Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes...

37
Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin, Madison February 21, 2005

Transcript of Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes...

Page 1: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Marine biogenic emissions, sulfate aerosol formation, and climate:

Constraints from oxygen isotopes

Becky Alexander

Harvard University

University of Wisconsin, Madison

February 21, 2005

Page 2: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

OverviewOverview

Introduction to aerosols, climate, and oxygen isotopes (Mass-independent fractionation)

Chemistry and climate interactions on the glacial/interglacial timescale

Influence of sea-salt aerosol alkalinity in sulfate aerosol formation climate implications

16

16 17 or 18

Page 3: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Radiative Forcing: Greenhouse Radiative Forcing: Greenhouse Gases and AerosolsGases and Aerosols

IPCC report, 2001

Page 4: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Effects of Aerosols on ClimateEffects of Aerosols on ClimateDirect Effect

Indirect Effect

Reflection

RefractionAbsorption

Ramanathan et al., 2001

Aerosol number density (cm-3)

Clo

ud

dro

ple

t n

um

be

r d

en

sity

(cm

-3)

Page 5: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Atmospheric SulfateAtmospheric Sulfate

Cooling effect on climate

Contributes to the formation of acid rain

Anthropogenic emissions are 2 to 3 times that of natural sources – most abundant inorganic aerosol species

Transcontinental transportPark et al., 2004

Page 6: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Sulfur Cycle in the AtmosphereSulfur Cycle in the Atmosphere

Surface

DMSCS2

H2SSO2 SO4

2- OH

O3, H2O2

OH, NO3

MSA

OH

Page 7: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

New Particle FormationNew Particle Formation

SO2 + OH (+O2 + H2O) H2SO4(g) (+HO2)

CCN> ~ 0.1 m

H2O

NH3?

H2SO4(g)

Condensation

RCOOH

Activation

Water vaporWater vapor

Updraft velocityUpdraft velocity

Aerosol number densityAerosol number density

Size distributionSize distribution

Chemical compositionChemical composition

From Boucher and Lohmann, 1995

nssSO42- (mg m-3)

CD

NC

(m

-3)

Page 8: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Marine Biologic DMS and ClimateMarine Biologic DMS and ClimateCharleson Charleson et alet al. (1987), Shaw (1985). (1987), Shaw (1985)

SO2 H2SO4OH New particle

formation

CCN

Light scattering

DMSOH NO3

Phytoplankton

H 2O 2

SO42-

O3

Sea-salt aerosol

Page 9: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Stable Isotope Measurements:Stable Isotope Measurements:Tracers of source strengths and/or chemical

processing of atmospheric constituents

(‰) = [(Rsample/Rstandard) – 1] 1000

R = minorX/majorX

18O: R = 18O/16O

17O: R = 17O/16O

Standard = SMOW (Standard Mean Ocean Water)

(CO2, CO, H2O, O2, O3, SO42-….)

17O/18O 0.5

Page 10: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Mass-Independent Fractionation (MIF)Mass-Independent Fractionation (MIF)

17O/18O 1

-80

-60

-40

-20

0

20

40

60

-100 -80 -60 -40 -20 0 20 40 60 8018O

17O

Product Ozone

Residual Oxygen

Starting Oxygen

Thiemens and Heidenreich, 1983

17O

17O

17O = 17O – 0.5*18O 0

O + O2 O3*

Mass-dependent fractionation line: 17O/18O 0.5

Page 11: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Symmetry C2v Symmetry Cs

17 or 18

16 16

16

16 17 or 18E Vibrational

StatesRotational

States

De

v = i

v=i+1

RotationalStates

VibrationalStates

De

v = i

v=i+1

O2 + O(3P) O3

*

Symmetry Based Explanation of MIFSymmetry Based Explanation of MIF

Page 12: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

25

10

5

50

75

100

10 20 50 100

SO4

CO

N2O

H2O2

NO3

CO2 strat.

O3

trop.

O3

strat.

18O

17O

1717OO Measurements in the AtmosphereMeasurements in the Atmosphere

Page 13: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Source ofSource of 1717OO SulfateSulfateSO2 in isotopic equilibrium with H2O :

17O of SO2 = 0 ‰

1) SO32- + O3 (17O=35‰) SO4

2- 17O = 8.8 ‰

17O of SO42- a function relative amounts of OH, H2O2, and O3 oxidation

Savarino et al., 2000

3) SO2 + OH (17O=0‰) SO42- 17O = 0 ‰

2) HSO3-+ H2O2 (17O=1.7‰) SO4

2- 17O = 0.9 ‰ Aqueous

Gas

S(IV) = SO2, HSO3-, SO3

2-

Page 14: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

pH dependency of OpH dependency of O33 oxidation and oxidation and

its effect on its effect on 1717O of SOO of SO442-2-

1.0E-15

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

pH

Oxi

dat

ion

rat

e (M

/sec

)

H2O2

O3

1.0E-151.0E-141.0E-13

1.0E-121.0E-111.0E-101.0E-091.0E-08

1.0E-071.0E-061.0E-051.0E-041.0E-03

1.0E-021.0E-011.0E+00

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

pH

Oxi

dat

ion

rat

e (M

/sec

)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

17

O (

‰)

H2O2

O3

Lee et al., 2001 Sea-spray

17Omeas = ƒOH*0‰ + ƒH2O2*0.9‰ + ƒO3*8.8‰

ƒOH + ƒH2O2 + ƒO3 = 1

Page 15: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

GEOS-CHEMGEOS-CHEM

• Global 3-D model of atmospheric chemistry

• 4ºx5º horizontal resolution, 26-30 layers in vertical

• Driven by assimilated meteorology (1987 –present).

• Includes aqueous and gas phase chemistry:

S(IV) + OH (gas-phase)

S(IV) + O3/H2O2 (in-cloud, pH=4.5)

• Off-line sulfur chemistry (uses monthly mean OH and O3 fields from a full chemistry, coupled aerosol simulation)

http://www-as.harvard.edu/chemistry/trop/geos/index.html

Page 16: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

GEOS-CHEM GEOS-CHEM 1717O Sulfate SimulationO Sulfate Simulation

SO2 + OH (gas phase) 17O=0‰

S(IV) + H2O2 (in cloud) 17O=0.9‰

S(IV) + O3 (in cloud, sea-salt) 17O=8.8‰

Assume constant, global 17O value for oxidants

17O ‰ method reference

O3 35 Photochemical model

Lyons 2001

H2O2 1.3-2.2 (1.7)

Rainwater measurements

Savarino and Thiemens 1999

OH 0 Experimental Dubey et al., 1997

Page 17: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

1717O sulfate: GEOS-CHEM and measurementsO sulfate: GEOS-CHEM and measurements

January 2001 July 2001

0.0‰ 2.3‰ 4.6‰

Davis, CA fogwater

4.3 ‰

Whiteface Mtn, NY

fogwater 0.3 ‰

White Mtn, CA aerosol

1-1.7‰

La Jolla rainwater

1.1 ‰

La Jolla aerosol 0.2-1.4‰

South Pole aerosol

0.8-2‰

Site A, Greenland ice core 0.5-3‰

Vostok & Dome C ice

cores 1.3-4.8‰

Desert dust traps 0.3-3.5‰

INDOEX aerosol

0.5-3‰

Alert 1.0‰

Page 18: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Alkalinity in the Marine Boundary LayerAlkalinity in the Marine Boundary Layer

Na+, Cl-, CO3

2-

pH=8CO2(g)

Acids:

H2SO4(g)

HNO3(g)

RCOOH(g)

SO2(g) SO42-

Page 19: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Pre-INDOEX Jan. 1997 INDOEX March 1998

INDOEX cruisesINDOEX cruises

Page 20: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Analytical MethodAnalytical Method

High volume air samplerSO4

2-

Ion Chromatograph Ionic separation

O2 loop 5A mol.sieve

vent

Isotope Ratio Mass Spectrometer

Ag2SO4 O2 + SO2

Removable quartz tube

1050°C

magnet

To vacuum

To vacuumGC

SO2 trap

He flow

Sample loop 5A mol.sieve

ventSO2 port

O2 port

Page 21: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

pre-INDOEX 1997 INDOEX 1998

9

0

1

2

3

4

5

6

7

8

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

Latitude (°N)

0

1

2

3

4

5

6

7

8

nss

SO

42

- 1

7 O (

‰)

Na

+ (g

/m3)

bulk

finecoarse

Page 22: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

DMS

SO2

Free troposphere

H2SO4(g)

OH

Cloud other aerosols

(acid or neutral)

O3

CO2(g)

H 2O

2

Emission

Marine Boundary Layer

Subsidence

OH NO3

Sea-salt aerosol CO3

2-

Emission

HNO3(g)RCOOH(g)

Subsidence

Deposition

NH3(g)

GEOS-CHEM Sea-salt AlkalinityGEOS-CHEM Sea-salt Alkalinityhttp://www-as.harvard.edu/chemistry/trop/geos/index.html

SO42-

Page 23: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

March 1998

January 1997

Na+ [g m-3]31 119750 13

Model Sea-salt (NaModel Sea-salt (Na++) Concentrations) ConcentrationsdF/dr = 1.373u10

3.41r-3(1+0.057r1.05)101.19exp(-B2)

= (0.380 log r)/0.65

Monahan et al., 1986 (particles m-2 s-1 m-1)

Page 24: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

INDOEX 1998

nss

SO

42

- 1

7O

(‰

)

Latitude (°N)

Model not including sea-salt chemistry

Model including sea-salt chemistry

Observations

pre-INDOEX 1997

INDOEX 1998

Page 25: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

GEOS-CHEM Alkalinity BudgetGEOS-CHEM Alkalinity Budget

fSO2

fHNO3

fexcess

0.1 0.3 0.5 0.7

Page 26: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

[SO2] % decrease

[SO42-] % increase

SO2 + OH % decrease

10 30 50 705

GEOS-CHEM Sulfur BudgetGEOS-CHEM Sulfur Budget

Page 27: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Excess Alkalinity Sources?Excess Alkalinity Sources?

OH chemistryOH chemistry

Na+, Cl-

OH(g) + Cl-(interface) (HO…Cl-)interface

(HO…Cl-)interface + (HO…Cl-)interface Cl2 + 2OH-

2OH•

2OH-

Cl2

Laskin et al., 2003

Page 28: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Excess Alkalinity Sources?Excess Alkalinity Sources?

Biogenic CaCOBiogenic CaCO33

Coccolithophore phytoplankton cell Image credit: Dr Jeremy R. Young, the Natural History

Museum of London

Coccolithophore bloom in the Bering Sea

Image credit: NASA

Page 29: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Latitude (°N)

nss

SO

42

- 1

7O

(‰

)

Model with excess alkalinity

Observations

Model with doubled alkalinity supply

Excess alkalinity

(OH chemistry)

Biogenic alkalinity

(CaCO3)

Page 30: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

SeaWiFS Ocean ColorSeaWiFS Ocean Color(NASA)(NASA)

January 1998 March 1998

Page 31: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Dust AlkalinityDust Alkalinity

Fe, Si, …

CaCO3

CO2(g)

Acids:

H2SO4(g)

HNO3(g)

RCOOH(g)

SO2(g) SO42-

> 1: Fe mobilizationAlkalinity

Acid

Meskhidze et al., 2005

Page 32: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

SOSO22 Oxidation, Iron Mobilization, Oxidation, Iron Mobilization,

and Oceanic Productivityand Oceanic Productivity

From Meskhidze et al., 2005

Page 33: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

ConclusionsConclusions

•Sulfate formation in sea-salt aerosols is limited by:

Low to mid-latitudes: sea-salt flux to the atmosphere (wind)

Mid to high-latitudes: gas-to-particle transfer rate of SO2

•Decreases in SO2 concentrations and the rate of gas-phase sulfate production (10 - 30%) in the MBL

•Inclusion of sea-salt chemistry in global models is important for interpretation of Antarctic ice core 17O sulfate

measurements

Page 34: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Vostok Ice Core Vostok Ice Core

1717O (SOO (SO442-2-) variability) variability

Ts data: Kuffey and Vimeux, 2001, Vimeux et al., 2002

Alexander et al., 2002

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140

Age (kyr)

17O

-6

-5

-4

-3

-2

-1

0

1

2

3

Ts

17O

(‰

)

Ts

Page 35: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Climate Variations in the Oxidation Climate Variations in the Oxidation Pathways of Sulfate FormationPathways of Sulfate Formation

OH (gas-phase) oxidation greater in glacial period compared to interglacial

Age (kyr)

% O

H

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140

Age (kyr)

-6

-5

-4

-3

-2

-1

0

1

2

3

T

s

Page 36: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

Secondary Species

CO2, H2SO4, O3, …

Oxidizing Power of the AtmosphereOxidizing Power of the Atmosphere

VolcanoesMarine Biogenics

Biomass burning

Continental Biogenics

Primary Species H2S, SO2, CH4, CO, DMS, CO2, NO, N2O,

particulates

?

Climate change

OHhH2O

Primary Emissions

DMS, SO2, CH4, …

Page 37: Marine biogenic emissions, sulfate aerosol formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University University of Wisconsin,

AcknowledgementsAcknowledgements

Mark H. Thiemens

Charles Lee

Joël Savarino

Daniel Jacob

Rokjin Park

Qinbin Li

Bob Yantosca

Duncan Fairlie