Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow –...

68
l h Electric Machines Considering Power Electronics Mark Solveson – Application Engineer © 2011 ANSYS, Inc. May 10, 2012 1

Transcript of Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow –...

Page 1: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

l hElectric Machines Considering Power Electronics

Mark Solveson – Application Engineer

© 2011 ANSYS, Inc. May 10, 20121

Page 2: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

OutlineMachine Design Methodology Introduction

RMxprtMaxwellMaxwell

Advance CapabilitiesCore LossDemagnetization / Magnetization

Field‐Circuit Co‐SimulationMaxwell Circuit EditorSimplorer – Capabilities, Switches, IGBT CharacterizationSimplorer Examples

Multi‐Physics Force CouplingThermal Coupling

© 2011 ANSYS, Inc. May 10, 20122

Thermal Coupling

Page 3: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Introduction: Machine Introduction: Machine Design MethodologyDesign MethodologyDesign MethodologyDesign Methodology

© 2011 ANSYS, Inc. May 10, 20123

Page 4: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Maxwell Design Flow – Field Coupling

ANSYS CFDFluent

RMxprtMotor Design

/

g

Maxwell 2‐D/3‐DElectromagnetic ComponentsHFSS

PExprtANSYS 

MechanicalThermal/Stress

pMagnetics

© 2011 ANSYS, Inc. May 10, 20124

Field Solution

Model Generation

Page 5: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Simplorer Design Flow – System Coupling

SimplorerSystem Design

ANSYS CFD Icepack/Fluent RMxprt

M t D i

PP := 6

ICA:

A

A

A

GAIN

A

A

A

GAIN

A

JPMSYNCIA

IB

IC

Torque JPMSYNCIA

IB

IC

TorqueD2D

Motor Design

HFSS, Q3D, SIwave

PExprt

/

pMagnetics

Maxwell 2‐D/3‐DElectromagnetic Components

ANSYS MechanicalThermal/Stress

Model order Reduction

© 2011 ANSYS, Inc. May 10, 20125

Co-simulation

Push-Back Excitation

Page 6: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

RMxprt ‐ Initial Motor DesignAnalytical solution• 16 different Motor/Generator types• Input data• Input data• geometry, winding layout• saturation, core losses• comprehensive results– machine parameters– performance curvesperformance curves 

© 2011 ANSYS, Inc. May 10, 20126

Page 7: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

RMxprt ‐Motor DesignParametric Sweep:  

Stack_Length 

Skew/no Skew 

Stator_ID

AirGap

Monitor:Torque

Power

Efficiency

Determine the Best Design

Create FEA Model

Export Circuit Model

© 2011 ANSYS, Inc. May 10, 20127

Export Circuit Model

Page 8: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Integrated EMDM FoundationsA t S t M ll D i f RM tAuto Setup Maxwell Design from RMxprt

© 2011 ANSYS, Inc. May 10, 20128

Page 9: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Maxwell/RMxprt V15 – Axial Flux Machine• AC or PM Rotor• Single or Double Side Stator

Sample Inputs

© 2011 ANSYS, Inc. May 10, 20129

Sample Outputs

Page 10: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Maxwell/RMxprt V15 – Axial Flux Machine• Maxwell 3D auto‐setup (Geometry, Motion, Master Slave, Excitations, etc.  )

© 2011 ANSYS, Inc. May 10, 201210

Page 11: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Design Exploration 

Maxwell Project

P1 ‐ cond

Workbench Schematic

© 2011 ANSYS, Inc. May 10, 201211

P2 ‐ parallelWorkbench Schematic

Page 12: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Design Exploration 

© 2011 ANSYS, Inc. May 10, 201212

Page 13: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Design Exploration – Six Sigma

© 2011 ANSYS, Inc. May 10, 201213

Page 14: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Integrated Motor Solution

More Than 30UDP Machine

ComponentsComponentsfor 2D and 3D 

© 2011 ANSYS, Inc. May 10, 201214

Page 15: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

RMxprt Dynamic Link to Simplorer

© 2011 ANSYS, Inc. May 10, 201215

Page 16: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Maxwell

0.80

1.00

1.20

1.40

m] 2.00

2.50

3.00

3.50

eter

]

TRW / Ansoft Position & Current Hysteresis Control Close/Open1

Curve Info

Position

Coil Current

Diode Current

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00Time [ms]

0.00

0.20

0.40

0.60

0.80

Pos

ition

[mm

0.00

0.50

1.00

1.50

2.00

Coi

l Cur

rent

[me

© 2011 ANSYS, Inc. May 10, 201216

Page 17: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Automatic Adaptive Meshing

© 2011 ANSYS, Inc. May 10, 201217

Page 18: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Advanced CapabilitiesAdvanced CapabilitiesCorelossCoreloss ComputationComputationCorelossCoreloss ComputationComputation

© 2011 ANSYS, Inc. May 10, 201218

Page 19: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Lamination Core Loss in Time Domain

• Instantaneous hysteresis loss

• Instantaneous classic eddy current lossdtdBH

dtdBBktp irrmhh

cos1)(

y

I t t l

2

221)(

dtdBktp cc

• Instantaneous excess loss21)(

ddBk

Ctp ce

where

dC 2/ 5.15.1 cos22

)(dtC

p ce

e

© 2011 ANSYS, Inc. May 10, 201221

dCe 0 cos2

Page 20: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Observation

• As a post‐processing step• Including eddy, hysteresis 

with minor loop and excess losses

• Applicable to soft ferromagnetic and power ferrite materialsferrite materials

• Practical as it is based on available manufacturer‐

d d d h

Computed core loss with time

provided data sheet

© 2011 ANSYS, Inc. May 10, 201222

Page 21: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Core Loss Effects on Field Solutions

•Basic concept: the feedback of the core loss is t k i t t b i t d itaken into account by introducing anadditional component of magnetic field H in core loss regions This additional componentcore loss regions. This additional componentis derived based on the instantaneous core loss in the time domain

© 2011 ANSYS, Inc. May 10, 201223

Page 22: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Model Validation by Numerical Experiment

The effectiveness of the model can be validated by the power balance experiment from two test cases: p pconsidering core loss feedback and without considering core loss feedback. The increase of input electric power and/or input mechanical power between the two casesand/or input mechanical power between the two cases should match the computed core loss.

160 12

80

100

120

140

oss

(W)

6

8

10

Loss

(W)

Th h t f Three‐phase motor

0

20

40

60

Lo

Input power increaseCore loss 0

2

4

0 5 10 15 20 25 30 35 40

Time (ms)

Core lossInput power increase

Three‐phase transformer Three phase motor

© 2011 ANSYS, Inc. May 10, 201225

0 20 40 60 80 100

Time (ms)

Time (ms)

Page 23: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Advanced CapabilitiesAdvanced CapabilitiesDemagnetization ModelingDemagnetization ModelingDemagnetization ModelingDemagnetization Modeling

© 2011 ANSYS, Inc. May 10, 201226

Page 24: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Modeling Mechanism

• The worst demagnetization point for each element is dynamicallyfor each element is dynamically determined from a full transient process

BBr

• The demagnetization point is source, position, speed and 

Br'

temperature dependent

• Each element uses its own recoil 

Kp Recoil lines

curve derived at the worst demagnetization point in subsequent transient simulation

HHc 0

Worst demagnetizing point

© 2011 ANSYS, Inc. May 10, 201227

subsequent transient simulation

Page 25: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Irreversible  Demagnetization If a demagnetizing point P goes below the knee point K, even after the load is reduced or totally removed, the

b t ki i t ill l l thB

Br'

Br

subsequent working points will no longer along the original BH curve, but along the recoil line.

K

p Recoil line

HHc 0

p Recoil line

© 2011 ANSYS, Inc. May 10, 201228

The animation shows how the demagnetization permanently occurs with varying load current

Page 26: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Temperature Dependent Model

• Work on intrinsic Bi‐H, instead of B‐H curveinstead of B H curve 

B = Bi + μo H

• T t t d d t t• Two temperature dependent parameters:Remanent flux density Br and Intrinsic coercivity Hci

)()(1)()( 02

02010 TPTBTTTTTBTB )()(1)()( 002010 TPTBTTTTTBTB rrr

)()( 1)()( 02

02010 TQTHTTTTTHTH cicici

where T0 is the reference temperature, and α1, α2, β1 and β2

© 2011 ANSYS, Inc. May 10, 201230

0 1 2 1 2are coefficients which are provided by vendors

Page 27: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Temperature Dependent Model

• Once a model at T0 

is constructed, any

Copied from vendor datasheet

is constructed, any Bi‐H curves at other T can be recovered in terms of P(T) Q(T)in terms of P(T), Q(T)

• B‐H curve in the 2nd and 3rd quadrantsand 3rd quadrants can be further recovered by

Derived from our implemented temperature dependent model

B = Bi + μo H

© 2011 ANSYS, Inc. May 10, 201231

Page 28: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Benchmark Example

• 8-pole, 48-slot, 50 KW, 245 V, 3000 rpm Toyota Prius IPM motor with imbedded NdFeB magnet

• Two steps in 3D transient FEA: 1. Determine the worst operating point element by element 

during the entire transient processduring the entire transient process 2. Simulate an actual problem based on the element‐based 

linearized model derived from the step 1

• To further consider the impact of temperature, element-based average loss density over one electrical cycle is used as the thermal load in subsequent thermal analysisused as the thermal load in subsequent thermal analysis

• The computed temperature distribution from thermal solver is further feedback to magnetic transient solver to consider

© 2011 ANSYS, Inc. May 10, 201232

is further feedback to magnetic transient solver to consider temperature impact on the irreversible demagnetization

Page 29: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Hc' change in one element during a transient process:

The 1st cycle (0 to 5ms) doesn’t consider temperature impact. The 2nd l (5 t 10 ) h id d th f db k f th l l ticycle (5 to 10ms) has considered the feedback from thermal solution 

based on the average loss over the 1st cycle

Observation: Hc' has dropped from 992,755 A/m to 875,459 

© 2011 ANSYS, Inc. May 10, 201233

c pp , / ,A/m, which is derived from the worst operating condition

Page 30: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Contours of loss density distribution Static temperature distribution (K)

© 2011 ANSYS, Inc. May 10, 201234

Page 31: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Torque profiles showing demagnetization and temperature dependence:

Torque profiles derived from without considering demagnetization, 

© 2011 ANSYS, Inc. May 10, 201235

considering demagnetization but no temperature impact and considering demagnetization as well as temperatures dependence

Page 32: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Magnetization

• Compute magnetization based on the original non remanenton the original non‐remanent   B‐H curve 

• Find operating point p from nonlinear solutions

• Construct line b at the operating point p, which is parallel to the  B Slope of line a at saturation pointp p pline a at saturation point

• Br is the intersection of line bwith B‐axis

p p

pwith B axis• Element by element

Br Line bp

© 2011 ANSYS, Inc. May 10, 201236

H0

Page 33: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

What is the Difference between Using Magnetostatic and Transient solver?

• Magnetostatic case: the 

Magnetostatic and Transient solver? B

operating point used for computing magnetization (Br) is from single source point; 

Br p

• Transient case: the operating point used for H0operating point used for computing magnetization (Br) is the maximum operating point with the largest (B H)

B

Brpoint with the largest (B,H) during the entire transient simulation.  p

© 2011 ANSYS, Inc. May 10, 201237

H0

Page 34: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Anisotropic or Isotropic Magnetization 

• Anisotropic magnetization: magnetization direction is determined by the orientation of the magnet material and the direction is specified by a user; 

• Isotropic magnetization:Isotropic magnetization: magnetization direction is determined by the orientation of the magnetizing field and is

P(T) input Q(T) input

the magnetizing field and is determined during the field computation. 

Q( ) p

For isotropic magnetization, all threecomponents have to be set to zero

© 2011 ANSYS, Inc. May 10, 201238

components have to be set to zero

Page 35: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

FieldField‐‐CircuitCircuitCoCo‐‐simulationsimulationCoCo simulation simulation 

© 2011 ANSYS, Inc. May 10, 201239

Page 36: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Co‐simulation Mechanism

Thevenin equivalentThevenin equivalent(impedance matrix,source voltages)

Convert node to loop

FE Simulator

Lumped fieldparameters

Norton equivalent(conductance matrix

RwETA

UA.VAL

ETBUB.VAL

ETCUC.VAL

TH11 TH12 TH13

TH14 TH15 TH16TH21 TH22 TH23

TH24 TH25 TH26

parameters(inductances, induced

Internal voltages)

(conductance matrix,source currents)

Mww EwJ

STF

M

DCMP STF

J

MasTacho

StfTachoShaft

DcmpMotor

StfMotorShaft

© 2011 ANSYS, Inc. May 10, 201240

MasTachoJ := 0.15m

DcmpMotor

J := 2.1mMasCouplingLeft

J := 0.9m

Circuit Simulator

Page 37: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Maxwell Circuit Editor Example

• Commutator bar: model position

WidB

WidC

• Commutating model: model parameters

(a) (b) (c) (d)

PeriodLagAngle

G

|WidC-WidB|

a

b c

d

Gmax

© 2011 ANSYS, Inc. May 10, 201241

Position0WidC+WidB

Page 38: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Case Example for Commutating Circuit

PMDC Motor

Winding currents

PMDC Motor

Torque Brush commutation 

© 2011 ANSYS, Inc. May 10, 201242

circuit

Page 39: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Simplorer:Simplorer:Power ElectronicsPower ElectronicsPower ElectronicsPower Electronics

© 2011 ANSYS, Inc. May 10, 201243

Page 40: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Simplorer Technology Highlights

© 2011 ANSYS, Inc. May 10, 201244

Page 41: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

State‐of‐the‐Art Drive System:AMultidomain Challenge

I

A Multidomain Challenge

Drive systems

ANSYS provides a comprehensive toolset for multidomain work:

GAINGAIN LIMIT

GAIN

I

GAIN LIMIT

• Simplorer conservative structures (electrical circuits, mechanics, magnetics, hydraulics, thermal, ...)i l i (bl k• Simplorer non‐conservative systems (blocks, states, digital, nth‐order differential equations.

Drive componentsB11A11 C11

A12 A2B12 B2C12 C2

3~M

ROTJ ROTJ

· = M SV RS

• Maxwell with motion and circuits• RMxprt and PExprt (incl. thermal)• Maxwell with ANSYS Thermal.

ROT2ROT1ASMS

ROT2ROT1ROT2ROT1STF

ROT2ROT1STF

ROT2ROT1

• HFSS, Q3D, SIwave with circuits (Designer/Nexxim), ANSYS Mechanical, ICEPACK, etc. ...

© 2011 ANSYS, Inc. May 10, 201245

Page 42: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Multi‐Domain System Simulator

Magnetics Mechanics Hydraulics, Thermal, ...Electrical circuits

Analog Simulator

+

-

B11A11 C11

A12 A2

B12 B2

C12 C2

ROT2ROT1

ASMS

3~M

J

STF

M(t)

GN

D

mSTF

F(t)

GN

D

JA

MMFL

H

Simplorer Simulation Data Bus / Simulator Coupling Technology

State‐spaceModels

Block Diagram Simulator

State MachineSimulator

Digital/VHDLSimulator

statetransition

(R_LAST.I >= I_OGR)

EIN

SET: TSV1:=1SET: TSV2:=0SET: TSV3:=0SET TSV4 1

PROCESS (CLK,PST,CLR)BEGINIF (PST = '0') THEN

'1'

INV

J Q

QB

CLR

PST

Flip flop

K

© 2011 ANSYS, Inc. May 10, 201246

AUS

SET: TSV1:=0SET: TSV2:=1SET: TSV3:=1SET: TSV4:=0

(R_LAST.I <= I_UGR)

SET: TSV4:=1

CxyBuAxx

state <= '1';ELSIF (CLR = '0') THENstate <= '0';

ENDIF; INV

Page 43: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Electromechanical Design Environment

MatlabRTW UDC MathCAD Matlab 

Simulink Maxwell…Simulink

C/C++ Programming Interface (FORTRAN, C, C++ etc.)

Co‐Simulation

Simulation Data Bus/Simulator Coupling Technology

Maxwell Circuits Block Diagram

State Machine VHDL‐AMS

Model DatabaseElectrical, Blocks, State Machines, Automotive, Hydraulic,

© 2011 ANSYS, Inc. May 10, 201247

Electrical, Blocks, State Machines, Automotive, Hydraulic,Mechanics, Power, Semiconductors…

Page 44: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Analog Circuit Simulator 

Multi‐domain simulation example

• Electrical supply bjt1 bjt2Digital ControlC 1 BS >Q

Digital Electrical

ctrl1pp y• Digital control• Mechanical / fluid 

Battery- +

TRIG

CTRL2

CTRL1 BS=>Q

BS=>Q

TRIG

75

A

75ctrl2

behavioural models DETECTPLUNGER

I

pp1Solenoid

plunger_control

plungerF

em_force

Solenoidmp2

m := 0.0066 s0 := 0.0002

orifice

limit

springF

accumulatorgravityv alue := 0.0066*9.8

spacer

© 2011 ANSYS, Inc. May 10, 201248

sul := 0.0002sll_ := 0.0

Mechanical Hydraulic

Page 45: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Multi‐Physics Co‐Simulation Transient Electromagnetic 

FEM Co‐simulation – Maxwell 2D/3D

bjt1 bjt2Digital ControlC 1 BS >Q

Digital Electrical

ctrl12D/3D

Battery- +

TRIG

CTRL2

CTRL1 BS=>Q

BS=>Q

TRIG

75

A

75ctrl2

DETECTPLUNGER

I

pp1Solenoid

plunger_control

plungerF

em_force

Solenoidmp2

m := 0.0066 s0 := 0.0002

orifice

Future: Multidomain model extraction and co‐simulation

limit

springF

accumulatorgravityv alue := 0.0066*9.8

spacer

© 2011 ANSYS, Inc. May 10, 201249

sul := 0.0002sll_ := 0.0

Mechanical Hydraulic

Page 46: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Semicondutor Modeling In SimplorerIGBT Device model• Semiconductor device model on SimplorerIGBT D i d l A / D i• IGBT Device model :  Average / Dynamic

• Capability of IGBTmodel

Thermal management for Inverter• Thermal model in Simplorer’s semiconductor model.• Extract thermal network from ANSYS Icepak• Extract thermal network from ANSYS Icepak• Heat / Power loss coupling with device model

Inverter surge and conduction noise• Extract parasitic LCR from Q3D Extractor• Inverter surge and conduction noise in Simplorer

© 2011 ANSYS, Inc. May 10, 201250

g p

Page 47: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Semiconductor device model in SimplorerIdeal switch model • ON:short, OFF:open

Semiconductor system level• Modeled as nonlinear resistance in consideration of a static characteristic.

Semiconductor device levelSemiconductor device level• Dynamic characteristics, therma and physical characteristics are modeled. – BJT / MOSFET /JFET / IGBT / Diode / Thysistors… 

SPICE compatible • spice‐3f5 compatible

© 2011 ANSYS, Inc. May 10, 201251

spice‐3f5  compatible– MOSFET (spice3 Lv.1 ‐ 6, BSIM1 ‐ 4, EKV,JFET)

Page 48: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

IGBT model 1. System model

• Nonlinear resistance– verification of operation1) 2)

2. Average model• Static char & average loss• Static char. & average loss.

– Heating & temp. rise

3 Basic Dynamic model3)4)

3. Basic Dynamic model• Dynamic char.& Energy

– Switching loss & heating.

3)

4. Advanced Dynamic model• Detailed dynamic char.

© 2011 ANSYS, Inc. May 10, 201252

y– Inverter surge & noise

Page 49: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

IGBT Characterization

• Average model is developed for system i l ti d i i t t d i t th t tisimulation and is integrated into the extraction tool

• Common thermal model is used among the gIGBT family members

© 2011 ANSYS, Inc. May 10, 201253

Page 50: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Average IGBT modelA switching waveform (current and voltage) is systematic. 

Calculate a switching loss for every cycle. 

DC loss and turn ON/OFF loss pulse is an input to a thermal network. 

Losses compute as an averaged rectangle pulse.

A thermal network is calculable in the independent sampling time. 

• PON/POFF – switching loss• EON/EOFF – switching energy loss• PDC – conduction loss • TON/TOFF – turn on , turn off time• Vce,sat – collector‐emitter saturation voltage.

© 2011 ANSYS, Inc. May 10, 201254

Page 51: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Dynamic IGBT model

Static characteristic modeled the same as Average model.

Switching energy is derived by the integration of a current cross voltage waveform. g gy y g g

The Dynamic model can obtain an exact switching waveform. 

It can applies also to EMI/EMC and a noise simulation. 

700.0 00.0

66.7

333.3

500.0

66.7

33.3

00.0

Eoff

Eon

-231.0 618.00 200.0 400.050.0

0

-172.0 750.00 200.0 400.0 600.050.0

0

(VCE=600V、IC=300A、VGE=15V、T=25℃)

© 2011 ANSYS, Inc. May 10, 201255

Page 52: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

IGBT device circuit model

RT1 RT2 RT3 RT4Zth_IGBT

IGBT chip bottomIGBT junction

THERMO_T

I l i l i i

Internal thermal network

PT

CT1 CT2 CT3 CT4

RD1

CD1

RD2

CD2

RD3

CD3RDT CDT

RD4

CD4

impedance to ambient

Diode junction

ST

SD

open @ typ_therm>2

switches to GND @ typ_therm +10

Internal equivalent circuit 

Current, Voltage, Temp., VgeSlope dependency modeled for each capacitance.

© 2011 ANSYS, Inc. May 10, 201256

Zth_diode

PDSD

Diode chip bottomTHERMO_D

Independent tail current source.

RC snubber are implemented.  

Page 53: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

IGBT Characterization 

© 2011 ANSYS, Inc. May 10, 201257

Page 54: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

IGBT inverter designCircuit design (loss) + thermal model

Ambient temperature = 20 cel

Package temperature

1T 1D

1T, 1Djunction temperature

1T 1D

temperature

Examination of l

© 2011 ANSYS, Inc. May 10, 201258

Line current

1T, 1D SW loss + DC loss

temperature cycle 

Page 55: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Simplorer + Icepak= Detailed modeling of thermal system

ANSYS IcepakANSYS IcepakQ3D ExtractorQ3D Extractor

CAD Import

Parasitism LCR extraction

Design of the cooling technique and arrangement 

00.0

00.0

g

-231.0 618.00 200.0 400.050.0

0

66.7

33.3 SimplorerSimplorer

The simulation in consideration of change of detailed temperature

© 2011 ANSYS, Inc. May 10, 201259

Device property and loss consultation 

Design of  substrate radiating route 

change of detailed temperature environment 

Page 56: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Induction Motor FEA Coupled with Simplorer

PhaseA1

PhaseA2

PhaseB1

Rotor1

Rotor2

+

1400 rpm

B6U

D1 D3

2L3_GTOS

g_r1 g_s1 g_t1

~

3PHASA * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

G_R1 := SA.VAL

G_R2 := -SA.VAL

G_S1 := SB.VAL

G_S2 := -SB.VAL

G_T1 := SC.VAL

G_T2 := -SC.VAL

+ V

Frequency controlled speed

FEA

PhaseB1

PhaseB2

PhaseC1

PhaseC2ICA: LL:=237.56uRA:=696.076m

D1 D3 D5

D2 D4 D6g_r2 g_s2 g_t2

~

~

PHI = -120°

PHI = -240°

LDUM:=100mCDC:=10m

AMPLITUDE := 800 VFREQUENCY := 60 Hz

FREQ := 800 HzAMPL := 800PHASE := 0 deg

FREQ := 50 HzCDC: 10mLDC:=10mRDC:=10VZENER:=650

AMPL := 500PHASE := -315 deg

PHASE := -195 deg

PHASE := -75 deg

SA

SB

SC

Name Value

SIMPARAM1.RunTime [s] 111.29k

SIMPARAM1.TotalIterations 40.51k

SIMPARAM1.TotalSteps 10.00k

FEA1.FEA_STEPS

Fed by ac-dc-ac inverter

300.00

0

200.00

LA.I [A]

LB.I [A]

LC.I [A]

1.50k

1.00k 100.00 * LD.I [A]

VDC.V [V]

425.00

0

Current Torque

Speed

-297.50

-200.00

0 100.00m50.00m

-500.00

0

0 100.00m50.00m

-715.00

-500.00

0 100.00m50.00m

p

© 2011 ANSYS, Inc. May 10, 201260

Page 57: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

BLDC motor FEA Coupled with SimplorerOutput torque

ICA: LL:=922uRA:=2.991

PWM_T:=60

PWM PER 180-14.50

7.80

0

Output torque

Inverter fed three phase BLDC motor drive

Chopped current control

sourceA1

sourceA2

sourceB1

Magnet01

Magnet02

+

1500 rpm

I_TARG:=9

I_HYST:=0.2

Q1 Q3 Q5 RA Ohm LL H

PWM_PER:=180

0 30.00m20.00m

FEA

sourceB2

sourceC1

sourceC2

+GAIN ANGRAD

QS1VAL[0] := mod( INPUT[0] ,INPUT[1] )

Q2Q4 Q6

400 V

THRES := PWM_TINPUT[1] := PWM_PER

CONST

CONST

EQUBL

EQUBL

EQUBL

57.3

-60+PWM_PER

-30+PWM_PER

QS2

QS3

CONST

QS4-90+PWM_PER

LB.I

-LC.I

LA.I

h d EQUBL

EQUBL

CONST

QS5-120+PWM_PER

EQUBL

CONST

QS6

-150+PWM_PERINPUT := -LB.I

LC.I

-LA.I

THRES1 := I_TARG - I_HYST

8.50

10.00

0

Chopped currents

8.50

© 2011 ANSYS, Inc. May 10, 201261

0

5.00

0 20.00m 30.00m

-10.30

0 30.00m20.00m 0

5.00

0 30.00m20.00m

Page 58: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

SRM FEA Coupled with Simplorer

A1

A2

AirRotor1

AirRotor2

+

26293 rpmICA: LL:=70.6914u

RA:=203m

A2

B1

B2

C1

C2

AirRotor2

140 V

100u F

FEA

+ ANGRADGAIN

57.3

CONST -60+90

EQUBL

VAL[0] := mod( INPUT[0] ,90 ) QA

QBName Value

FEA1.FEA_STEPS 1.00kSIMPARAM1.RunTime [s] 6.90k

SIMPARAM1 TotalIterations 4 05k

CONST -30+90QC

EQUBL

EQUBL

SIMPARAM1.TotalIterations 4.05kSIMPARAM1.TotalSteps 1.00k

100.00 10.00 * QA.VAL10.00 * QB.VAL + 30.0010.00 * QC.VAL + 60.00ROTA VAL[0]

264.00m

200 00

mechanical18.00 L1.I [A]

L2.I [A]L3.I [A]

current control variable

50.00

ROTA.VAL[0]ROTB.VAL[0]ROTC.VAL[0]

0

100.00m

200.00m 10.00u * FEA1.OMEGA

V_ROTB1.TORQUE [Nm]

-10.00

0

10.00 E1.I [A]

© 2011 ANSYS, Inc. May 10, 201262

0

0 1.00m500.00u-54.00m

0 1.00m500.00u

-17.80

0 1.00m500.00u

Page 59: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Electric Machine Design: Maxwell – Simplorer Co‐Simulation

3‐ph Windings

Stator & RotorStator & Rotor

Permanent Magnets

Co‐simulation

Permanent Magnets

© 2011 ANSYS, Inc. May 10, 201263Flux Linkages

3ph Line Currents

Page 60: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

MultiMulti‐‐physicsphysics

© 2011 ANSYS, Inc. May 10, 201264

Page 61: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Multiphysics Coupling through WB

•• Maxwell 3D provide volume/surface forces to ANSYS Structural• Solver improvements

S f f t d– Surface forces are supported

Thermal‐Stress with Electromagnetic Force load

© 2011 ANSYS, Inc. May 10, 201265Deformation of the stator Deformation of coils

The electromagnetic force density from Maxwell is used as load in Structural

Page 62: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Force Coupling – Maxwell to Mechanical

0.00

5.00

10.0002_DC-6step_IPMTangential Force on Tooth Tips ANSOFT

-20.00

-15.00

-10.00

-5.00

Forc

e (N

ewto

ns)

Curve InfoExprCache(ToothTipTangent_Full1)ExprCache(ToothTipTangent_2)ExprCache(ToothTipTangent 3)

50.0002_DC-6step_IPMRadial Force on Tooth Tips ANSOFT

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00Time [ms]

-30.00

-25.00

ExprCache(ToothTipTangent_3)ExprCache(ToothTipTangent_4)ExprCache(ToothTipTangent_5)ExprCache(ToothTipTangent_6)

150 00

-100.00

-50.00

-0.00

Forc

e (N

ewto

ns)

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00Time [ms]

-250.00

-200.00

-150.00Curve Info

ExprCache(ToothTipRadial_Full1)ExprCache(ToothTipRadial_2)ExprCache(ToothTipRadial_3)ExprCache(ToothTipRadial_4)ExprCache(ToothTipRadial_5)ExprCache(ToothTipRadial_6)

© 2011 ANSYS, Inc. May 10, 201266

Page 63: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Force Coupling – Maxwell to Mechanical

Max Deformation vs timeMax Deformation vs time

• Case 1 0% Eccentricity

© 2011 ANSYS, Inc. May 10, 201267 • Case 2 50 % Eccentricity

Page 64: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Maxwell Couplings

Mapped Losses2D/3D Losses Temperature

© 2011 ANSYS, Inc. May 10, 201268

Forced water cooling Forced air cooling Natural air cooling

Page 65: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Two Way CFD Thermal Analysis, R14

CFD Model Temperature

Geometry

© 2011 ANSYS, Inc. May 10, 201269

Losses

Maxwell Model Mapped Losses

Page 66: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Power Loss Mapped into FLUENT

Power Loss in windings are not displayed.Power Loss in windings are not displayed.

© 2011 ANSYS, Inc. May 10, 201270

Page 67: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Results – Temperature Distribution

© 2011 ANSYS, Inc. May 10, 201271

Page 68: Mark Solveson – Application Engineer - Ansys · PDF fileMaxwell Design Flow – Field Coupling ANSYS CFD Fluent RMxprt Motor Design Maxwell 2‐D/3‐D HFSS Electromagnetic Components

Thank youThank you© 2011 ANSYS, Inc. May 10, 201272

Thank youThank you