Mart Data2001b

download Mart Data2001b

of 30

Transcript of Mart Data2001b

  • 7/27/2019 Mart Data2001b

    1/30

    2001 IEEE PES WINTER MEETING

    January 28 - February 1, COLUMBUS

    Panel Session on DATA FORMODELING SYSTEMS TRANSIENTS

    Determination of Rotating MachineParameter for Transients Simulations

    Juan A. MARTINEZ

    Universitat Politcnica de CatalunyaBarcelona - SPAIN

  • 7/27/2019 Mart Data2001b

    2/30

    BLOCK DIAGRAM

  • 7/27/2019 Mart Data2001b

    3/30

    REPRESENTATION OF SYNCHRONOUS GENERATORS

    GENERATORS GROUP I : 0.1 Hz 3 kHz GROUP II : 50/60 Hz 20 kHz GROUP III : 10 kHz 3 MHz GROUP IV : 100 kHz 50 MHz

    Representation

    Detailed representation ofelectrical and mechanicalparts, includingrepresentation of saturationand control of excitation

    Transition fromsubtransient to transient

    and to synchronousimpedance

    Very important if close tolocation of switching event

    Important only for decay ofshort circuit current, otherwise

    negligible

    Negligible Negligible

    Voltage control Very important Negligible Negligible Negligible

    Speed control Important Negligible Negligible Negligible

    Frequency-dependentparameters

    Very important Important Negligible Negligible

    Capacitance Negligible Important Very important Very important

    L = inductance L" = subtransient inductance Cs = surge capacitanceR = res is tance E = e lectromotoric force Z = impedance measured a t terminalsC = capacitance f = frequency

  • 7/27/2019 Mart Data2001b

    4/30

    SCOPE

    !! Representation of rotating machines from terminals

    !! Determination of electrical parameters

    !!

    Group I ( 0.3 Hz - 3 kHz) transients

    !! Contents

    * AC machines (synchronous, induction)

    * Mathematical representation - Equivalent circuits

    * Off-line test procedures (time/frequency domain)

  • 7/27/2019 Mart Data2001b

    5/30

    SYNCHRONOUS MACHINE

    DIAGRAM OF THE ELECTRICAL PART

  • 7/27/2019 Mart Data2001b

    6/30

    [v] [R][i]d

    dt[]

    [] [L][i]

    Electrical part equations

    [v] vector of voltages[i] vector of currents[] vector of fluxes[R] diagonal matrix of winding resistances[L] matrix of self and mutual inductances

  • 7/27/2019 Mart Data2001b

    7/30

    Transformation of electrical

    variables

  • 7/27/2019 Mart Data2001b

    8/30

    Equivalent circuits

    d-axis circuit

    i i it

  • 7/27/2019 Mart Data2001b

    9/30

    SYNCHRONOUS MACHINE MODELS (IEEE Std. 1110)

    Q-AXISD-AXIS

    NO DAMPERCIRCUIT

    ONE DAMPERCIRCUIT

    TWO DAMPERCIRCUITS

    THREE DAMPERCIRCUITS

    FIELDCIRCUIT

    ONLYMODEL 1.0 MODEL 1.1

    FIELD CIRCUIT+ONE DAMPER

    CIRCUITMODEL 2.1 MODEL 2.2 MODEL 2.3

    FIELD CIRCUIT+TWO DAMPER

    CIRCUITSMODEL 3.3

  • 7/27/2019 Mart Data2001b

    10/30

    SM PARAMETER IDENTIFICATION PROCEDURES

    !!IEEE Std. 115 : Test procedures for SMIEC 34-4

    !! Time-domain off-line tests (short-circuit test)

    !! Frequency-domain off-line tests (SSFR)

    !! Only two circuits per rotor axis

    !! For a more general procedure see I.M. Canay,"Modelling of alternating-current machines havingmultiple rotor circuits", IEEE Trans. on EnergyConversion, vol. 8, no. 2, pp. 280-296, June 1993

    !! Saturation

  • 7/27/2019 Mart Data2001b

    11/30

    Synchronous machine parameters

    Parameters MeasurementsLd, Lq Synchronous inductancesLf, Lg Field winding inductancesLkd, Lkq Damper winding inductancesLaf, Lakd, Lfkd d-axis mutual inductancesLag, Lakq, Lgkq q-axis mutual inductancesRa Armature resistanceR

    f, R

    gField winding resistances

    Rkd, Rkq Damper winding resistancesL0 Zero sequence inductance

    Ld, Lq Synchronous inductancesLd, Lq Transient inductancesLd, Lq Subtransient inductancesd, q Transient sc time constantsd, q Subtransient sc time constantsRa Armature resistanceL

    lArmature leakage inductance

    L0 Zero sequence inductance

    ! If Laf = Lakd = Lfkd and Lag = Lakq = Lqkq the above measurementsare enough

    !

    If Laf Lakd a new measurement, Lc (characteristic impedance),is needed

  • 7/27/2019 Mart Data2001b

    12/30

    1L

    d(s)

    1L

    d

    1

    Ld

    1L

    d

    s d

    1 s d

    1

    Ld

    1

    Ld

    s d

    1 s d

    d0

    d0

    Ld

    Ld

    d

    1L

    d

    Ld

    Ld

    Ld

    d

    d0

    d0

    d

    d

    Ld

    Ld

    Lc Ll

    Lmd

    Lfkdl

    Lmd

    Lfkdl

    Direct axis basic definitions

  • 7/27/2019 Mart Data2001b

    13/30

    LL L

    L L

    L

    Lfl

    dc dc

    dc dc

    md

    dc

    =

    '

    '

    2

    LL L

    L L

    L

    Lkdl

    dc dc

    dc dc

    md

    dc

    =

    ' "

    ' "

    2

    L L Lmd d l = L L Ldc d c= L L Ldc d c" "=

    RL

    f

    fl

    d

    =

    1

    RL

    kdkdl

    d

    = 2

    do dod

    dd

    d

    d

    d

    dd

    L

    L

    L

    L

    L

    L

    ' "'

    '' "

    "+ = + +

    1 do do d d

    d

    d

    L

    L

    ' " ' "

    "=

    ( ) ( ) d d d d d

    dcdo do

    c

    dc

    L

    L

    L

    L1 2+ = + +' " ' " d d do do

    dc

    dc

    L

    L1 2 =

    ' ""

    L LL

    L

    dc dcd d

    do dodc

    dc

    d

    '

    ' "

    "

    =

    + +

    1 2

    21( )L L L

    L

    Lfkdl c l

    md

    dc

    =

    d-axis data conversion procedure

  • 7/27/2019 Mart Data2001b

    14/30

    STANDSTILL FREQUENCY RESPONSE TESTING

    !! Aim : Accurate identification of SM parameters fromlow-voltage frequency response tests at standstill

    !! IEEE Std. 115 : Test procedures for SM

    !! Measurable parameters* d-axis operational impedance Zd(s)

    * q-axis operational impedance Zq(s)

    * standstill armature to field transfer function sG(s)

    * standstill armature to field impedance Zafo

    (s)

  • 7/27/2019 Mart Data2001b

    15/30

    I I Vd s d s= = 2

    3

    1

    3V Id d= =0 0V

    Iq q= =0 0V I I Vq s q s= = 2

    3

    1

    3

    V

    I0 00 0= =V I0 00 0= =V

    STANDSTILL FREQUENCY RESPONSE TESTING

    Operating conditions Is = Ib = - Ic ; Ia = 0 ; Vs = Vc - Vb

    d-axis q-axis

  • 7/27/2019 Mart Data2001b

    16/30

    Z se s

    i sdd

    d efd

    ( )( )

    ( )=

    =

    0

    Z s Z s R sL sd armd a d ( ) ( ) ( )= = +1

    2

    STANDSTILL FREQUENCY RESPONSE TESTING

    Measurement of Zd(s)

  • 7/27/2019 Mart Data2001b

    17/30

    Z se s

    i sq

    q

    q

    ( )( )

    ( )=

    Z s Z s R sL sq armq a q( ) ( ) ( )= = +1

    2

    STANDSTILL FREQUENCY RESPONSE TESTING

    Measurement of Zq(s)

  • 7/27/2019 Mart Data2001b

    18/30

    sG si s

    i s

    fd

    d efd

    ( )( )

    ( )=

    =

    0

    i s

    i s

    i s

    i s

    fd

    d

    fd

    arm

    ( )

    ( )

    ( )

    ( )=

    3

    2

    STANDSTILL FREQUENCY RESPONSE TESTING

    Measurement of sG(s)

  • 7/27/2019 Mart Data2001b

    19/30

    Z se s

    i safofd

    d ifd

    ( )( )

    ( )=

    =

    0

    Z se s

    i s

    e s

    i safofd

    d

    fd

    arm

    ( )( )

    ( )

    ( )

    ( )= =

    3

    2

    STANDSTILL FREQUENCY RESPONSE TESTING

    Measurement of Zafo(s)

  • 7/27/2019 Mart Data2001b

    20/30

    STANDSTILL FREQUENCY RESPONSE TESTING

    Procedure for identification of d-axis parameters

    ! Use the best available estimate for stator leakage inductance LR

    ! Ld(0) is the low-frequency limit of Ld(s) [Lad = Ld(0) - LR]

    ! Find the field to armature turns ratio Nfd/Na

    ! Calculate the field resistance! Define an equivalent circuit structure for the direct axis

    ! Use a fitting technique to find values for the unknown parametersthat produce the best fit for Ld(s) and sG(s)

    ! Adjust Lad to its unsaturated value Ladu!

    Measure the field winding resistance, convert it to the desiredoperating temperature, and refer it to the stator

    ! Normalize the equivalent circuit elements to per unit values

  • 7/27/2019 Mart Data2001b

    21/30

    STANDSTILL FREQUENCY RESPONSE TESTING

    Procedure for identification of q-axis parameters

    ! Use the best available estimate for stator leakage inductance LR

    ! Lq

    (0) is the low-frequency limit of Lq

    (s) [Laq

    = Lq

    (0) - LR]

    ! Define an equivalent circuit structure for the quadrature axis

    ! Use a fitting technique to find values for the unknown parametersthat produce the best fit for Lq(s)

    ! Adjust Laq to its unsaturated value Laqu

    ! Normalize the equivalent circuit elements to per unit values

  • 7/27/2019 Mart Data2001b

    22/30

    STANDSTILL FREQUENCY RESPONSE TESTING

    !! SSFR testing limitations* effect of eddy current losses on Ra* standstill measurements made at low currents* resistance in the contact points of damper windings

    !! Fitting techniques* Maximum-likehood estimation* Noniterative parameter identification* Network synthesis technique* Vector fitting

    !! Several procedures have been proposed to solve somelimitations, see for instance* I.M. Canay, IEEE Trans. on EC, 1993* A. Keyhani & H. Tsai, IEEE Trans. on EC, 1994* D.Y. Park et al., IEEE Trans. on EC, 1998

    !! Differences between round rotor and salient polemachines (IEEE PES WM 1997 Panel & IEEE Trans. onEC, 1999)

  • 7/27/2019 Mart Data2001b

    23/30

    ON-LINE TESTING

    !! Limitations of off-line testing

    !! Time-domain and frequency-domain methods

    !! On-line tests

    * on-line frequency response test

    * load rejection test

    * large disturbance in the excitation voltage

    * small disturbance

  • 7/27/2019 Mart Data2001b

    24/30

    INDUCTION MACHINE

    !! Equivalent circuit* eddy currents in rotor bars

    * leakage inductance saturation

    !! IEEE Std 112 : Standard Test Procedure for PolyphaseInduction Motors and Generators

    !! Parameter estimation tests* on/off line tests

    * standstill time-domain test* standstill frequency response

    !! Procedure based on standard specification data* G.J. Rogers & D. Shirmohamadi, IEEE Trans. on EC,1987

    * EMTP Universal Machine Module

  • 7/27/2019 Mart Data2001b

    25/30

    INDUCTION MACHINE EQUIVALENT CIRCUIT

    !! IM performance dominated by the stator and rotor totalleakage reactances and the rotor resistance

    !! These quantities are not constant but vary with slip* rotor resistance variation is caused by eddy currents* leakage inductance variation is caused by eddy currentsand by magnetic saturation of the leakage flux path

  • 7/27/2019 Mart Data2001b

    26/30

    Equivalent circuit - Deep bar or double

    cage rotor winding

    EQUIVALENT CIRCUIT

  • 7/27/2019 Mart Data2001b

    27/30

    MODIFIED EQUIVALENT CIRCUIT

    Standard Specification Data Equivalent circuit parameters

    Rated voltage, VredFull load specification* Efficiency, * Power factor, cos* Slip, sStarting specification* Current, Ist

    * Torque, TstMaximum torque, TmaxDesign ratio, m

    Stator resistance, RsStator leakage reactance, XsMagnetizing reactance, XmRotor leakage reactance, XrRotor primary resistance, R1Rotor secundary resistance, R2Rotor secondary leakage reactance, X2

  • 7/27/2019 Mart Data2001b

    28/30

    DATA CONVERSION PROCEDURE

  • 7/27/2019 Mart Data2001b

    29/30

    ( )T r I

    TT

    T

    T s

    s

    mr r

    xDF I I

    DF I I

    I

    I

    x x DF x

    st st st

    ratst st s

    sat

    sat

    sat

    tl to ts

    =

    = =

    =

    +

    =

    =

    = +

    2

    1 2

    2

    1

    1

    1

    2 2

    2

    ( )

    cos

    sin( )

    sin

    Full load specifications

    rs

    rs

    s

    xs

    s r

    m

    =

    =

    =

    cos( ) cos

    ( ) sin

    ' '

    '

    1

    1 1

    1

    Starting specifications Basic relationships

    r r TI

    I s

    r r m r m r r r

    r r

    xr r

    m

    xV

    Ir r V pu

    xV

    Ir r

    xx x

    DF DFx

    x DF x DF

    DF

    st r rats

    st

    st rr

    r

    tlss

    sts st s

    tlred

    reds st

    tstl tls

    sto

    tls tl s

    =

    = + =

    =+

    =

    + =

    =

    +

    =

    =

    2 2

    12 2

    21

    1

    21 2

    2

    2

    2

    2

    2

    2

    2

    2 2

    1

    1

    cos

    ( )

    ( )

    ( )

    2

    1

    222 1

    2

    = = +

    = =

    DF

    xx

    x x rr

    r

    m

    m

    x xx

    s

    soto

    ro so r

    ss rsts

  • 7/27/2019 Mart Data2001b

    30/30

    CONCLUSIONS!! A significant activity has been made during the last 20

    years to deduce rotating machine parameters fromtest measurements

    !! Only machine models for low frequency and switching

    transients have been analyzed, in all cases consideringa terminal machine model

    !! EMTP users can take advantage of different conversionprocedures to obtain the machine parameters for themost adequate model

    !! However, very few data conversion procedures arecurrently implemented in transients tools