Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood...

24
Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College Limerick Donald E Ramirez University of Virginia Charlottesville

Transcript of Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood...

Page 1: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

Mary Immaculate College Research SeminarSeptember 3rd 2013

Anomalies of the Maximum Likelihood Estimator

Diarmuid O’DriscollMary Immaculate College

Limerick

Donald E RamirezUniversity of Virginia

Charlottesville

Page 2: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

Least Squares Regression Line

• Least Squares Regression Line in the Measurement Error Model has wide interest with many applications

• Studied in depth by Carroll et al. (2006) and Fuller (1987)

• OLS(Y|X) assumes that measurement of X is error free

Page 3: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

Minimizing Oblique Errors

From ),( ii yx to the fitted line xxhy 10)( ,

we set iii xyv 10 .

The sum of the squares of the oblique lengths from

),( ii yx to )))(()),(()(( 11iiiiii yxhyyhxyh

is

./)1(),,( 2221

2210 iio vvSSE

Page 4: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

Standardized Weighted Model

(1) /)1(),,( 2221

2210 ixxiyyo vsvsSSE

 

Page 5: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

(2) )/()1()1(/)/( 5.021

231

241

5.12xxyyyyxxyyxx ssssss

Quartic

Minimizing SSEo in (1) , produces the quartic ()

Page 6: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

X and Y are random variables with respective finite variances 2X and

2Y , finite fourth moments and have the linear functional relationship

XY 10 .

The observed data { ),( ii yx , ni 1 } are subject to error by

iii Xx ; iii Yy

It is also assumed that

Measurement Error Model

Page 7: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

Specific values of lambda

With λ = 1 we recover the minimum squared vertical errors, ver

1 .

With λ = 0 we recover the minimum squared horizontal errors, hor

1 .

The geometric mean estimator xxyygm ss /1

has the oblique parameter λ = 0.5.

Page 8: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

The expected value for ver1 is attenuated

towards zero by the attenuating factor )/( 222

XX .

The expected value for hor1 is amplified

towards infinity by the amplifying factor 222 /)( YY .

gm

1 is biased unless 2

2

2

2

X

Y

Bias

Page 9: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

The Maximum Likelihood Estimator

If the ratio of the error variances 22 / is assumed finite,

the maximum likelihood estimator for the slope is

(5) 2

4)()( 22

1yyxx

yyxxxxyyxxyymle

ss

ssssss

If = 1, then the MLE (often called the Deming Regression estimator) is equivalent to the perpendicular

estimator, per

1 , first introduced by Adcock (1878).

Page 10: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

Bias of the MLE for an incorrect choice of

• In practice, the researcher estimates by with error.

• With and ,

the bias, : , in terms of is

(6)

Page 11: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

X has a Uniform Distribution over the interval (0, 20)

XY 1 for varying values of the true slope 1

Both X and Y are subjected to errors (2 ,

2 ) }9,4,1{}9,4,1{

Sample size n is set to 50.

The number of repetitions R is set to 5000.

Monte Carlo Simulation

Page 12: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

Table 1A

Percentage Bias of MLE estimator for assumed ratios ~ for varying true values of X is UD(0,20), 1 =1, 0 =0, R=5000, n=50

} , ~{

1:9 1:4 4:9 1:1 4:4 9:9 9:4 4:1 9:1 1:9 0.75 1.58 8.41 2.63 10.14 21.27 24.35 10.76 24.8

2 1:4 -2.25 0.79 4.51 2.03 7.73 17.39 20.61 9.32 22.1 4:9 -5.42 -1.53 0.30 1.38 5.08 11.36 16.34 7.72 18.9

5 1:1 -10.7 -4.32 -6.87 0.23 0.35 0.55 8.37 4.79 12.95 9:4 -15.2 -6.94 -13.1 -0.91 -4.16 -9.23 0.49 1.83 6.71

4:1 -17.6 -8.31 -16.2 -1.55 -6.53 -13.9 -3.66 0.21 3.26 9:1 -19.3 -9.51 -18.7 -2.13 -8.58 -17.7 -7.15 -1.26 0.17

Page 13: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

Series expansion of :

The series expansion, :, of the bias may be written in terms of ε as

(7)

Since

Equation (7) shows that : is not alone dependent on the magnitude of but is also dependent on the magnitude of .

Page 14: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

Table 1B; :; : with .

bias(:κ)

3 9 0.333 −6.0 −0.0298 −0.0296 −0.0281

5 9 0.555 −4.0 −0.0201 −0.0198 −0.0202

2 4 0.500 −2.0 −0.0100 −0.0100 −0.0103

1 3 0.333 −2.0 −0.0089 −0.0099 −0.0112

1 2 0.500 −1.0 −0.0048 −0.0050 −0.0052

2 1 2.000 1.0 0.0047 0.0050 0.0048

3 1 3.000 2.0 0.0103 0.0101 0.0088

4 2 2.000 2.0 0.0107 0.0101 0.0097

9 5 1.800 4.0 0.0204 0.0202 0.0197

9 3 3.000 6.0 0.0318 0.0304 0.0286

Page 15: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

Second and Fourth Moments

From Gillard and Iles (2009), second moment equations are

𝑠𝑥𝑥 = 𝜎𝑋2 + 𝜎𝛿2; 𝑠𝑦𝑦 = 𝛽12𝜎𝑋2 + 𝜎𝜏2 ; 𝑠𝑥𝑦 = 𝛽1𝜎𝑋2

and fourth moment equations are 𝑠𝑥𝑥𝑥𝑦 = 𝛽1𝜇𝑋4 + 3𝛽1𝜎𝑋2𝜎𝛿2; 𝑠𝑥𝑦𝑦𝑦 = 𝛽13𝜇𝑋4 + 3𝛽1𝜎𝑋2𝜎𝜏2. These equations yield the estimators

2~ = 𝑠𝑥𝑥 − 𝑠𝑥𝑦 𝛽1 ; 2~

= 𝑠𝑦𝑦 − 𝛽1𝑠𝑥𝑦.

Page 16: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

(3) )~)(~( 222xyyyxx sss

(4) )~3()~())(~3( 22222 xyxyyyxxxyxyxxxy ssssss

The Frisch hyperbola of Van Montfort (1989) is

and the fourth order moment equation

Moment Estimating Equations

Page 17: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

True Ratio: Solution:  

Page 18: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

True Ratio: Solution:   0.14962

Page 19: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

The invertible function ]1,0[],0[: defined by

, / , )1/( )( yyxx ssccc

creates our second estimator lam1 .

Using the solutions from equations (3) and (4) as

estimates for in mle

1 , we introduce the first of

our estimators, kap1 .

Two new oblique estimators

Page 20: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

We consider the six estimators { ver1 , gm

1 , hor1 , per

1 , kap1 , lam

1 }

X has a Uniform Distribution over the interval (0, 20)

XY 1 for varying values of the true slope 1

Both X and Y are subjected to errors (2 ,

2 ) }9,4,1{}9,4,1{

Sample size n is set to 100.

The number of repetitions R is set to 1000.

Monte Carlo Simulation

Page 21: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

Table 2 X is UD(0,20), 1 = 1, 0 = 0, R =1000, n = 100, =1, = 3

MSE 310 %Bias λ ver1 46.569 -21.189 1 51.76 gm

1 11.897 -9.947 0.500 95.99 hor

1 4.402 2.9572 0 134.17 per

1 15.130 -11.246 0.556 89.93 kap

1 4.625 -1.382 0.169 118.37 lam1 4.442 -0.029 0.237 123.49

Table 3

X is UD(0,20), 1 =1.25, 0 = 0, R =1000, n =100, =1, =3

MSE 310 %Bias λ ver1 70.809 -20.929 1 45.33 gm

1 18.425 -10.036 0.500 83.29 hor

1 5.708 2.413 0 127.99 per

1 15.081 -8.546 0.434 89.90 kap

1 6.304 -1.180 0.171 114.70 lam1 5.847 0.092 0.145 116.62

Page 22: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

Table 4 X is UD(0,20), 1 =1, 0 = 0, R =1000, n =100, = 2, = 2

MSE 310 %Bias λ ver1 13.403 -10.688 1 48.23 gm

1 2.117 0.0989 0.500 89.94 hor

1 18.146 12.232 0 131.70 per

1 2.672 0.126 0.500 89.92 kap

1 4.432 0.295 0.495 90.38 lam1 5.962 0.425 0.497 90.14

Table 5

X is UD(0,20), 1 = 0.75, 0 = 0, R =1000, n =100, = 2, = 2

MSE 310 %Bias λ ver1 7.791 -10.518 1 56.13 gm

1 2.603 4.196 0.500 103.99 hor

1 28.487 21.417 0 137.68 per

1 2.041 0.169 0.640 89.96 kap

1 4.233 0.725 0.590 95.55 lam1 5.402 -0.029 0.615 92.97

Page 23: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

Table 6 Effective ~ average, X is UD(0,20), 1 =1, 0 = 0, R =1000, n =100

2 =1 2

= 4 2 = 9

2 =1 1.1781 3.3975 6.1251

2 =4 0.3185 0.9169 1.9514

2 =9 0.1701 0.4090 1.1658

Table 7

( 2 , 2

) “bumps”, X is UD(0,20), 1 =1, 0 = 0, R =1000, n =100

2 =1 2

= 4 2 = 9

2 =1 (60, 58) (199, 0) (284, 0)

2 =4 (2, 195) (24, 9) (89, 0)

2 =9 (0, 286) (2, 75) (21, 21)

Page 24: Mary Immaculate College Research Seminar September 3 rd 2013 Anomalies of the Maximum Likelihood Estimator Diarmuid O’Driscoll Mary Immaculate College.

Bibliography

• Adcock, R. J. (1878). 'A problem in least-squares', The Analyst, 5: 53-54.• Al-Nasser A. (2012). 'On using the maximum entropy median for fitting the un-

replicated functional model between the unemployment rate and the human development index in the Arab states', J. Appl. Sci., 12: 326–335.

• Carroll, R. J., Ruppert, D., Stefanski, L. A., Crainiceanu, C. M. (2006). Measurement Error in Nonlinear Models - A Modern Perspective, Boca Raton: Chapman & Hall/CRC, Second Edition.

• Deming, W. E. (1943). Statistical Adjustment of Data, New York: Wiley.• Fuller, W.A. (1987). Measurement Error Models, New York: Wiley.• Gillard, J., Iles T. (2009). 'Methods of fitting straight lines where both variables are

subject to measurement error', Current Clinical Pharmacology, 4: 164-171. • O'Driscoll, D., Ramirez, D. (2011). 'Geometric View of Measurement Errors',

Communications in Statistics-Simulation and Computation, 40: 1373-1382.• Van Montfort, K., Mooijaart, A., and de Leeuw, J. (1987). 'Regression with errors in

variables', Statist Neerlandica, 41: 223-239. • Yang L. (1999). 'Recent advances on determining the number of real roots of

parametric polynomials', J. Symbolic Computation, 28: 225-242.