Mark Waldron CIGRE A3 -...

33
Planning, Specification & Testing of Controlled Switching Systems Mark Waldron CIGRE A3.07

Transcript of Mark Waldron CIGRE A3 -...

Page 1: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Planning, Specification & Testing of Controlled Switching Systems

Mark Waldron CIGRE A3.07

Page 2: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Summary Planning.

– Aim, suitability of controlled switching, benefits & risks, pre-existing constraints.

Specification. – Performance, operating environment,

component vs system performance, integration, life management.

Testing. – Circuit-breaker capabilities, controllers,

sensors & auxilliaries, total functionality.

Page 3: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Planning - Overview

Maintain/achieve adequate performance Optimised lifetime cost of installation Define the “problem” - transient control Suitability of controlled switching - ideal Availability of alternatives - pros & cons Pre-existing constraints Risk assessment - real systems including

P(failure) & consequences

Page 4: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Planning - Alternatives to CS

Avoidance - can the scheme be avoided? Power system modification/re-enforcement Dynamic resistance/inductance Fixed inductance Surge arresters Re-enforcement of secondary systems

Page 5: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Planning - Risk Assessment

Non-ideal systems have P(failure) Nature & consequence of failure depend

on application Safety risks followed by commercial risks Levels of redundancy to achieved

acceptable levels of risk Structured design approach e.g. IEC 61508

Page 6: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Planning - Decision tree Power grid configuration

Goal

Controlledswitching

Solution 2 Solution 3 Solution n...

Determinationof window

Specify breaker controller system

Do measurements

Check what is achievable and reconsider

Characteristicsavailable?

Use of existingbreaker

Requirement met?(ideal controller)

Specify breakercontroller system

yes

yes

yes

no

no

no

Page 7: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Specification - Overview Controlled switching installations must be

considered as a whole - breaker + controller + auxiliaries

Interaction between functionalities Operating environment - electrical, climatic,

regime . . . . . Performance ⇒ System ⇒ Components Support & lifetime management - not fit &

forget

Page 8: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Specification - Power System

Nature of the power system: – Frequency – Earthing – Connection arrangements – Reference signals – Normal & abnormal system conditions

Actual duty on switching device - non-idealised case

Page 9: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Specification - Accuracy & Consistency Ideal making target + acceptable tolerance Temperature range ⇒ Compensation? Drive & insulation operating range ⇒

Compensation? Auxiliary voltage Electrical environment Maximum/minimum idle time Reference signals - accuracy & availability Adaption routines

Page 10: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Specification - Reliability & Failure Performance

Failure mode, P() & effects considered Failure to operate on command Incorrect operation - no warning Operate without command Inability to operate (within tolerance) Loss of reference &/or supply Rigorous assessment - IEC 61508?

Page 11: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Specification - Installation Philosophy & Interfaces

Permissive or definite operation Redundancy - protection philosophy? HMI - local and/or remote Integration with basic protection & control Self diagnostics & self verification Complexity Communication, protocols etc

Page 12: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Specification - Lifetime Issues

Commissioning Maintenance for continued accuracy Adaptability - self adjustment on basis of

operation Software/hardware support Component interactions throughout

lifetime

Page 13: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Specification - Non-standard duties

Application of controlled switching can “create” additional duties

Non-simultaneous poles affect asymmetric making and breaking

Extreme case but should be considered Pole spread on closing (ms)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

τ = 45ms 2.55 2.62 2.69 2.76 2.82 2.87 2.92 2.95 2.98 3 3.01

τ = 60ms 2.61 2.69 2.77 2.83 2.9 2.95 2.99 3.03 3.06 3.09 3.09

τ = 90ms 2.68 2.76 2.84 2.91 2.98 3.03 3.08 3.11 3.14 3.16 3.17

τ = 120ms 2.72 2.8 2.88 2.95 3.02 3.07 3.12 3.16 3.19 3.2 3.21

τ = infi-nite

2.83 2.92 3.01 3.08 3.15 3.21 3.26 3.3 3.32 3.34 3.35

Page 14: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing - Overview

Circuit-breaker characteristics Controller characteristics Sensor characteristics Auxiliary performance Taken together ⇒ System Performance

Page 15: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing

Circuit breaker Controller Sensors

Typetest ?

Influence of externalparameters

Controlled switching test

Compatibility test ofbreaker/controller/sensor

Testperformed

with completesystem ?

Functional performancetest of complete system

Commissioning test

Routinetests

N

N

Y

Y

Typetest ?

Functionalperformance test

EMC tests

Mechanicaltests

N

Y

Routinetests

Environmentaltests

Typetest ?

Typetests

N

Y

Routinetests

or

End

Page 16: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing - Controller

Functional performance - scatter, compensation, adaption, alarms & signalling, self diagnostics, communication

Hardware conformance - EMC, mechanical & environmental - existing standards.

Software reliability - especially for Safety Critical Systems

Page 17: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing - Circuit-breaker Key parameters:

– RDDS – Mechanical scatter, variations & idle time – RRDS (can be derived from C & L switching)

Permit definition of optimum target point for any duty - closing or opening

Direct measurement of optimum target point for particular case

Controlled switching test

Page 18: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing - Voltage zero making

0 30 60 90 120 150 180 210 240 270 300 330 3600,0

0,2

0,4

0,6

0,8

1,0

T T arget Target Pointnominal instant of contact touch

∆t making

k + k0 ∆

k - k0 ∆

Volta

ge a

cros

s ci

rcui

t bre

aker

(abs

olut

e va

lue)

[pu]

Page 19: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing - Voltage peak making

0 300,0

0,2

0,4

0,6

0,8

1,0

T Target Target Pointnominal instant of contact touch

∆t making

60 90 150120 180

∆t mech

k + k0 ∆

k - k0 ∆

Volta

ge a

cros

s ci

rcui

t bre

aker

(abs

olut

e va

lue)

[pu]

Page 20: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing - Basic derivation of RDDS vo

ltage

∆T close

∆T make

∆T pre-strike

contacttouch

makinginstant

closecommand

time

pre-strike-characteristicof the circuit-breaker

U making

∆T close target

time

conta

ct tra

vel

position of contact touch

∆T making (U=0)

Page 21: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing - RDDS test sequence

4 making tests per setting 15 degree steps Pre-strike voltage & pre-strike time

measured Polarities considered separately Influence of contact burn-off to be verified

Page 22: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing - Typical RDDS test result RDDS at both polarities

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00.51.01.52.02.53.0

Pre-arc (ms)

Break

down

volta

ge [p

u]

Page 23: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing - RDDS variations Variation of the beginingof the movement

Variation of dielectric strength

Variation of contact velocity

3σ=1ms

3σ=15%

3σ=5%

Page 24: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing - Close target vs making voltage

-180 -90 0 90 180

Umaking (p.u.) ∆Ttarget

1.0

0.8

0.6

0.4

0.2

0.0

t i-min

t i-max

Σ ∆

Σ ∆

U making-max

optimumclose target

close target in reference to voltage zero (deg)

-5 deg

27 deg

Page 25: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing - Close target vs making instant Ab

s. v

alue

of

the

time

betw

een

mak

ing

inst

ant a

nd v

olta

ge z

ero

(ms)

0

1

2

3

4

5

-90 0 90

voltage û=1.0 p.u.voltage û=1.5 p.u.

Mechanical contact touch in ref. to voltage zero (deg)

∆Ttotal

t making (U=0)

(+/-1ms)

( û=1,5 pu)

∆Ttotal

( û=1,0 pu)

Page 26: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing - Mechanical variations

Basic mechanical testing (IEC 62271-100) Tests over expected range of:

– Ambient temperature – Drive condition – Control voltage – Idle time – Phase spacing (mechanical linkage only)

Determines need for compensation

Page 27: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing - Idle time test C - 1min - O - 1min - C - 1min - O (C/O

interchangeable) Idles of:

– 1 hour – 8 hours – 16 hours – 64 hours – 104 hours – 232 hours – 720 hours

Page 28: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing - Typical relationships

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

70 80 90 100 110 120

Control voltage (%)

∆t cl

ose (

ms)

0

0.5

1

1.5

2

2.5

3

3.5

4

-50 -30 -10 10 30 50

Ambient temperature (°C)

∆t cl

ose (

ms)

40

41

42

43

44

0.01 0.1 1 10 100Idle time (h)

Clos

e tim

e (m

s)

Test resultsDt= 2 (1-exp(-t/3.5))+ 41

Page 29: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing - Controlled closing test Test on full circuit-breaker Verify actual performance for voltage peak &

voltage zero switching Realistic power frequency condition,

earthing factors etc Extremes of variable parameters considered

either directly or indirectly 4 test series - 6 operations per test series at

each voltage zero and each voltage peak. 96 tests in total

Page 30: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing - Controlled closing test Operating conditions

Directly considered(extreme values must be di-rectly applied in the tests)

SF6 gaspressure Lockout Rated

Driveenergy

Lockout Rated

a) Operating conditions applied in the testsMinimum Maximum

Indirectly considered(extreme values considered by

means of close/open target)

Controlvoltage

∆T1-min ∆T1-max

Ambienttemperature

∆T2-min ∆T2-max

Idle time ∆T3-min ∆T3-max

Extreme variations of close/open timesfor testing ∆tmin =∑

=−∆

3

1min

iiT ∆tmax =∑

=−∆

3

1max

iiT

b) Operating conditions that can be represented by variations of the close/open targets (refer to Figure 4-7).

∆Τi-min = (minimum close/open time variation from the respective characteristic curve)∆Τi-max = (maximum close/open time variation from the respective characteristic curve)Remark: parameters compensated by the controller shall not be considered.

Page 31: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing - Controlled closing test

Test series Close at voltage zero Close at voltage peak1 Lockout SF6 pressure,

rated drive energy:ttarget_zero = ttarget_zero_rated + ∆tmin

Lockout SF6 pressure,rated drive energy:

ttarget_peak = ttarget_peak_rated + ∆tmin

2 Rated SF6 pressure,lockout drive energy:

ttarget_zero = ttarget_zero_rated + ∆tmax

Rated SF6 pressure,Lockout drive energy:

ttarget_peak = ttarget_peak_rated + ∆tmax

3(most critical case)

Lockout SF6 pressure,Lockout drive energy:

ttarget_zero = ttarget_zero_rated + ∆tmin

Lockout SF6 pressure,lockout drive energy:

ttarget_peak = ttarget_peak_rated + ∆tmin

4 Rated SF6 pressure,rated drive energy:

ttarget_zero = ttarget_zero_rated + ∆tmax

Rated SF6 pressure,rated drive energy:

ttarget_peak = ttarget_peak_rated + ∆tmax

Page 32: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Testing - Complete system checks

Compatibility Functional performance check - like

controlled closing test System assembled & tested as early as

possible Commissioning procedure is critical to

account for system aspects Regular review

Page 33: Mark Waldron CIGRE A3 - ewh.ieee.orgewh.ieee.org/soc/pes/switchgear/presentations/tp_files/2003-1_Thu... · Maximum/minimum idle time ... Basic derivation of RDDS voltage ∆T close

Concluding remarks

Consider controlled switching system Performance reliant on component

parameters & testing + compatibility Reliability & failure performance/effect

dictate levels of redundancy Lifetime management of the system -

component & system changes