manobody.pdf

download manobody.pdf

of 152

Transcript of manobody.pdf

  • 7/29/2019 manobody.pdf

    1/152

    The Bethe-Salpeter EquationAn Introduction

    Francesco Sottile

    ETSF and Ecole Polytechnique, Palaiseau - France

    Lyon, 14 December 2007

    The Bethe-Salpeter Equation Francesco Sottile

  • 7/29/2019 manobody.pdf

    2/152

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Outline

    1 Generalities of Linear Response Approach

    2 The Bethe-Salpeter equationPolarizability in MBPTDefinition of BSEBSE in practice

    3 Results

    4 The EXC Code

    The Bethe-Salpeter Equation Francesco Sottile

  • 7/29/2019 manobody.pdf

    3/152

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Outline

    1 Generalities of Linear Response Approach

    2 The Bethe-Salpeter equationPolarizability in MBPTDefinition of BSEBSE in practice

    3 Results

    4 The EXC Code

    The Bethe-Salpeter Equation Francesco Sottile

  • 7/29/2019 manobody.pdf

    4/152

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Linear Response Approach

    System subject to an external perturbation

    The Bethe-Salpeter Equation Francesco Sottile

  • 7/29/2019 manobody.pdf

    5/152

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Linear Response Approach

    System subject to an external perturbation

    Vtot = 1Vext

    Vtot = Vext + Vind

    The Bethe-Salpeter Equation Francesco Sottile

    G S C C

  • 7/29/2019 manobody.pdf

    6/152

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Linear Response Approach

    System subject to an external perturbation

    Vtot = 1Vext

    Vtot = Vext + Vind

    E = 1D

    The Bethe-Salpeter Equation Francesco Sottile

    G li i f Li R A h Th B h S l i R l Th EXC C d

  • 7/29/2019 manobody.pdf

    7/152

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Linear Response Approach

    System subject to an external perturbation

    Vtot = 1Vext

    Vtot = Vext + Vind

    E = 1D

    Dielectric function

    G liti f Li R A h Th B th S l t ti R lt Th EXC C d

  • 7/29/2019 manobody.pdf

    8/152

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Linear Response Approach

    System subject to an external perturbation

    Vtot = 1Vext

    Vtot = Vext + Vind

    E = 1D

    Dielectric function

    Abs

    Generalities of Linear Response Approach The Bethe Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    9/152

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Linear Response Approach

    System subject to an external perturbation

    Vtot = 1Vext

    Vtot = Vext + Vind

    E = 1D

    Dielectric function

    Abs

    EELS

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    10/152

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Linear Response Approach

    System subject to an external perturbation

    Vtot = 1Vext

    Vtot = Vext + Vind

    E = 1D

    Dielectric function

    Abs

    EELS

    X-ray

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    11/152

    Generalities of Linear Response Approach The Bethe Salpeter equation Results The EXC Code

    Linear Response Approach

    System subject to an external perturbation

    Vtot = 1Vext

    Vtot = Vext + Vind

    E = 1D

    Dielectric function

    Abs

    EELS

    X-ray

    R index

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    12/152

    Generalities of Linear Response Approach The Bethe Salpeter equation Results The EXC Code

    Linear Response Approach

    Definition of polarizability

    1 = 1 + v

    is the polarizability of the system

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    13/152

    p pp p q

    Linear Response Approach

    Polarizability

    interacting system n = Vext

    non-interacting system nni = 0

    Vtot

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    14/152

    Linear Response Approach

    Polarizability

    interacting system n = Vext

    non-interacting system nni = 0

    VtotSingle-particle polarizability

    0 =

    ij

    i(r)

    j(r)

    i (r)j(r

    )

    (ij) + i

    hartree, hartree-fock, dft, etc.

    G.D. Mahan Many Particle Physics (Plenum, New York, 1990)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    15/152

    Linear Response Approach

    Polarizability

    interacting system n = Vext

    non-interacting system nni = 0

    Vtot

    0 =ij

    i(r)

    j(r)

    i (r)j(r

    )

    (i j) + i

    i

    unoccupied states

    occupied states

    j

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    16/152

    Linear Response Approach

    First approximation: IP-RPA

    0 = ij

    i(r)j(r)

    i (r

    )j(r)

    (i

    j

    ) + i

    Abs = Im0

    =

    ij

    |j|D|i|2 ( (j i))

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    17/152

    Linear Response Approach

    First approximation: IP-RPA

    0 = ij

    i(r)j(r)

    i (r

    )j(r)

    (i

    j

    ) + i

    Abs = Im0

    =

    ij

    |j|D|i|2 ( (j i))

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    18/152

    First approximation: IP-RPA

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    19/152

    Linear Response Approach

    How to go beyond 0 ?

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    20/152

    Outline

    1 Generalities of Linear Response Approach

    2 The Bethe-Salpeter equation

    Polarizability in MBPTDefinition of BSEBSE in practice

    3

    Results

    4 The EXC Code

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    21/152

    Outline

    1 Generalities of Linear Response Approach

    2 The Bethe-Salpeter equation

    Polarizability in MBPTDefinition of BSEBSE in practice

    3

    Results

    4 The EXC Code

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    22/152

    Many Body Perturbation Theory

    Hedins equations

    (1, 2) = i

    d(34)G(1, 3)(3, 2, 4)W(4, 1+)

    G(1, 2) = G0

    (1, 2) +

    d(34)G0

    (1, 3)(3, 4)G(4, 2)

    (1, 2, 3) = (1, 2)(1, 3)+

    d(4567)

    (1, 2)

    G(4, 5)G(4, 6)G(7, 5)(6, 7, 3)

    P(1, 2) = id(34)G(1, 3)G(4, 1+)(3, 4, 2)W(1, 2) = v(1, 2) +

    d(34)v(1, 3)P(3, 4)W(4, 2)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    23/152

    Many Body Perturbation Theory

    Hedins pentagon

    G

    P

    W

    G=G0

    +G0G

    =1

    +(/

    G)GG

    P = GG

    W=v+

    vPW

    =G

    W

    ~

    ~

    ~

    ~ ~

    ~

    ~ ~

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    24/152

    Many Body Perturbation Theory

    Polarizability P is irreducible

    P=n

    Vtot; Vtot = Vext + VH

    = G

    1

    Vtot= 1 +

    Vtot

    IrreducibleP

    and Reducible

    P=n

    Vtot; =

    n

    Vext

    = P+ Pv

    Different quantities

    P, ,G = time-ordered0, = retarded

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    25/152

    Many Body Perturbation Theory

    Polarizability P is irreducible

    P=n

    Vtot; Vtot = Vext + VH

    = G

    1

    Vtot= 1 +

    Vtot

    IrreducibleP

    and Reducible

    P=n

    Vtot; =

    n

    Vext

    = P+ Pv

    Different quantities

    P, ,G = time-ordered0, = retarded

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    26/152

    Many Body Perturbation Theory

    Polarizability P is irreducible

    P=n

    Vtot; Vtot = Vext + VH

    = G

    1

    Vtot= 1 +

    Vtot

    Irreducible P and Reducible

    P=n

    Vtot; =

    n

    Vext

    = P+ Pv

    Different quantities

    P, ,G = time-ordered0, = retarded

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    27/152

    Many Body Perturbation Theory

    Polarizability P is irreducible

    P=n

    Vtot; Vtot = Vext + VH

    = G1

    Vtot= 1 +

    Vtot

    Irreducible P and Reducible

    P=n

    Vtot; =

    n

    Vext

    = P+ Pv

    Different quantities

    P, ,G = time-ordered0, = retarded

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    28/152

    Spectra in MBPT

    Spectra in IP picture

    IP-RPA

    Abs = Im 0

    i

    unoccupied states

    occupied states

    j

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    29/152

    Spectra in MBPT

    Spectra in GW approximation

    GW-RPA

    Abs = Im 0GW

    0GW = P = iGG

    i

    occupied states

    j

    unoccupied (GW corrected) states

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    30/152

    Spectra in MBPT

    GW pentagon

    G

    P

    W

    G=G0

    +G0G

    =1+

    (

    /G)G

    G

    P = GG

    W=v+

    vPW

    =G

    W

    P=GG

    ~

    ~

    ~ ~

    ~ ~

    ~

    ~

    ~

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    31/152

    Spectra in MBPT

    Spectra in GW-RPA

    0 = ij

    i(r)j(r)

    i (r

    )j(r)

    (i j)

    0GW =

    ij

    i(r)j(r)

    i (r

    )j(r)

    (i + GWi ) j + GWj

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    32/152

    Spectra in MBPT

    Spectra in GW-RPA

    0 = ij

    i(r)j(r)

    i (r

    )j(r)

    (i j)

    0GW =

    ij

    i(r)j(r)

    i (r

    )j(r)

    (i + GWi ) j + GWj

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    33/152

    Spectra in MBPT

    Spectra in GW-RPA

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    34/152

    Spectra in MBPT

    GG Polarizability

    P(1, 2) = i G(1, 2)G(2, 1+)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    35/152

    Spectra in MBPT

    GG Polarizability

    P(1, 2) = i

    d(34)G(1, 3)G(4, 1+)(3, 4, 2)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    36/152

    Outline

    1 Generalities of Linear Response Approach

    2 The Bethe-Salpeter equation

    Polarizability in MBPTDefinition of BSEBSE in practice

    3 Results

    4 The EXC Code

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    37/152

    Bethe-Salpeter Equation

    (1, 2, 3) = (1, 2)(1, 3)+

    +

    d(4567)

    (1, 2)

    G(4, 5)G(4, 6)G(7, 5)(6, 7, 3)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    38/152

    Bethe-Salpeter Equation

    Towards the Bethe-Salpeter

    = 1 +

    GGG

    GG = GG+ GGG

    GG

    L = L0 + L0

    GL

    L(1234) = L0(1234) + L0(1256)(56)

    G(78)L(7834)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    39/152

    Bethe-Salpeter Equation

    Towards the Bethe-Salpeter

    = 1 +

    GGG

    GG = GG+ GGG

    GG

    L = L0 + L0

    GL

    L(1234) = L0(1234) + L0(1256)(56)

    G(78)L(7834)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    40/152

    Bethe-Salpeter Equation

    Towards the Bethe-Salpeter

    = 1 +

    GGG

    GG = GG+ GGG

    GG

    L = L0 + L0

    GL

    L(1234) = L0(1234) + L0(1256)(56)

    G(78)L(7834)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    41/152

    Bethe-Salpeter Equation

    Towards the Bethe-Salpeter

    = 1 +

    GGG

    GG = GG+ GGG

    GG

    L = L0 + L0

    GL

    L(1234) = L0(1234) + L0(1256)(56)

    G(78)L(7834)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    42/152

    Bethe-Salpeter Equation

    Towards the Bethe-Salpeter EquationFrom electron and hole propagation ... ..

    L0(1234) = G(13)G(42) ...

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    43/152

    Bethe-Salpeter Equation

    Towards the Bethe-Salpeter EquationFrom electron and hole propagation to the electron-hole interaction

    L(1234) = L0(1234) + L0(1256)(56)

    G(78)L(7834)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    44/152

    Bethe-Salpeter Equation

    Irreducible form of the Bethe-Salpeter equation

    L(1234) = L0(1234) + L0(1256)(56)

    G(78)

    L(7834)

    Reducible quantity

    L = L + LvL

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    45/152

    Bethe-Salpeter Equation

    Bethe-Salpeter Equation

    L(1234)=L0(1234) + L0(1256)

    v(57)(56)(78)+

    (56)

    G(78)

    L(7834)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    46/152

    Bethe-Salpeter Equation

    Comparison with Linear Response quantities

    (12) = n

    (1)Vext(2)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    47/152

    Bethe-Salpeter Equation

    Comparison with Linear Response quantities

    (12) = n

    (1)Vext(2)

    L(1234) =

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    48/152

    Bethe-Salpeter Equation

    Comparison with Linear Response quantities

    (12) = n

    (1)Vext(2)

    L(1234) = G(12)Vext(34)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    49/152

    Bethe-Salpeter Equation

    Comparison with Linear Response quantities

    (12) = n

    (1)Vext(2)

    L(1133) = G(11)Vext(33)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    50/152

    Bethe-Salpeter Equation

    Comparison with Linear Response quantities

    (12) = n

    (1)Vext(2)

    L(1133) = n(1)Vext(3)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    51/152

    Bethe-Salpeter Equation

    We have the (4-point)Bethe-Salpeter equation.

    And now ?

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    52/152

    Bethe-Salpeter Equation

    First point: Choosing

    L(1234)=L0(1234) + L0(1256)

    v(57)(56)(78)+

    (56)

    G(78)

    L(7834)

    BSE

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    B h S l E

  • 7/29/2019 manobody.pdf

    53/152

    Bethe-Salpeter Equation

    First point: Choosing

    L(1234)=L0(1234) + L0(1256)

    v(57)(56)(78)+

    (56)

    G(78)

    L(7834)

    Coulomb term

    x(1, 2) = iG(12)v(21)

    Time-Dependent Hartree-FockBSE

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    B h S l E i

  • 7/29/2019 manobody.pdf

    54/152

    Bethe-Salpeter Equation

    First point: Choosing

    L(1234)=L0(1234) + L0(1256)

    v(57)(56)(78)+

    (56)

    G(78)

    L(7834)

    Screened Coulomb term

    GW(1, 2) = iG(12)W(21)

    Standard Bethe-Salpeter equation(Time-Dependent Screened Hartree-Fock)

    BSE

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    B h S l E i

  • 7/29/2019 manobody.pdf

    55/152

    Bethe-Salpeter Equation

    Choice of = GW

    Everything should be coherently chosen

    ground state calculation

    i,

    i G0KS ; 1RPA(r, r, ) ; W(r, r, ) = 1RPAv

    Ei = i + GWi ; i i GGW(r, r, )

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    B th S l t E ti

  • 7/29/2019 manobody.pdf

    56/152

    Bethe-Salpeter Equation

    Choice of = GW

    Everything should be coherently chosen

    ground state calculation

    i,

    i G0KS ; 1RPA(r, r, ) ; W(r, r, ) = 1RPAv

    Ei = i + GWi ; i i GGW(r, r, )

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    B th S l t E ti

  • 7/29/2019 manobody.pdf

    57/152

    Bethe-Salpeter Equation

    Choice of = GW

    Everything should be coherently chosen

    ground state calculation

    i, i

    G0KS ; 1RPA(r, r, ) ; W(r, r, ) = 1RPAv

    Ei = i + GWi ; i i GGW(r, r, )

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe Salpeter Equation

  • 7/29/2019 manobody.pdf

    58/152

    Bethe-Salpeter Equation

    Choice of = GW

    Everything should be coherently chosen

    ground state calculation

    i, i

    G0KS ; 1RPA(r, r, ) ; W(r, r, ) = 1RPAv

    (r, r, ) = d

    G0KS(r, r, )W(r, r, + )

    Ei = i + GWi ; i i GGW(r, r, )

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe Salpeter Equation

  • 7/29/2019 manobody.pdf

    59/152

    Bethe-Salpeter Equation

    Choice of = GW

    Everything should be coherently chosen

    ground state calculation

    i, i

    G0KS ; 1RPA(r, r, ) ; W(r, r, ) = 1RPAv

    (r, r, ) = d

    G0KS(r, r, )W(r, r, + )

    Ei = i + GWi ; i i GGW(r, r, )

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe Salpeter Equation

  • 7/29/2019 manobody.pdf

    60/152

    Bethe-Salpeter Equation

    Choice of = GW

    Everything should be coherently chosen

    ground state calculation

    i, i

    G0KS ; 1RPA(r, r, ) ; W(r, r, ) = 1RPAv

    (r, r, ) = d

    G0KS(r, r, )W(r, r, + )

    Ei = i + GWi ; i i GGW(r, r, )

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe Salpeter Equation

  • 7/29/2019 manobody.pdf

    61/152

    Bethe-Salpeter Equation

    Choice of = GW

    Everything should be coherently chosen

    ground state calculation

    i, i

    G0KS ; 1RPA(r, r, ) ; W(r, r, ) = 1RPAv

    (r, r, ) = d

    G0KS(r, r, )W(r, r, + )

    Ei = i + GWi ; i i GGW(r, r, )

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    62/152

    Bethe-Salpeter Equation

    Choice of = GW

    Everything should be coherently chosen

    ground state calculation

    i, i

    G0KS ; 1RPA(r, r, ) ; W(r, r, ) = 1RPAv

    (r, r, ) = d

    GGW(r, r, )W(r, r, + )

    Ei = i + GWi ; i i GGW(r, r, )

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    63/152

    Bethe-Salpeter Equation

    L

    =L

    0

    +L

    0 v+

    G L

    Approx. WG

    = 0

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    64/152

    Bethe Salpeter Equation

    L

    =GG

    +GGv

    [GW]

    G L

    Approx. WG

    = 0

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    65/152

    Bethe Salpeter Equation

    L = GG + GG [vW] L

    Approx. WG

    = 0

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    66/152

    Bethe Salpeter Equation

    Bethe-Salpeter Equation

    L = L0 + L0 [vW] L

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    67/152

    Bethe Salpeter Equation

    Bethe-Salpeter Equation

    L(1234) = L0(1234)+

    + L0(1256) [v(57)(56)(78)

    W(56)(57)(68)]L(7834)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    68/152

    p q

    Bethe-Salpeter Equation

    L(1234) = L0(1234)+

    + L0(1256) [v(57)(56)(78)

    W(56)(57)(68)] L(7834)

    Intrinsic 4-point equation

    Correct!It describes the (coupled) progation of

    two particles, the electron and the hole !

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    69/152

    p q

    Bethe-Salpeter Equation

    L(1234) = L0(1234)+

    + L0(1256) [v(57)(56)(78)

    W(56)(57)(68)] L(7834)

    Intrinsic 4-point equation

    Correct!It describes the (coupled) progation of

    two particles, the electron and the hole !

    Exercise

    Show that, ifW = 0, the equationfor L(1133) is a two-point

    equation!

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    70/152

    p q

    Bethe-Salpeter equation (4-points - space and time)

    L(1234) = L0(1234)+

    + L0(1256) [v(57)(56)(78)

    W(56)(57)(68)]L(7834)

    W(12) = W(r1, r

    2)(t

    1t

    2)

    L(1234) = L(r1, r2, r3, r4; t t) = L(1234, )The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    71/152

    p q

    Bethe-Salpeter equation (4-points - space and time)

    L(1234) = L0(1234)+

    + L0(1256) [v(57)(56)(78)

    W(56)(57)(68)]L(7834)

    W(12) = W(r1, r

    2)(t

    1t

    2)

    L(1234) = L(r1, r2, r3, r4; t t) = L(1234, )The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    72/152

    Bethe-Salpeter equation (4-points - space and time)

    L(1234) = L0(1234)+

    + L0(1256) [v(57)(56)(78)

    W(56)(57)(68)]L(7834)

    W(12) = W(r1, r

    2)(t

    1t

    2)

    L(1234) = L(r1, r2, r3, r4; t t) = L(1234, )The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    73/152

    Macroscopic Quantity from the contracted L

    1 L(1234, ) =

    L(r, r, r, r, )

    2 M() = 1 limq0 v(q)drdr eiq(rr

    )L(r, r, r, r, )

    M() = 1

    limq0 v(q)L(G = 0, G = 0, )

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    74/152

    Macroscopic Quantity from the contracted L

    1 L(1234, ) =

    L(r, r, r, r, )

    2 M() = 1 limq0 v(q)drdr eiq(rr

    )L(r, r, r, r, )

    M() = 1

    limq0 v(q)L(G = 0, G = 0, )

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    75/152

    Macroscopic Quantity from the contracted L

    1 L(1234, ) =

    L(r, r, r, r, )

    2 M() = 1 limq0 v(q)drdr eiq(rr

    )L(r, r, r, r, )

    M() = 1

    limq0 v(q)L(G = 0, G = 0, )

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    76/152

    BSE (4 space points - 1 frequency)

    L(1234, ) = L0(1234, )+

    + L0

    (1256, ) [v(57)(56)(78) W(56)(57)(68)]L(7834, )

    How to solve it ?Really invert 4-point function for every frequency?

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    77/152

    BSE (4 space points - 1 frequency)

    L(1234, ) = L0(1234, )+

    + L0

    (1256, ) [v(57)(56)(78) W(56)(57)(68)]L(7834, )

    How to solve it ?Really invert 4-point function for every frequency?

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Outline

  • 7/29/2019 manobody.pdf

    78/152

    1 Generalities of Linear Response Approach

    2 The Bethe-Salpeter equationPolarizability in MBPTDefinition of BSEBSE in practice

    3 Results

    4 The EXC Code

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    79/152

    L(1234, ) = L0(1234, )+

    + L0(1256, ) [v(57)(56)(78) W(56)(57)(68)]L(7834, )

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    80/152

    L(1234, ) = L0(1234, ) + L0(1256, )K(5678)L(7834, )

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    81/152

    L(1234, ) = L0(1234, ) + L0(1256, )K(5678)L(7834, )

    We work in transition space...

    L(1234, ) L(n3n4)(n1n2)() =

    =

    d(1234)L(1234, )n1 (1)

    n2 (2)n3 (3)

    n4 (4) = L

    The Bethe-Salpeter Equation Francesco Sottile Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    82/152

    L(1234, ) = L0(1234, ) + L0(1256, )K(5678)L(7834, )

    L(n3n4)(n1n2)

    () = L0 (n3n4)(n1n2)

    () + L0 (n5n6)(n1n2)

    ()K(n7n8)(n5n6)

    L(n3n4)(n7n8)

    ()

    We work in transition space...

    L(1234, ) L(n3n4)(n1n2)() =

    =

    d(1234)L(1234, )n1 (1)

    n2 (2)n3 (3)

    n4 (4) = L

    The Bethe-Salpeter Equation Francesco Sottile Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    83/152

    L(1234, ) = L0(1234, ) + L0(1256, )K(5678)L(7834, )

    L(n3n4)(n1n2)

    () = L0 (n3n4)(n1n2)

    () + L0 (n5n6)(n1n2)

    ()K(n7n8)(n5n6)

    L(n3n4)(n7n8)

    ()

    We work in transition space...

    L(1234, ) L(n3n4)(n1n2)() =

    =

    d(1234)L(1234, )n1 (1)

    n2 (2)n3 (3)

    n4 (4) = L

    Clever choice of the basis n

    The Bethe-Salpeter Equation Francesco Sottile Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation in transition space

  • 7/29/2019 manobody.pdf

    84/152

    L(n3n4)(n1n2)

    () = L0 (n3n4)(n1n2)

    () + L0 (n5n6)(n1n2)

    ()K(n7n8)(n5n6)

    L(n3n4)(n7n8)

    ()

    ... some trivial mathematical arzigogoli ...

    L(n3n4)(n1n2)

    () =

    (En2 En1 )n1n3n2n4 + K(n3n4)(n1n2)1

    L(n3n4)(n1n2)

    () = [(En2 En1 )n1n3n2n4 + v W ]1

    The Bethe-Salpeter Equation Francesco Sottile Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation in transition space

  • 7/29/2019 manobody.pdf

    85/152

    L(n3n4)(n1n2)

    () = L0 (n3n4)(n1n2)

    () + L0 (n5n6)(n1n2)

    ()K(n7n8)(n5n6)

    L(n3n4)(n7n8)

    ()

    ... some trivial mathematical arzigogoli ...

    L(n3n4)(n1n2)

    () =

    (En2 En1 )n1n3n2n4 + K(n3n4)(n1n2)1

    L(n3n4)(n1n2)

    () = [(En2 En1 )n1n3n2n4 + v W ]1

    The Bethe-Salpeter Equation Francesco Sottile Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation in transition space

  • 7/29/2019 manobody.pdf

    86/152

    L(n3n4)(n1n2)

    () = L0 (n3n4)(n1n2)

    () + L0 (n5n6)(n1n2)

    ()K(n7n8)(n5n6)

    L(n3n4)(n7n8)

    ()

    ... some trivial mathematical arzigogoli ...

    L(n3n4)(n1n2)

    () =

    (En2 En1 )n1n3n2n4 + K(n3n4)(n1n2)1

    L(n3n4)(n1n2)

    () = [(En2 En1 )n1n3n2n4 + v W ]1

    The Bethe-Salpeter Equation Francesco Sottile Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation in transition space

  • 7/29/2019 manobody.pdf

    87/152

    L(n3n4)(n1n2)

    () = L0 (n3n4)(n1n2)

    () + L0 (n5n6)(n1n2)

    ()K(n7n8)(n5n6)

    L(n3n4)(n7n8)

    ()

    ... some trivial mathematical arzigogoli ...

    L(n3n4)(n1n2)

    () =

    (En2 En1 )n1n3n2n4 + K(n3n4)(n1n2)1

    L(n3n4)(n1n2)

    () = [(En2 En1 )n1n3n2n4 + v W ]1

    The Bethe-Salpeter Equation Francesco Sottile Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation in transition space

  • 7/29/2019 manobody.pdf

    88/152

    The Excitonic Hamiltonian

    L(n3n4)(n1n2)

    () = [(En2 En1 )n1n3n2n4 + v W ]1

    L

    (n3n4)

    (n1n2)() =

    1

    Hexc Hexc = (En2 En1 )n1n3n2n4 + v W

    Resonant vs Coupling

    n1, n2, n3, n4 = v, c (k)

    Hreso = (Ec Ev)vvcc+ v W

    The Bethe-Salpeter Equation Francesco Sottile Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation in transition space

  • 7/29/2019 manobody.pdf

    89/152

    The Excitonic Hamiltonian

    L(n3n4)(n1n2)

    () = [(En2 En1 )n1n3n2n4 + v W ]1

    L

    (n3n4)

    (n1n2)() =

    1

    Hexc Hexc = (En2 En1 )n1n3n2n4 + v W

    Resonant vs Coupling

    n1, n2, n3, n4 = v, c (k)

    Hreso = (Ec Ev)vvcc+ v W

    The Bethe-Salpeter Equation Francesco Sottile Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation in transition space

  • 7/29/2019 manobody.pdf

    90/152

    The Excitonic Hamiltonian

    L(n3n4)(n1n2)

    () = [(En2 En1 )n1n3n2n4 + v W ]1

    L

    (n3n4)

    (n1n2)() =

    1

    Hexc Hexc = (En2 En1 )n1n3n2n4 + v W

    Resonant vs Coupling

    n1, n2, n3, n4 = v, c (k)

    Hreso = (Ec Ev)vvcc+ v W

    The Bethe Salpeter Equation Francesco Sottile Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation in transition space

  • 7/29/2019 manobody.pdf

    91/152

    The Bethe Salpeter Equation Francesco Sottile Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation in transition space

  • 7/29/2019 manobody.pdf

    92/152

    The Bethe Salpeter Equation Francesco Sottile Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation in transition space

  • 7/29/2019 manobody.pdf

    93/152

    L(n3n4)(n1n2)

    () = L(r, r, ) =

    (n1n

    2)

    (n3n4)

    L(n3n4)(n1n2)

    ()n1 (r)

    n2(r)n3 (r

    )n4 (r)

    L(n3n4)(n1n2)

    () =L(G,G, ) =

    (n1n2)(n3n4)

    L(n3n4)(n1n2)

    ()

    n1 (r)e

    i(q+G)rn2 (r)n3 (r)ei(q+G

    )rn4 (r)

    The Bethe Salpeter Equation Francesco Sottile Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation in transition space

  • 7/29/2019 manobody.pdf

    94/152

    L(n3n4)(n1n2)

    () = L(r, r, ) =

    (n1n

    2)

    (n3n4)

    L(n3n4)(n1n2)

    ()n1 (r)

    n2(r)n3 (r

    )n4 (r)

    L(n3n4)(n1n2)

    () =L(G,G, ) =

    (n1n2)(n3n4)

    L(n3n4)(n1n2)

    ()

    n1 (r)e

    i(q+G)rn2 (r)n3 (r)ei(q+G

    )rn4 (r)

    The Bethe Salpeter Equation Francesco Sottile Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation in transition space

  • 7/29/2019 manobody.pdf

    95/152

    L(n3n4)(n1n2)

    () = L(r, r, ) =

    (n1n

    2)

    (n3n4)

    L(n3n4)(n1n2)

    ()n1 (r)

    n2(r)n3 (r

    )n4 (r)

    L(n3n4)(n1n2)

    () =L(G,G, ) =

    (n1n2)(n3n4)

    L(n3n4)(n1n2)

    ()

    n1 (r)e

    i(q+G)rn2 (r)n3 (r)ei(q+G

    )rn4 (r)

    The Bethe Salpeter Equation Francesco Sottile Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation in transition space

  • 7/29/2019 manobody.pdf

    96/152

    L(n3n4)(n1n2)

    () = [(En2 En1 )n1n3n2n4 + v W ]1

    L(n3n4)

    (n1n2)() = [Hexc

    ]1

    Hexc = [(En2 En1 )n1n3n2n4 + v W ]

    Diagonalization Iterative inversion

    The Bethe Salpeter Equation Francesco Sottile Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation in transition space

  • 7/29/2019 manobody.pdf

    97/152

    L(n3n4)(n1n2)

    () = [(En2 En1 )n1n3n2n4 + v W ]1

    L(n3n4)

    (n1n2)() = [Hexc

    ]1

    Hexc = [(En2 En1 )n1n3n2n4 + v W ]

    Diagonalization Iterative inversion

    Th B th S l t E ti F s S ttil Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation in transition space

  • 7/29/2019 manobody.pdf

    98/152

    L(n3n4)(n1n2)

    () = [(En2 En1 )n1n3n2n4 + v W ]1

    L(n3n4)

    (n1n2)() = [Hexc

    ]1

    Hexc = [(En2 En1 )n1n3n2n4 + v W ]

    Diagonalization Iterative inversion

    Th B th S l t E ti F S ttil Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation in transition space

  • 7/29/2019 manobody.pdf

    99/152

    Diagonalization case (only resonant approx)

    Lvc

    vc = [(Ec Ev) vvcc + v W ]1

    1

    H I =

    |A >< A

    |E

    Spectrum within BSE

    L(r, r, ) =

    vc A

    (vc) v(r)

    c(r)

    v(r

    )c(r

    )A(vc)

    Eexc

    + i

    Th B th S l t E ti F S ttil Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation in transition space

  • 7/29/2019 manobody.pdf

    100/152

    Diagonalization case (only resonant approx)

    Lvc

    vc = [(Ec Ev) vvcc + v W ]1

    1

    H I =

    |A >< A

    |E

    Spectrum within BSE

    L(r, r, ) =

    vc A

    (vc) v(r)

    c(r)

    v(r

    )c(r

    )A(vc)

    Eexc

    + i

    Th B th S l t E ti F S ttil Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation in transition space

  • 7/29/2019 manobody.pdf

    101/152

    Diagonalization case (only resonant approx)

    Lvc

    vc = [(Ec Ev) vvcc + v W ]1

    1

    H I =

    |A >< A

    |E

    Spectrum within BSE

    L(r, r, ) =

    vc A

    (vc) v(r)

    c(r)

    v(r

    )c(r

    )A(vc)

    Eexc

    + i

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    102/152

    Spectrum in BSE (only resonant)

    L(r, r, ) =

    vcA(vc) v(r)c(r)v(r)c(r)A(vc) Eexc + i

    0(r, r, ) = vc

    v(r)c(r)

    v(r

    )c(r)

    (c v) + i

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    103/152

    Spectrum in BSE (only resonant)

    L(r, r, ) =

    vcA(vc) v(r)c(r)v(r)c(r)A(vc) Eexc + i

    0(r, r, ) = vc

    v(r)c(r)

    v(r

    )c(r)

    (c v) + i

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    104/152

    Spectrum in BSE (only resonant)

    AbsBSE

    () = Im L()=

    vc

    A

    (vc)

    c|D|v2

    ( Eexc

    )

    AbsIP-RPA() = Im 0()=vc |

    c|D|v|

    2(

    (

    c

    v))

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    105/152

    BSE - creating and diagonalizing a (big) matrix

    Hexc

    (vc)(v

    c

    )

    L

    (vc)(vc) () =

    A(vc) A

    (vc)

    Eexc

    + i

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    106/152

    BSE - creating and diagonalizing a (big) matrix

    Hexc

    (vc)(v

    c

    )= (E

    cE

    v)

    vv

    cc + vv

    c

    vc Wv

    c

    vc

    L

    (vc)(vc) () =

    A(vc) A

    (vc)

    Eexc

    + i

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    107/152

    BSE - creating and diagonalizing a (big) matrix

    Hexc

    (vc)(v

    c

    )A

    (vc)

    = Eexc

    A

    (vc)

    L

    (vc)(vc) () =

    A(vc) A

    (vc)

    Eexc

    + i

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    108/152

    BSE - creating and diagonalizing a (big) matrix

    Hexc

    (vc)(v

    c

    )A

    (vc)

    = Eexc

    A

    (vc)

    L

    (vc)(vc) () =

    A(vc) A

    (vc)

    Eexc

    + i

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter Equation

  • 7/29/2019 manobody.pdf

    109/152

    Standard Approximations for BSEGround-state

    pseudopotentialVxc local density approximation

    Quasi-particle Many-Body Theory

    GW approximation for W rpa, plasmon-pole modelGW = KS

    Bethe-Salpeter equationW

    G = 0W rpa, staticonly resonant term

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The Bethe-Salpeter Soup

  • 7/29/2019 manobody.pdf

    110/152

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Outline

  • 7/29/2019 manobody.pdf

    111/152

    1 Generalities of Linear Response Approach

    2 The Bethe-Salpeter equationPolarizability in MBPT

    Definition of BSEBSE in practice

    3 Results

    4 The EXC Code

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter equation results: Semiconductors

  • 7/29/2019 manobody.pdf

    112/152

    Albrecht et al., PRL 80, 4510 (1998)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter equation results: Insulators

  • 7/29/2019 manobody.pdf

    113/152

    Sottile, Marsili, et al., PRB (2007).

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter equation results: Molecule (Na4)

  • 7/29/2019 manobody.pdf

    114/152

    Onida et al., PRL 75, 818 (1995)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter equation results: Silicon Nanowires

  • 7/29/2019 manobody.pdf

    115/152

    Bruno et al., PRL 98, 036807 (2007)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter equation results: Hexagonal Ice

  • 7/29/2019 manobody.pdf

    116/152

    Hahn et al., PRL 94, 37404 (2005)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter equation results: Cu2O

  • 7/29/2019 manobody.pdf

    117/152

    Bruneval et al., PRL 97, 267601 (2006)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter equation results: EELS of Silicon

  • 7/29/2019 manobody.pdf

    118/152

    Olevano and Reining, PRL 86, 5962 (2001)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter equation results: Surface

  • 7/29/2019 manobody.pdf

    119/152

    Rohlfing et al., PRL 85, 005440 (2000)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter equation results: Surface

  • 7/29/2019 manobody.pdf

    120/152

    Rohlfing et al., PRL 85, 005440 (2000)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter equation results: liquid Water

  • 7/29/2019 manobody.pdf

    121/152

    Garbuio et al., PRL 97, 137402 (2006)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

  • 7/29/2019 manobody.pdf

    122/152

    The EXC code - Sottile, Reining, Olevano, Onida, Albrechthttp://www.bethe-salpeter.org

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter equation: State-of-the-art

  • 7/29/2019 manobody.pdf

    123/152

    DFT - ground stateGW - quasiparticle energies

    BSE - optical and dielectric properties

    several spectroscopies

    variety of systems Cumbersome CalculationsThe Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter equation: State-of-the-art

  • 7/29/2019 manobody.pdf

    124/152

    DFT - ground stateGW - quasiparticle energies

    BSE - optical and dielectric properties

    several spectroscopies

    variety of systems Cumbersome CalculationsThe Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Bethe-Salpeter equation: State-of-the-art

  • 7/29/2019 manobody.pdf

    125/152

    Some references

    Hanke and Sham, PRB 21, 4656 (1980)

    Onida, Reining, Rubio, RMP 74, 601 (2002)

    Strinati, Riv Nuovo Cimento 11, 1 (1988)

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    Outline

  • 7/29/2019 manobody.pdf

    126/152

    1 Generalities of Linear Response Approach

    2 The Bethe-Salpeter equationPolarizability in MBPT

    Definition of BSEBSE in practice

    3 Results

    4 The EXC Code

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    What do we calculate ?

    Dielectric function (only resonant case) 2

  • 7/29/2019 manobody.pdf

    127/152

    M() = 1 limq0

    v0(q)

    (vc)

    c|eiqr|vA(vc)

    2Eexc

    i

    diagonalize excitonic Hamiltonian

    H2p,exc(vc)(vc)A

    (vc) = E

    exc A

    (vc)

    H = (vc)

    (vc)

    266664

    . . . . . .

    . . .

    . . .

    . . .

    . . .

    377775

    Hamiltonian:

    H2p(vc)(vc)= (Ec Ev)vvcc + [v W]

    (vc)(vc)

    Ei = quasiparticle energies (GW)

    W = 1v screened Coulomb interaction

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    What do we calculate ?

    Dielectric function (only resonant case) ( )

    2

  • 7/29/2019 manobody.pdf

    128/152

    M() = 1 limq0

    v0(q)

    (vc)

    c|eiqr|vA(vc)

    2Eexc

    i

    diagonalize excitonic Hamiltonian

    H2p,exc(vc)(vc)A

    (vc) = E

    exc A

    (vc)

    H = (vc)

    (vc)

    266664

    . . . . . .

    . . .

    . . .

    . . .

    . . .

    377775

    Hamiltonian:

    H2p(vc)(vc)= (Ec Ev)vvcc + [v W]

    (vc)(vc)

    Ei = quasiparticle energies (GW)

    W = 1v screened Coulomb interaction

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    What do we calculate ?

    Dielectric function (only resonant case) ( )

    2

  • 7/29/2019 manobody.pdf

    129/152

    M() = 1 limq0

    v0(q)

    (vc)

    c|eiqr|vA(vc)

    2Eexc

    i

    diagonalize excitonic Hamiltonian

    H2p,exc(vc)(vc)A

    (vc) = E

    exc A

    (vc)

    H = (vc)

    (vc)

    266664

    . . . . . .

    . . .

    . . .

    . . .

    . . .

    377775

    Hamiltonian:

    H2p(vc)(vc)= (Ec Ev)vvcc + [v W]

    (vc)(vc)

    Ei = quasiparticle energies (GW)

    W = 1v screened Coulomb interaction

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    What do we need ?

  • 7/29/2019 manobody.pdf

    130/152

    structure, screening, quasiparticle files + input file

    |v gs (LDA) wfs kss file

    Ev Quasi-Particle energies gw file

    1 for the screened interaction scr file

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The excitonic Hamiltonian

    H2p

    E E + [ W ]

  • 7/29/2019 manobody.pdf

    131/152

    H2p(vc)(vc) =

    Ec Evvvcc + [v W](vc)(vc)

    H2p(vc)(vc) = (c v) vvcc RPA-NLF

    H2p(vc)(vc) = (c v) vvcc + v(vc)(vc) RPA

    H2p(vc)(vc) = (Ec

    Ev) vvcc + v(vc)(vc) GW

    H2p(vc)(vc) = (Ec Ev) vvcc + v(vc)(vc) + W(vc)(vc) BSE

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The excitonic Hamiltonian

  • 7/29/2019 manobody.pdf

    132/152

    H2p(vc)(vc) =

    (c +

    GWc ) (v + GWv )

    vvcc + [v W](vc)(vc)

    H2p(vc)(vc) = (c v) vvcc RPA-NLF

    H2p(vc)(vc) = (c v) vvcc + v(vc)(vc) RPA

    H2p(vc)(vc) = (Ec

    Ev) vvcc + v(vc)(vc) GW

    H2p(vc)(vc) = (Ec Ev) vvcc + v(vc)(vc) + W(vc)(vc) BSE

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The excitonic Hamiltonian

  • 7/29/2019 manobody.pdf

    133/152

    H2p(vc)(vc) =

    (c +

    GWc ) (v + GWv )

    vvcc + [v W](vc)(vc)

    H2p(vc)(vc) = (c v) vvcc RPA-NLF

    H2p(vc)(vc) = (c v) vvcc + v(vc)(vc) RPA

    H2p(vc)(vc) = (Ec

    Ev) vvcc + v(vc)(vc) GW

    H2p(vc)(vc) = (Ec Ev) vvcc + v(vc)(vc) + W(vc)(vc) BSE

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The excitonic Hamiltonian

  • 7/29/2019 manobody.pdf

    134/152

    H2p(vc)(vc) = ((c +

    GWc ) (v + GWv )) vvcc + [v W](vc)(vc)

    H2p(vc)(vc) = (c v) vvcc RPA-NLF

    H2p(vc)(vc) = (c v) vvcc + v(vc)(vc) RPA

    H2p(vc)(vc) = (Ec

    Ev) vvcc + v(vc)(vc) GW

    H2p(vc)(vc) = (Ec Ev) vvcc + v(vc)(vc) + W(vc)(vc) BSE

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The excitonic Hamiltonian

  • 7/29/2019 manobody.pdf

    135/152

    H2p(vc)(vc) = ((c +

    GWc ) (v + GWv )) vvcc + [v W](vc)(vc)

    H2p(vc)(vc) = (c v) vvcc RPA-NLF

    H2p(vc)(vc) = (c v) vvcc + v(vc)(vc) RPA

    H2p(vc)(vc) = (Ec

    Ev) vvcc + v(vc)(vc) GW

    H2p(vc)(vc) = (Ec Ev) vvcc + v(vc)(vc) + W(vc)(vc) BSE

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The excitonic Hamiltonian

    H2p =

    E E + [v + W ]( )( )

  • 7/29/2019 manobody.pdf

    136/152

    H p(vc)(vc) =

    Ec Evvvcc + [v + W](vc)(vc)

    H2p(vc)(vc) = (c v) vvcc RPA-NLF

    H2p(vc)(vc) = (c v) vvcc + v(vc)(vc) RPA

    H2p(vc)(vc) = (Ec

    Ev) vvcc + v(vc)(vc) GW

    H2p(vc)(vc) = (Ec Ev) vvcc + v(vc)(vc) + W(vc)(vc) BSE

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    __ ____ ___ __

    \ ___) \ \ / / / __)

    | (__ \ \/ / | /

    | __) > < | |

    | (___ / /\ \ | \__

    / )_/ /__\ \__\ )_

  • 7/29/2019 manobody.pdf

    137/152

    http://www.bethe-salpeter.org

    program EXC version 2.3.4

    built: 06 Dec 2007

    calculate dielectric propertiesBethe-Salpeter equation code in frequency domain

    reciprocal space on a transitions basis

    Copyright (C) 1992-2007, Lucia Reining, Valerio Olevano,

    Francesco Sottile, Stefan Albrecht, Giovanni Onida.

    This program is free software; you can redistribute it

    and/or modify it under the terms of the GNU General

    Public License.

    This program is distributed in the hope that it will be

    useful, but WITHOUT ANY WARRANTY;The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The input file

    rpa, gw, exc (default) . . . . . . . . . . . . . . . . . . . . . . . type of calculationnlf, lf (default) . . . . . . . . . . . . . . . . . . . . . . . . . . with or w/o local fields

    wdiag (default), wfull . . . . . . . . . . . . . . . . . . . . . . . . . . WGGGG or WGG(d f l ) li li i

  • 7/29/2019 manobody.pdf

    138/152

    g ( ), . . . . . . . . . . . . . . . . . . . . . . . . . . orresonant (default), coupling . . . . . . . . coupling reso-antireso or notsoenergy (default=0.0) . . . . . . scissor operator energy [eV]matsh (default=all) ........number of G-shell for the GG

    wfnsh (default=all) . . . . . plane waves shells for the nk(G)

    nbands (default=all) last band included in the calculationlomo (default=1) . . . . . first band included in the calculationomegai (default=0.0) ......... frequency initial point [eV]omegae (default=10.0) . . . . . . . . . . frequency end point [eV]domega (default=0.01) . . . . . . . . . . . . . . . frequency step [eV]broad (default=domega) . . . . . . . lorentzian broadening [eV]haydock .............................. iterative diagonalization schemeniter (default=100) . . . . . . . . . iterations for haydock scheme

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The input file

    rpa, gw, exc (default) . . . . . . . . . . . . . . . . . . . . . . . type of calculationnlf, lf (default) . . . . . . . . . . . . . . . . . . . . . . . . . . with or w/o local fields

    wdiag (default), wfull . . . . . . . . . . . . . . . . . . . . . . . . . . WGGGG or WGGt (d f lt) li li ti t

  • 7/29/2019 manobody.pdf

    139/152

    g ,resonant (default), coupling . . . . . . . . coupling reso-antireso or notsoenergy (default=0.0) . . . . . . scissor operator energy [eV]matsh (default=all) ........number of G-shell for the GG

    wfnsh (default=all) . . . . . plane waves shells for the nk(G)

    nbands (default=all) last band included in the calculationlomo (default=1) . . . . . first band included in the calculationomegai (default=0.0) ......... frequency initial point [eV]omegae (default=10.0) . . . . . . . . . . frequency end point [eV]domega (default=0.01) . . . . . . . . . . . . . . . frequency step [eV]broad (default=domega) . . . . . . . lorentzian broadening [eV]haydock .............................. iterative diagonalization schemeniter (default=100) . . . . . . . . . iterations for haydock scheme

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The input file

    rpa, gw, exc (default) . . . . . . . . . . . . . . . . . . . . . . . type of calculationnlf, lf (default) . . . . . . . . . . . . . . . . . . . . . . . . . . with or w/o local fields

    wdiag (default), wfull . . . . . . . . . . . . . . . . . . . . . . . . . . WGGGG or WGGt (d f lt) li li ti t

  • 7/29/2019 manobody.pdf

    140/152

    g ,resonant (default), coupling . . . . . . . . coupling reso-antireso or notsoenergy (default=0.0) . . . . . . scissor operator energy [eV]matsh (default=all) ........number of G-shell for the GG

    wfnsh (default=all) . . . . . plane waves shells for the nk(G)

    nbands (default=all) last band included in the calculationlomo (default=1) . . . . . first band included in the calculationomegai (default=0.0) ......... frequency initial point [eV]omegae (default=10.0) . . . . . . . . . . frequency end point [eV]domega (default=0.01) . . . . . . . . . . . . . . . frequency step [eV]broad (default=domega) . . . . . . . lorentzian broadening [eV]haydock .............................. iterative diagonalization schemeniter (default=100) . . . . . . . . . iterations for haydock scheme

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The input file

    rpa, gw, exc (default) . . . . . . . . . . . . . . . . . . . . . . . type of calculationnlf, lf (default) . . . . . . . . . . . . . . . . . . . . . . . . . . with or w/o local fields

    wdiag (default), wfull . . . . . . . . . . . . . . . . . . . . . . . . . . WGG

    GG

    or WGG

    resonant (default) coupling coupling reso antireso or not

  • 7/29/2019 manobody.pdf

    141/152

    gresonant (default), coupling . . . . . . . . coupling reso-antireso or notsoenergy (default=0.0) . . . . . . scissor operator energy [eV]matsh (default=all) ........number of G-shell for the GG

    wfnsh (default=all) . . . . . plane waves shells for the nk(G)

    nbands (default=all) last band included in the calculationlomo (default=1) . . . . . first band included in the calculationomegai (default=0.0) ......... frequency initial point [eV]omegae (default=10.0) . . . . . . . . . . frequency end point [eV]domega (default=0.01) . . . . . . . . . . . . . . . frequency step [eV]broad (default=domega) . . . . . . . lorentzian broadening [eV]haydock .............................. iterative diagonalization schemeniter (default=100) . . . . . . . . . iterations for haydock scheme

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The input file

    rpa, gw, exc (default) . . . . . . . . . . . . . . . . . . . . . . . type of calculationnlf, lf (default) . . . . . . . . . . . . . . . . . . . . . . . . . . with or w/o local fields

    wdiag (default), wfull . . . . . . . . . . . . . . . . . . . . . . . . . . WGG

    GG

    or WGG

    resonant (default) coupling coupling reso antireso or not

  • 7/29/2019 manobody.pdf

    142/152

    gresonant (default), coupling . . . . . . . . coupling reso-antireso or notsoenergy (default=0.0) . . . . . . scissor operator energy [eV]matsh (default=all) ........number of G-shell for the GG

    wfnsh (default=all) . . . . . plane waves shells for the nk(G)

    nbands (default=all) last band included in the calculationlomo (default=1) . . . . . first band included in the calculationomegai (default=0.0) ......... frequency initial point [eV]omegae (default=10.0) . . . . . . . . . . frequency end point [eV]domega (default=0.01) . . . . . . . . . . . . . . . frequency step [eV]broad (default=domega) . . . . . . . lorentzian broadening [eV]haydock .............................. iterative diagonalization schemeniter (default=100) . . . . . . . . . iterations for haydock scheme

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The input file

    rpa, gw, exc (default) . . . . . . . . . . . . . . . . . . . . . . . type of calculationnlf, lf (default) . . . . . . . . . . . . . . . . . . . . . . . . . . with or w/o local fields

    wdiag (default), wfull . . . . . . . . . . . . . . . . . . . . . . . . . . WGG

    GG

    or WGG

    resonant (default) coupling coupling reso antireso or not

  • 7/29/2019 manobody.pdf

    143/152

    resonant (default), coupling . . . . . . . . coupling reso-antireso or notsoenergy (default=0.0) . . . . . . scissor operator energy [eV]matsh (default=all) ........number of G-shell for the GG

    wfnsh (default=all) . . . . . plane waves shells for the nk(G)

    nbands (default=all) last band included in the calculationlomo (default=1) . . . . . first band included in the calculationomegai (default=0.0) ......... frequency initial point [eV]omegae (default=10.0) . . . . . . . . . . frequency end point [eV]domega (default=0.01) . . . . . . . . . . . . . . . frequency step [eV]broad (default=domega) . . . . . . . lorentzian broadening [eV]haydock .............................. iterative diagonalization schemeniter (default=100) . . . . . . . . . iterations for haydock scheme

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The input file

    rpa, gw, exc (default) . . . . . . . . . . . . . . . . . . . . . . . type of calculationnlf, lf (default) . . . . . . . . . . . . . . . . . . . . . . . . . . with or w/o local fields

    wdiag (default), wfull . . . . . . . . . . . . . . . . . . . . . . . . . . WGG

    GG

    or WGG

    resonant (default) coupling coupling reso-antireso or not

  • 7/29/2019 manobody.pdf

    144/152

    resonant (default), coupling . . . . . . . . coupling reso-antireso or notsoenergy (default=0.0) . . . . . . scissor operator energy [eV]matsh (default=all) ........number of G-shell for the GG

    wfnsh (default=all) . . . . . plane waves shells for the nk(G)

    nbands (default=all) last band included in the calculationlomo (default=1) . . . . . first band included in the calculationomegai (default=0.0) ......... frequency initial point [eV]omegae (default=10.0) . . . . . . . . . . frequency end point [eV]domega (default=0.01) . . . . . . . . . . . . . . . frequency step [eV]broad (default=domega) . . . . . . . lorentzian broadening [eV]haydock .............................. iterative diagonalization schemeniter (default=100) . . . . . . . . . iterations for haydock scheme

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The input file

    rpa, gw, exc (default) . . . . . . . . . . . . . . . . . . . . . . . type of calculationnlf, lf (default) . . . . . . . . . . . . . . . . . . . . . . . . . . with or w/o local fields

    wdiag (default), wfull . . . . . . . . . . . . . . . . . . . . . . . . . . WGG

    GG

    or WGG

    resonant (default) coupling coupling reso-antireso or not

  • 7/29/2019 manobody.pdf

    145/152

    resonant (default), coupling . . . . . . . . coupling reso antireso or notsoenergy (default=0.0) . . . . . . scissor operator energy [eV]matsh (default=all) ........number of G-shell for the GG

    wfnsh (default=all) . . . . . plane waves shells for the nk(G)

    nbands (default=all) last band included in the calculationlomo (default=1) . . . . . first band included in the calculationomegai (default=0.0) ......... frequency initial point [eV]omegae (default=10.0) . . . . . . . . . . frequency end point [eV]domega (default=0.01) . . . . . . . . . . . . . . . frequency step [eV]broad (default=domega) . . . . . . . lorentzian broadening [eV]haydock .............................. iterative diagonalization schemeniter (default=100) . . . . . . . . . iterations for haydock scheme

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The input file

    rpa, gw, exc (default) . . . . . . . . . . . . . . . . . . . . . . . type of calculationnlf, lf (default) . . . . . . . . . . . . . . . . . . . . . . . . . . with or w/o local fields

    wdiag (default), wfull . . . . . . . . . . . . . . . . . . . . . . . . . . WGG

    GG

    or WGG

    resonant (default), coupling coupling reso-antireso or not

  • 7/29/2019 manobody.pdf

    146/152

    resonant (default), coupling . . . . . . . . coupling reso antireso or notsoenergy (default=0.0) . . . . . . scissor operator energy [eV]matsh (default=all) ........number of G-shell for the GG

    wfnsh (default=all) . . . . . plane waves shells for the nk(G)

    nbands (default=all) last band included in the calculationlomo (default=1) . . . . . first band included in the calculationomegai (default=0.0) ......... frequency initial point [eV]omegae (default=10.0) . . . . . . . . . . frequency end point [eV]domega (default=0.01) . . . . . . . . . . . . . . . frequency step [eV]broad (default=domega) . . . . . . . lorentzian broadening [eV]haydock .............................. iterative diagonalization schemeniter (default=100) . . . . . . . . . iterations for haydock scheme

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The input file

    rpa, gw, exc (default) . . . . . . . . . . . . . . . . . . . . . . . type of calculationnlf, lf (default) . . . . . . . . . . . . . . . . . . . . . . . . . . with or w/o local fields

    wdiag (default), wfull . . . . . . . . . . . . . . . . . . . . . . . . . . WGG

    GG

    or WGG

    resonant (default), coupling . . . . . . . . coupling reso-antireso or not

  • 7/29/2019 manobody.pdf

    147/152

    resonant (default), coupling . . . . . . . . coupling reso antireso or notsoenergy (default=0.0) . . . . . . scissor operator energy [eV]matsh (default=all) ........number of G-shell for the GG

    wfnsh (default=all) . . . . . plane waves shells for the nk(G)

    nbands (default=all) last band included in the calculationlomo (default=1) . . . . . first band included in the calculationomegai (default=0.0) ......... frequency initial point [eV]omegae (default=10.0) . . . . . . . . . . frequency end point [eV]domega (default=0.01) . . . . . . . . . . . . . . . frequency step [eV]broad (default=domega) . . . . . . . lorentzian broadening [eV]haydock .............................. iterative diagonalization schemeniter (default=100) . . . . . . . . . iterations for haydock scheme

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The input file

    rpa, gw, exc (default) . . . . . . . . . . . . . . . . . . . . . . . type of calculationnlf, lf (default) . . . . . . . . . . . . . . . . . . . . . . . . . . with or w/o local fields

    wdiag (default), wfull . . . . . . . . . . . . . . . . . . . . . . . . . . WGG

    GG

    or WGG

    resonant (default), coupling . . . . . . . . coupling reso-antireso or not

  • 7/29/2019 manobody.pdf

    148/152

    ( ), p g p gsoenergy (default=0.0) . . . . . . scissor operator energy [eV]matsh (default=all) ........number of G-shell for the GG

    wfnsh (default=all) . . . . . plane waves shells for the nk(G)

    nbands (default=all) last band included in the calculationlomo (default=1) . . . . . first band included in the calculationomegai (default=0.0) ......... frequency initial point [eV]omegae (default=10.0) . . . . . . . . . . frequency end point [eV]domega (default=0.01) . . . . . . . . . . . . . . . frequency step [eV]broad (default=domega) . . . . . . . lorentzian broadening [eV]haydock .............................. iterative diagonalization schemeniter (default=100) . . . . . . . . . iterations for haydock scheme

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The input file

    rpa, gw, exc (default) . . . . . . . . . . . . . . . . . . . . . . . type of calculationnlf, lf (default) . . . . . . . . . . . . . . . . . . . . . . . . . . with or w/o local fields

    wdiag (default), wfull . . . . . . . . . . . . . . . . . . . . . . . . . . WGG

    GG

    or WGG

    resonant (default), coupling . . . . . . . . coupling reso-antireso or not

  • 7/29/2019 manobody.pdf

    149/152

    ( ), p g p gsoenergy (default=0.0) . . . . . . scissor operator energy [eV]matsh (default=all) ........number of G-shell for the GG

    wfnsh (default=all) . . . . . plane waves shells for the nk(G)

    nbands (default=all) last band included in the calculationlomo (default=1) . . . . . first band included in the calculationomegai (default=0.0) ......... frequency initial point [eV]omegae (default=10.0) . . . . . . . . . . frequency end point [eV]domega (default=0.01) . . . . . . . . . . . . . . . frequency step [eV]

    broad (default=domega) . . . . . . . lorentzian broadening [eV]haydock .............................. iterative diagonalization schemeniter (default=100) . . . . . . . . . iterations for haydock scheme

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The input file

    rpa, gw, exc (default) . . . . . . . . . . . . . . . . . . . . . . . type of calculationnlf, lf (default) . . . . . . . . . . . . . . . . . . . . . . . . . . with or w/o local fields

    wdiag (default), wfull . . . . . . . . . . . . . . . . . . . . . . . . . . WGG

    GG

    or WGG

    resonant (default), coupling . . . . . . . . coupling reso-antireso or not

  • 7/29/2019 manobody.pdf

    150/152

    p g p gsoenergy (default=0.0) . . . . . . scissor operator energy [eV]matsh (default=all) ........number of G-shell for the GG

    wfnsh (default=all) . . . . . plane waves shells for the nk(G)

    nbands (default=all) last band included in the calculationlomo (default=1) . . . . . first band included in the calculationomegai (default=0.0) ......... frequency initial point [eV]omegae (default=10.0) . . . . . . . . . . frequency end point [eV]domega (default=0.01) . . . . . . . . . . . . . . . frequency step [eV]

    broad (default=domega) . . . . . . . lorentzian broadening [eV]haydock .............................. iterative diagonalization schemeniter (default=100) . . . . . . . . . iterations for haydock scheme

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The input file

    rpa, gw, exc (default) . . . . . . . . . . . . . . . . . . . . . . . type of calculationnlf, lf (default) . . . . . . . . . . . . . . . . . . . . . . . . . . with or w/o local fields

    wdiag (default), wfull . . . . . . . . . . . . . . . . . . . . . . . . . . WGG

    GG

    or WGG

    resonant (default), coupling . . . . . . . . coupling reso-antireso or not

  • 7/29/2019 manobody.pdf

    151/152

    p g

    soenergy (default=0.0) . . . . . . scissor operator energy [eV]matsh (default=all) ........number of G-shell for the GG

    wfnsh (default=all) . . . . . plane waves shells for the nk(G)

    nbands (default=all) last band included in the calculationlomo (default=1) . . . . . first band included in the calculationomegai (default=0.0) ......... frequency initial point [eV]omegae (default=10.0) . . . . . . . . . . frequency end point [eV]domega (default=0.01) . . . . . . . . . . . . . . . frequency step [eV]

    broad (default=domega) . . . . . . . lorentzian broadening [eV]haydock .............................. iterative diagonalization schemeniter (default=100) . . . . . . . . . iterations for haydock scheme

    The Bethe-Salpeter Equation Francesco Sottile

    Generalities of Linear Response Approach The Bethe-Salpeter equation Results The EXC Code

    The input file

    rpa, gw, exc (default) . . . . . . . . . . . . . . . . . . . . . . . type of calculationnlf, lf (default) . . . . . . . . . . . . . . . . . . . . . . . . . . with or w/o local fields

    wdiag (default), wfull . . . . . . . . . . . . . . . . . . . . . . . . . . WGG

    GG

    or WGG

    resonant (default), coupling . . . . . . . . coupling reso-antireso or not

  • 7/29/2019 manobody.pdf

    152/152

    soenergy (default=0.0) . . . . . . scissor operator energy [eV]matsh (default=all) ........number of G-shell for the GG

    wfnsh (default=all) . . . . . plane waves shells for the nk(G)

    nbands (default=all) last band included in the calculationlomo (default=1) . . . . . first band included in the calculationomegai (default=0.0) ......... frequency initial point [eV]omegae (default=10.0) . . . . . . . . . . frequency end point [eV]domega (default=0.01) . . . . . . . . . . . . . . . frequency step [eV]

    broad (default=domega) . . . . . . . lorentzian broadening [eV]haydock .............................. iterative diagonalization schemeniter (default=100) . . . . . . . . . iterations for haydock scheme

    The Bethe-Salpeter Equation Francesco Sottile