f m, ug befftf ϕsAs, effε d c

    c Es P

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  11

    Moment Resistance

    C

    TMr C d

    β1c2Pf

    Property Wall6.0 m

    Equivalent 1,000mm/m(Including Grout)

    Equivalent 1,000mm/m(Neglecting Grout)

    b 6,000 mm 1,000 mm/mAs 200 mm2 1,000 mm2/ms 200 mm 1,000 mm/m

    β1c 63.2 mm 38.6 mm (c = 89.4 mm)εs 0.00156 0.00103

    C 2,610 kN 2,067 kN 435.0 kN/m 344.5 kN/mMr 231 kNꞏm 208 kNꞏm 38.5 kNꞏm/m 34.7 kNꞏm/mPr 1,020 kN 170 kN/m 170 kN/m

    High Axial LoadLet Pf = 670 kN/m

    Assumptions1. c > d2. Section MUST be

    designed as Unreinforced

    C

    Pf

    εmu εmc

    εmt

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  12

    Unreinforced Behaviour in a Reinforced Wall

    • Out-of-Plane Walls• Reinforcement at

    mid-depth• Once under

    compression, wall behaves as unreinforced

    • Analysis per Cl. 7.2

    When c ≥ d

    Mf / Pf > 0.33t Must Remain “Uncracked”

    Linear Elastic

    Compression Controlled Tension Controlled

    Mf / Pf ≤ 0.33t Permitted to be

    “Cracked”

    Equivalent Stress Block

    Unreinforced Behaviour in a Reinforced Wall

    σ PfAeMfSe

    0.5ϕmf m PfAeMfSe ϕmft

    PfAe

    MfSe

    Mr 0.5ϕmf mPfAe Se

    Mr ϕmftPfAe Se

    Pr = C = ϕmχ(0.85 f′m,gr)bβ1c Mr = C × (d-β1c/2)

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  13

    Section Permitted to Crack?

    • Assume Mf / Pf < 0.33t • Pf = Pr = 670 kN/m = C• Mf = Mr

    Mr C d β1c2 47.8kN m/m

    MrPr

    47.8670

    71.3mm 80mm

    Moment Resistance

    CMr C d

    β1c2

    Property Wall Equivalent 1,000mm/mb 6,000 mm 1,000 mm/mAs 200 mm2 1,000 mm2/ms 200 mm 1,000 mm/m

    β1c 97.3 mmεs N/AC 4,020 kN 670 kN/mMr 286.8 kNꞏm 47.8 kNꞏm/mPr 4,020 kN 670 kN/m

    Pf

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  14

    Maximum Axial LoadSolve for Pf = 1,321.9 kN/m

    Assumptions1. c > d2. Section MUST be

    designed as UnreinforcedC

    Pf

    εmu

    Moment Resistance

    CMr C d

    β1c2

    Property Wall Equivalent 1,000mm/mb 6,000 mm 1,000 mm/mAs 200 mm2 1,000 mm2/ms 200 mm 1,000 mm/m

    β1c 192 mmεs N/AC 7,931.4 kN 1,321.9 kN/mMr 190.2 kNꞏm 31.7 kNꞏm/mPr 7,931.4 kN 1,321.9 kN/m

    Pf

    MrPr

    31.71,321.9 24mm 80mm

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  15

    Review

    • Fully-Grouted Wall with Closely-Spaced Reinforcement• Moment Resistance Determined

    • Effects of Axial Load and Reinforcement Ratio• Equivalent Section for Analysis

    • In terms of a “per meter” equivalency• As,eff, beff, Loads and moments “/m”

    • Moment about centre of wall• Cancel out reinforcement and axial load

    Moment Capacity

    High Axial Loads Reinforcement under

    compressionWall behaves as “Unreinforced”

    Moderate Axial Loads & Moderate ρCompression zone outside

    face shell May count grout and use

    f′m,gr, or f’mug; εs > εy or εs < εy

    Low Axial Loads & Low ρSmall compression zone

    could be in face shellMay be able to neglect grout

    and use f′m,ug, εs >> εy

    • Effects of changing Pf in Out-of-Plane walls

    • Changes Depth of Effective Compression Block

    • When to Ignore Grout

    • Interaction with Axial Load

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  16

    Flexure & Axial Load Resistance:

    -Fully-Grouted -Out-of-Plane Walls-Wide-Spaced Reinforcement

    (Pages 376-380)Cl. 10 CSA S304

    Equivalent Section for Analysis• Wide-Spaced Reinforcement• Consider a 20M @ 1.2m

    • From Before• f’m,gr = 13.5 MPa• f’m,ug = 17.5 MPa• tf = 38.6• d = 120 mm

    beff = 1,000 mm/m

    f′m,gr

    f′m,gr

    As, eff As 1,000mm/m

    s

    d

    d

    As = 300 mm21,200 mm

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  17

    Effective Compression Zone Width

    Similar to Flanged Beams or Walls

    1.2 m

    4 x 240 = 960 mm

    Equivalent Section for Analysis• When Reinforcement is under

    Tension• β1c ≤ tf

    • f’m,ug• β1c > tf

    • f’m,gr

    1,000 mm/m

    f′m,gr

    f′m,grorf′m,ug

    d

    d

    beff = 800 mm/m

    beff 960mm 1,000mm/m1,200mm 800mm/m

    As,eff = 250 mm2/m

    As = 300 mm21,200 mm

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  18

    No Axial LoadLet Pf = 0

    Assumptions1. β1c < tf2. εs > εy

    εmu

    εs

    C

    T

    εc

    εd c

    f′m,gr or f′m,ug

    Strain Compatibility

    Force Equilibrium

    Moment Resistance

    C

    TMr C d

    β1c2

    Property Wall Equivalent 1,000mm/mb 6,000 mm 800 mm/mAs 200 mm2 250 mm2/ms 200 mm 1,000 mm/m

    β1c 11.9 mmεs 0.0212C 510 kN 85 kN/mMr 51.6 kNꞏm 8.6 kNꞏm/mPr 0 kN 0 kN/m

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  19

    High Axial LoadLet Pf = 670 kN/m

    Assumptions1. c > d 2. No Effective Compression Zone

    from Cl. 10.6 3. Section MUST be designed as

    Unreinforced

    C

    Pf

    εmu εmc

    εmt

    beff = 1,000 mm/m

    Review

    • Differences from Closely-Spaced Reinforcement

    • Equivalent Section for Analysis• Effective Compression Zone Width • Similar to Flanges• Only when Reinforcement is Under Tension

    • Reinforcement under Compression• Exact same analysis• No Effective Compression Zone

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  20

    Moment Capacity

    High Axial Loads

    Reinforcement under compressionNo Effective Compression Zone

    Exact same design as closely-spaced wall

    Moderate Axial Loads & Moderate ρSame process as closely-spaced reinforcement with new

    valuesNew beff, As,eff

    Check εs, β1c < tf

    Low Axial Loads & Low ρ

    Effective Compression Zone Width Include or Neglect Grout

    Flexure & Axial Load Resistance:

    -Partially-Grouted -Out-of-Plane Walls-Wide-Spaced Reinforcement

    (Pages 376-380)Cl. 10 CSA S304

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  21

    Equivalent Section for Analysis• Grouted Cell• May neglect grout for only face

    shells1,000 mm/m

    f′m,ugd

    d

    beff = 800 mm/m

    f′m,gr

    As,eff = 250 mm2/m

    As = 300 mm21,200 mm

    Considering Grout

    beff,ug = 633.3 mm/m

    beff,gr = 166.7 mm/m

    beff,ug = 800 mm/m

    beff, gr 200mm 1,000mm/m1,200mm 166.67mm/m

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  22

    Moderate Axial LoadLet Pf = 250 kN/m

    Assumptions1. β1c > tf2. εs < εy

    εmu

    T

    εc

    εd cεs

    Pf

    fsε d c

    c EsCug = ϕmχ (0.85)f′m,ugbeff,ugtfCgr = ϕmχ (0.85) f′m,grbeff,grβ1c

    CugCgr

    Moment Resistance

    Cug

    T

    Mr Cug dtf2 Cgr d

    β1c2

    Property Wall Equivalent 1,000mm/mb 6,000 mm 1,000 mm/m

    beff,ug 4,800 mm 633.3 mm/mbeff,gr 1,200 mm 166.7 mm/mAs 300 mm2 250 mm2/ms 1,200 mm 1,000 mm/m

    β1c 69.7 mmεs 0.00113

    Cug 1,309 kN 218.2 kN/mCgr 480 kN 80.0 kN/mMr 172.7 kNꞏm 28.8 kNꞏm/mPr 1,500 kN 250 kN/m

    Pf

    Cgr

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  23

    When Ignoring

    Grout Improves

    Wall Capacity

    f′m,ug

    f′m,gr

    f′m,ugf′m,ug

    High Axial LoadLet Pf = 400 kN/m

    Assumptions1. c > d2. Section MUST be

    designed as Unreinforced

    Pf

    εmu εmc

    εmt

    As c > d

    CugCgr

    beff,ug = 833.3 mm/m

    beff,gr = 166.7 mm/m

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  24

    Section Permitted to Crack?

    • Assume Mf / Pf < 0.33t • Pf = Pr = 400 kN/m

    • Cug = 287.1 kN/m• Cgr = 112.9 kN/m

    • Mf = Mr

    MrPr

    37.0400 92.5mm 80mm

    Mr Cug dtf2 Cgr d

    β1c2 37.0kN · m/m

    Maximum Design Moment

    Take the Greater of:

    1. Limit Mr for crack analysisa) Mr = Pf × 0.33t =

    32.0 kNꞏm/m

    2. Check if higher eccentricity possible for “section not permitted to crack”a) Tension controlledb) Compression controlled

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  25

    When c ≥ d

    Mf / Pf > 0.33t Must Remain “Uncracked”

    Linear Elastic

    Compression Controlled Tension Controlled

    Mf / Pf ≤ 0.33t Permitted to be

    “Cracked”

    Equivalent Stress Block

    Unreinforced Behaviour in a Reinforced Wall

    σ PfAeMfSe

    0.5ϕmf m PfAe

    MfSe ϕmft

    PfAe

    MfSe

    Mr 0.5ϕmf mPfAe Se

    Mr ϕmftPfAe Se

    Pr = C = ϕmχ(0.85 f′m,gr)bβ1c Mr = C × (d-β1c/2)

    Elastic Wall Properties

    • Textbook• Table B.4• Page 753

    • Neglect Reinforcement• Equivalent Wall Section

    f mbeff, ugAe, ugf m, ug beff, grAe, grf m, grbeff, ugAe, ug beff, grAe, gr

    16.0MPa

    ftbeff, ugAe, ugft, ug beff, grAe, grft, grbeff, ugAe, ug beff, grAe, gr

    0.50MPa

    Aebeff, ugAe, ug beff, grAe, grbeff, ug beff, gr

    104,300mm2/m

    Sebeff, ugSe, ug beff, grSe, grbeff, ug beff, gr

    7,100,000mm3/m

    Iobeff, ugIo, ug beff, grIo, grbeff, ug beff, gr

    852,000,000mm4/m

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  26

    Tension or Compression Controlled

    • Elastic Stress Analysis• Best Practice

    • Limiting compressive stress in masonry to 0.5f′m as elastic limit

    • Determine which moment governs

    Compression Controlled

    Mr 0.5ϕmf mPfAe Se

    Tension Controlled

    Mr ϕmftPfAe Se

    Flexure & Axial Load Resistance:

    -Partially-Grouted -Out-of-Plane Walls-Wide-Spaced Eccentric Reinforcement

    (Pages 376-380)Cl. 10 CSA S304

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  27

    Out-of-Plane Loads

    • Positive and Negative wind pressures

    • Often equal or close• 2-Layers of vertical

    reinforcement • When loads greater in one

    direction• 1-Layer of vertical

    reinforcement close to tension face

    Eccentric Rebar

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  28

    Shear Resistance:

    -Out-of-Plane Shear-Sliding Shear

    (Pages 398-399)Cl. 10 CSA S304

    Out-of-Plane Shear

  • Engineered Masonry Design Course Friday April 27, 2018

    © 2018 Canada Masonry Design Centre  29

    Out-of-Plane Shear Resistance

    • f′m,eff = 16.0 MPa• Mf/Vfdv = 1• v = 0.64 MPa• d = 120 mm• b = bwebs + beff,gr

    • Includes webs• CSA A165 estimate min.

    Out-of-Plane Sliding Shear