Mapping and Exploring Data Water Cycle Extremes and...

22
Mapping and Exploring Data Ana P. Barros 1 st Workshop on Understanding Climate Change from Data, University of Minnesota, August 15-16 2011 Water Cycle Extremes and Nonlinearities from Data

Transcript of Mapping and Exploring Data Water Cycle Extremes and...

Page 1: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

Mapping and Exploring Data

Ana P. Barros

1st Workshop on Understanding Climate Change from Data, University of Minnesota, August 15-16 2011

Water Cycle Extremes and Nonlinearities from Data

Page 2: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

Exploratory Data Analysis Detection and Attribution (Understanding)

Predictability Physically-based Data-Driven Models Modeling Myths (Black-Box/Data Assimilation)

Metrics Diagnostics Impacts (Actionable Prognostics)

Philosophy –> Method –> System -> Outcomes

Page 3: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

Long-Lead Forecasts of Extreme Events for Water Resources Management Drought Forecasting in the Murray-Darling Basin

Ana Barros Gavin Bowden*

Page 4: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

Relationship with ENSO

Harmonic analysis of 24-month Log-Normal (LND) percentiles of precipitation

composites for strong ENSO years (Troup SOI < -5) at 345 stations (100 years of data)

Jul(-1)

Jul(0)

Jan(0)

Jan(+1)

X=Xo+ Ci cos(a-ai)

1st harmonic i=1

Phase (a1): 0-2 months after July of current EL Nino year

0.8

Barros and Bowden, 2008

Page 5: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

to achieve predictability ….... precursors of ENSO onset

• SST anomalies (SSTAs)

• Zonal OLR monthly anomaly gradients (NOAA,1979-2002,2.5ox2.5o) (Barros and Bindlish 1998)

• Zonal Windstress Anomalies (Western Equatorial Pacific, COAPS)

(Clark&Van Gorder 2001; Curties et al. 2002)

Page 6: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

Goal

12 month lead-time areal mean SPI12

1 2 3 4 5 6 7 8 9 10 11 12 ………..24

F1 F2

***Length of Record ***Non-stationarity

Page 7: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

12-month

SPI PC

RMSE/R

Calibration

Set

RMSE/R

Validation

Set

1 4.86

0.76

4.65

0.74

2 1.57

0.60

4.63

0.05

3 1.22

0.77

1.13

0.37

SOLO OUTPUTS

Barros and Bowden, 2008

Page 8: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

PC 1 72.8% PC 2 7.2% PC 3 5.3% PC1 72.8% PC2 7.2% PC3 5.3%

Barros and Bowden, 2008

Page 9: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

-0 .4

-0 .3

-0 .2

-0 .1

0

0 .1

0 .2

0 .3

0 .4

19

61

19

63

19

65

19

67

19

69

19

71

19

73

19

75

19

77

19

79

19

81

19

83

19

85

19

87

19

89

19

91

19

93

19

95

19

97

19

99

-3

-2

-1

0

1

2

3

4

SS

T (

ºC)

W in d s tre s s A n o m a ly - 5 m o n th M A

N IN O 3 .4

Barros and Bowden, 2008

Page 10: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

Barros and Bowden, 2008

Page 11: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

Summary

What is the right measure of drought in the context of desired (useful) predictability? What is useful predictability?

How can we best use such studies…… to assess data needs? to test and improve physical models? to learn?

A question of pride and prejudice…

Can we afford not to explore such models?

January 2005

Page 12: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

Fast Dynamics

Slow Dynamics

Coupled System

1 log()

Uncoupled System λ()

0

50

0

20

40

60

0

20

40

60

PWAT(n)

NARR Trajectory (26.25N,86.13W) Spring 2000

PWAT(n-)

PW

AT

(n-2

)

phase points

start point

end point

0100

200300

0

100

200

300

0

100

200

300

ITMP(n)

ISCCP Trajectory (26.25N,86.13W) Spring 2000

ITMP(n-)

ITM

P(n

-2)

phase points

start point

end point

0 1 20

0.5

1

1.5

2

2.5

3

log()

FS

LE

( )

NARR

ISCCP

100oW 95

oW 90

oW 85

oW 80

oW 75

oW

24oN

27oN

30oN

33oN

36oN

39oN

Spring[Day]

2

4

6

8

10

100oW 95

oW 90

oW 85

oW 80

oW 75

oW

24oN

27oN

30oN

33oN

36oN

39oN

Summer[Day]

2

4

6

8

10

100oW 95

oW 90

oW 85

oW 80

oW 75

oW

24oN

27oN

30oN

33oN

36oN

39oN

Fall[Day]

2

4

6

8

10

100oW 95

oW 90

oW 85

oW 80

oW 75

oW

24oN

27oN

30oN

33oN

36oN

39oN

Winter[Day]

2

4

6

8

10

100oW 95

oW 90

oW 85

oW 80

oW 75

oW

24oN

27oN

30oN

33oN

36oN

39oN

Spring[Day]

20

40

60

80

100

120

140

160

100oW 95

oW 90

oW 85

oW 80

oW 75

oW

24oN

27oN

30oN

33oN

36oN

39oN

Summer[Day]

20

40

60

80

100

120

140

160

100oW 95

oW 90

oW 85

oW 80

oW 75

oW

24oN

27oN

30oN

33oN

36oN

39oN

Summer[Day]

20

40

60

80

100

120

140

160

Figure 3 – Phase-space trajectories of NARR PWAT (a) and ISCCP ITMP (b) in 3D time-delay:

PWAT(n), PWAT(n-_) and PWAT(n-2_) denote each component of the time-delay coordinates; similarly for ITMP(n), ITMP(n-_) and ITMP(n-2_). The delay 2 is the time interval at which the data are available, specifically every three hours.

Figure 4 - FSLE curves for NARR PWAT(black symbols) and ISCCP ITMP (green symbols) spatial

series along a latitudinal transect (35.63o N, Fig 2) for the spring of 2000.

a)

b)

Figure 5 - Moderate-perturbation FSLE fields for NARR PWAT: a) summer, and b) fall

a)

b)

Figure 6 - Large-perturbation FSLE fields for NARR PWAT: a) summer, and d) winter.

a)

b)

Figure 7 - Moderate-perturbation FSLE fields for NARR Cloud Water content for winter: a) 700 hPa; b)

850 hPa.

a)

b)

Figure 8 - Moderate-perturbation FSLE fields for ISCCP ITMP: a) summer, and b) fall.

a)

b)

Figure 9 – Large-perturbation FSLE fields for ISCCP ITMP: a) summer, and b) winter.

a) b)

•d)

Figure 10 – Diurnal cycle of NARR PWATCLM FSLE in the moderate perturbation regime: a) 0300

UTC, and b) 1500 UTC in the summer; and c) 0300 UTC and d) 1500 UTC in the fall.

a)

b)

Figure 11 – ISCCP minimum FSLE fields at the transition between the moderate and large perturbation

regime at 1500 UTC: a) summer; and b) fall.

•b)

•d)

Figure 12 - Localization length fields in the moderate-perturbation regime for NARR PWAT: a)

spring, b) summer, c) fall, and d) winter.

a)

b)

b)

Figure 14 – Spring localization length fields in the large-perturbation regime: a) NARR; b ) ISCCP ITMP.

a)

b)

Figure 15 – Summer localization length fields in the large-perturbation regime: a) NARR; b ) ISCCP

ITMP.

a) b)

•d)

Figure 16 - FSLE vs. Perturbation for ISCCP ITMP and NARR PWAT: a) spring, b) summer, c) fall, and d) winter.

Finite-Size Lyapunov Exponents (place-based)

Tao and Barros 2009, Barros 2010

Page 13: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

Tao and Barros,2009 Barros 2010

Page 14: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

NARR

ISCCP

100oW 95

oW 90

oW 85

oW 80

oW 75

oW

24oN

27oN

30oN

33oN

36oN

39oN

Summer[Day]

2

4

6

8

10

100oW 95

oW 90

oW 85

oW 80

oW 75

oW

24oN

27oN

30oN

33oN

36oN

39oN

Summer[Day]

2

4

6

8

10

Tao and Barros, 2009

Page 15: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

)(~)Pr(

c

1,1

1

exp1

1,

'1

'1

1

)(

CC

CC

c

0 500 10000.98

1

1.02

1.04

1.06

(a) C1=0.1

0 500 1000

1

1.1

1.2

(b) C1=0.2

0 500 1000

1

1.2

1.4

1.6

(c) C1=0.3

0 500 1000

1

1.5

2

2.5

(d) C1=0.4

0 500 1000

1

2

3

4

(e) C1=0.5

0 500 1000

2

4

6

(f) C1=0.6

0 500 1000

2468

1012

(g) C1=0.7

0 500 1000

5

10

15

20

25

(h) C1=0.8

0 500 1000

10

20

30

40

(i) C1=0.9

x

(x)

0.9 1 1.10

20

40

(a) C1=0.1

0.5 1 1.50

5

10

15

(b) C1=0.2

0.5 1 1.5 20

2

4

6

(c) C1=0.3

0 1 2 30

1

2

3

(d) C1=0.4

0 2 4 60

1

2

(e) C1=0.5

0 5 100

1

2

(f) C1=0.6

0 5 10 150

0.5

1

1.5

(g) C1=0.7

0 10 20 300

0.5

1

1.5

(h) C1=0.8

0 20 40 600

0.5

1

(i) C1=0.9

(x)

Pro

babili

ty D

ensity

Multifractal Scaling

0 500 1000

2

4

(a) =0.5

0 500 1000

5

10

15

(b) =0.9

0 500 1000

10

20

30

(c) =1.3

0 500 1000

20

40

60(d) =1.7

x

(x

)

Sun and Barros, 2010

Page 16: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

Longitude

La

titu

de

125W 120W 115W 110W 105W30N

35N

40N

45N

50N

-1000m

-500 m

0 m

500 m

1000 m

0

0.5

1

Pa

ram

ete

r V

alu

e

C1

s

NCDC(a)

Multifractal Parameters

C1

s

NARR(b)

C1

s

GPCP(c)

0

0.5

1

C1

s

(d)

C1

s

(e)

C1

s

(f)

Sun and Barros, 2010

Page 17: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

Sun and Barros,2010

Page 18: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

Mu

ltif

ract

al α

Brunt-Väisäila *

Using Multifractals to develop new subgrid-scale parameterizations of terrain-forced convection

HPC Opportunities “compression”

Model Populations

Nogueira et al. 2011

Page 19: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

Kim and Barros, 2001 Barros ,2005

754 km2 8684 km2

1147 km2

Prediction in Ungauged Basins - PUB May 2004

Page 20: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

18-hr Forecasts over a 5-year period

Barros,2005

Yoo and Barros,2004

6 radiosondes GOES IR 160 raingauges

Page 21: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change

Artificial Intelligence

Knowledge Discovery

Data Driven Models Data Mining Methods

Learning and Making Decisions Anchored to the Best Available Information

Page 22: Mapping and Exploring Data Water Cycle Extremes and ...climatechange.cs.umn.edu/docs/ws11_Barros.pdfMapping and Exploring Data Ana P. Barros 1st Workshop on Understanding Climate Change