Marin Colloquium2008

download Marin Colloquium2008

of 56

Transcript of Marin Colloquium2008

  • 8/13/2019 Marin Colloquium2008

    1/56

    WiTricity:

    non-radiativewireless power transfer

  • 8/13/2019 Marin Colloquium2008

    2/56

    OUTLINE:

    Background and motivation

    Resonant coupling as energy transfer

    Magnetically coupled resonators

    Experimental results

    Path forward

    Potential applications

  • 8/13/2019 Marin Colloquium2008

    3/56

    Motivation

    Tesla tower:cca. 1904

  • 8/13/2019 Marin Colloquium2008

    4/56

    Wi-Fi (wireless internet) concept:

    radiation

  • 8/13/2019 Marin Colloquium2008

    5/56

    Radiative energy transfer

    Omni-directionalradiation

    Directed radiation

  • 8/13/2019 Marin Colloquium2008

    6/56

    Resonant coupling as energy

    transfer

  • 8/13/2019 Marin Colloquium2008

    7/56

    Resonances in quantum mechanics

    nonradiative transfer

    Em =

    22

    2

    h

    Schrdinger equation

    EE 222 = c

    Maxwell equation

    e-

    V(r)

    Hydrogen atom

    V(r)

    proton

    quantum tunnelinge-

  • 8/13/2019 Marin Colloquium2008

    8/56

    Electro-

    magneticresonances

    =147.70, QR=1992

    Optical fiber

  • 8/13/2019 Marin Colloquium2008

    9/56

    Example of resonant coupling

    SourceDevice

  • 8/13/2019 Marin Colloquium2008

    10/56

    Coupled mode theory

    resonant object (Source) resonant object (Device)

    ( ) DSS aiaii

    dt

    da += ( ) SD

    D aiaiidt

    da +=

    =

    2

    Q

  • 8/13/2019 Marin Colloquium2008

    11/56

    Strong Coupling:

    1 efficient energy transfer

  • 8/13/2019 Marin Colloquium2008

    12/56

    Strong Couplingefficient transfer

  • 8/13/2019 Marin Colloquium2008

    13/56

    Resonant coupling vs. distance

    Source Device

    (Distance) / (Object Radius)6 8 10

  • 8/13/2019 Marin Colloquium2008

    14/56

    Aside: Paris Hilton connection

    Aristeidis Karalis Prof. J.D. Joannopoulos

  • 8/13/2019 Marin Colloquium2008

    15/56

    Robot & Office: simulation

    Source Device (robot)

  • 8/13/2019 Marin Colloquium2008

    16/56

    Robot & Office: radiative scheme

  • 8/13/2019 Marin Colloquium2008

    17/56

    Robot & Office: non-radiative scheme

  • 8/13/2019 Marin Colloquium2008

    18/56

    Robot & Office: non-radiative scheme

  • 8/13/2019 Marin Colloquium2008

    19/56

    Magnetically coupledresonators

  • 8/13/2019 Marin Colloquium2008

    20/56

    B

    E

    Magnetic resonances

    Outside: UE~UB Outside: UE UBMost materials: ~AIR

    weak interaction with B-field!

  • 8/13/2019 Marin Colloquium2008

    21/56

    Examples of magnetic technology

    Magnetically levitating bed

    Maglev

  • 8/13/2019 Marin Colloquium2008

    22/56

    Robot & Office:

    magneticresonances

    AC source ~10MHz

    30cm

    1m

    3-4m

    Q~1000

    Q~1000

  • 8/13/2019 Marin Colloquium2008

    23/56

    Robot & Office: non-radiative scheme

  • 8/13/2019 Marin Colloquium2008

    24/56

    Comparison with inductive coupling

    L

    D

    L D L

    D

    D L

    Efficiency R

    Efficiency R/Q2~ R/1,000,000

  • 8/13/2019 Marin Colloquium2008

    25/56

    Experimental results

  • 8/13/2019 Marin Colloquium2008

    26/56

    source device

    200 cm30 cm

    60W bulb

    Science Magazine, 6th July 2007

  • 8/13/2019 Marin Colloquium2008

    27/56

    same thing, different viewing angle

  • 8/13/2019 Marin Colloquium2008

    28/56

    Experimental proof of

    strongly-coupled regime

  • 8/13/2019 Marin Colloquium2008

    29/56

    source device

    200 cm30 cm

    efficiency ~50%

    60W bulb

  • 8/13/2019 Marin Colloquium2008

    30/56

    Efficiency vs. distance

  • 8/13/2019 Marin Colloquium2008

    31/56

    another geometry

  • 8/13/2019 Marin Colloquium2008

    32/56

    Andre Kurs

    Dr. Aristeidis Karalis

    Prof. J.D.JoannopoulosProf. Marin Soljai

    Prof. Peter Fisher Robert Moffatt

    bulb

  • 8/13/2019 Marin Colloquium2008

    33/56

    Path forward: physics part

  • 8/13/2019 Marin Colloquium2008

    34/56

    Learning from atomic physics

  • 8/13/2019 Marin Colloquium2008

    35/56

    An oscillating resonator radiates a bit

    Much smaller than the wavelength: RES30 m

    D = 0.6 m

  • 8/13/2019 Marin Colloquium2008

    36/56

    Dicke effect atomic physics

    |1|2e

    -

    |1|2e

    -

    two excited, same atoms

    |1|2e

    -

    |1|2e

    -

    |1|2e

    -

    |1|2e

    -

    OR|1|2e

    -

    |1|2e

    -

    |1|2e

    -

    |1|2e

    -

    strong radiation NO radiation

    C li f t

  • 8/13/2019 Marin Colloquium2008

    37/56

    Coupling of resonators

    EVEN MODE ODD MODE

    Coupling fEVENfODD

    Transmission vs frequency

  • 8/13/2019 Marin Colloquium2008

    38/56

    Collaborators:

    A.Karalis, R.Hamam, and J.D.Joannopoulos

    EVEN MODE

    ODD MODE

    Transmission vs. frequency(gedanken system)

    fEVEN fODD

    Transmission

  • 8/13/2019 Marin Colloquium2008

    39/56

    Playing David Copperfield with energy

    Di t t f

  • 8/13/2019 Marin Colloquium2008

    40/56

    Direct transfer

    Mediated t ansfe

  • 8/13/2019 Marin Colloquium2008

    41/56

    Mediated transfer

    Comparison: direct vs mediated

  • 8/13/2019 Marin Colloquium2008

    42/56

    Comparison: direct vs. mediated

    (1) (3)

    (1) (3)

    (2)

    Time dependent coupling strength

  • 8/13/2019 Marin Colloquium2008

    43/56

    Time-dependent coupling strength

    Collaborators:

    R.Hamam, A.Karalis, and J.D.Joannopoulos

    (1) (3)

    (2)

    Comparison: mediated vs time dependent

  • 8/13/2019 Marin Colloquium2008

    44/56

    Comparison: mediated vs. time-dependent

    (1) (3)

    (2)

    Time-dependent coupling strength

  • 8/13/2019 Marin Colloquium2008

    45/56

    Time-dependent coupling strength

    (1) (3)

    (2)

    Dark state:

    12

    23

    In atomic physics

  • 8/13/2019 Marin Colloquium2008

    46/56

    In atomic physics,this effect is known as STIRAP

    STIRAP:Stimulated Raman Adiabatic Passage

    also happens in Electromagnetically Induced Transparency (EIT)

    |1

    |2

    |3e- e-

  • 8/13/2019 Marin Colloquium2008

    47/56

    Potential applications

    Some potential applications

  • 8/13/2019 Marin Colloquium2008

    48/56

    Some potential applications

    Industrial, military, and household robots

    Portable personal electronics Electric vehicles

    Vision: less dependence on batteries

  • 8/13/2019 Marin Colloquium2008

    49/56

    Vision: less dependence on batteries

    Other possible applications

  • 8/13/2019 Marin Colloquium2008

    50/56

    Other possible applications

    Implanted medical devices

    Sensors with difficult access Electrically heated clothes

    Power supply for MEMS or nano-robots

    Conclusion

  • 8/13/2019 Marin Colloquium2008

    51/56

    Conclusion

    mid-range non-radiative

    energy transfer scheme

    based on strongly-coupled

    resonances

    even very simple designs

    have promising performance

    as a powerful concept, it could

    enable a wide range of applications

  • 8/13/2019 Marin Colloquium2008

    52/56

    Press coverage of WiTricity

    Wall Street JournalNew York Times

    USA TodayBBC News: front page of news.bbc.co.uk *2BBC World Service Radio *3The Economist *2

    Associated PressNPR600 other newspapers, TVs, radio stations around the world

    >2,000,000 hits for WiTricity on Google (~10th June 2007)

    Epilogue: what about Paris Hilton?

  • 8/13/2019 Marin Colloquium2008

    53/56

  • 8/13/2019 Marin Colloquium2008

    54/56

    Ok, but how come no one

  • 8/13/2019 Marin Colloquium2008

    55/56

    Ok, but how come no one

    thought of this before?

    We explore. What path to explore is important,as well as what we notice along the path.

    And there are always unturned stones alongeven well-trod paths.

    Discovery awaits those who spot and take thetrouble to turn the stones.

    -- Charles H. Townes

    C ll b

  • 8/13/2019 Marin Colloquium2008

    56/56

    Collaborators:

    Robert Moffatt

    Andre Kurs

    Rafif Hamam

    Dr. Aristeidis Karalis

    Prof. Peter Fisher

    Prof. John Joannopoulos

    More info and reprints: www.mit.edu/~soljacic