Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds,...

111
Manifolds, Geometry, and Robotics Frank C. Park Seoul National University

Transcript of Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds,...

Page 1: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Manifolds, Geometry, and Robotics

Frank C. ParkSeoul National University

Page 2: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Ideas and methods from differential geometry and Lie groups have played a crucial role in establishing the scientific foundations of robotics, and more than ever, influence the way we think about and formulate the latest problems in robotics. In this talk I will trace some of this history, and also highlight some recent developments in this geometric line of inquiry. The focus for the most part will be on robot mechanics, planning, and control, but some results from vision and image analysis, and human modeling, will be presented. I will also make the case that many mainstream problems in robotics, particularly those that at some stage involve nonlinear dimension reduction techniques or some other facet of machine learning, can be framed as the geometric problem of mapping one curved space into another, so as to minimize some notion of distortion. ARiemannian geometric framework will be developed for this distortion minimization problem, and its generality illustrated via examples from robot design to manifold learning.

Abstract

Page 3: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Outline A survey of differential geometric methods in robotics:โƒA retrospective critiqueโƒ Some recent results and open problems

Problems and case studies drawn from:โƒ Kinematics and path planningโƒDynamics and motion optimizationโƒVision and image analysisโƒHuman and robot modelingโƒMachine learning

Page 4: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Roger Brockett, Shankar Sastry, Mark Spong, Dan Koditschek, Matt Mason, John Baillieul, PS Krishnaprasad, Tony Bloch, Josip Loncaric, David Montana, Brad Paden, Vijay Kumar, Mike McCarthy, Richard Murray, Zexiang Li, Jean-Paul Laumond, Antonio Bicchi, Joel Burdick, Elon Rimon, Greg Chirikjian, Howie Choset, Kevin Lynch, Todd Murphey, Andreas Mueller, Milos Zefran, Claire Tomlin, Andrew Lewis, Francesco Bullo, Naomi Leonard, Kristi Morgansen, Rob Mahony, Ross Hatton, and many moreโ€ฆ

Contributors

Page 5: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

A

Shortest path on globe โ‰  shortest path on mapNorth and south poles map to lines of latitude

Why geometry matters

Page 6: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

2-D maps galore

Page 7: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

[Example] The average of three points on a circle Cartesian coordinates:

Polar coordinates:

( ) ( ) ( )( )3

132

22

22

22

22

,:Mean

1,0:C , ,:B , ,:A โˆ’

( ) ( ) ( )( )ฯ€

ฯ€ฯ€ฯ€

65

21

41

47

,1:Mean

,1: , ,1:B , ,1:A C

A

BC

Intrinsic meanExtrinsic mean

Why geometry matters

-

Result depends on the local coordinates used

Page 8: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Determinant not preserved

Determinant preserved

Arithmetic mean

[Example] The average of two symmetric positive-definite matrices:

Intrinsic mean

Why geometry matters

๐‘ƒ๐‘ƒ0 = 1 00 7 , ๐‘ƒ๐‘ƒ1 = 7 0

0 1

๐‘ƒ๐‘ƒ = 4 00 4

๐‘ƒ๐‘ƒ๐‘ƒ = 7 00 7 ๐‘ƒ๐‘ƒ = ๐‘Ž๐‘Ž ๐‘๐‘

๐‘๐‘ ๐‘๐‘

Page 9: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Nigel: The numbers all go to eleven. Look, right across the board, eleven, eleven, eleven and...

Marty: Oh, I see. And most amps go up to ten?Nigel: Exactly.Marty: Does that mean it's louder? Is it any louder?Nigel: Well, it's one louder, isn't it? It's not ten. You

see, most blokes, you know, will be playing at ten. You're on ten here, all the way up, all the way up, all the way up, you're on ten on your guitar. Where can you go from there? Where?

Marty: I don't know.Nigel: Nowhere. Exactly. What we do is, if we need that

extra push over the cliff, you know what we do?Marty: Put it up to eleven.Nigel: Eleven. Exactly. One louder.

This is Spinal Tap (1984, Rob Reiner)

Marty: Why don't you make ten a little louder, make that the top number and make that a little louder?

Nigel: These go to eleven.

Page 10: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

The unit two-sphere is parametrized asSpherical coordinates:

Freshman calculus revisited

๐‘ฅ๐‘ฅ2 + ๐‘ฆ๐‘ฆ2 + ๐‘ง๐‘ง2 = 1.

x = cos ๐œƒ๐œƒ sin๐œ™๐œ™y = sin ๐œƒ๐œƒ sin๐œ™๐œ™๐‘ง๐‘ง = cos ๐œ™๐œ™

Given a curve on the sphere, its incremental arclength is

(๐‘ฅ๐‘ฅ ๐‘ก๐‘ก ,๐‘ฆ๐‘ฆ ๐‘ก๐‘ก , ๐‘ง๐‘ง ๐‘ก๐‘ก )

๐‘‘๐‘‘๐‘ ๐‘ 2 = ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 + ๐‘‘๐‘‘๐‘ฆ๐‘ฆ2 + ๐‘‘๐‘‘๐‘ง๐‘ง2 = ๐‘‘๐‘‘๐œ™๐œ™2 + sin2 ๐œ™๐œ™ ๐‘‘๐‘‘๐œƒ๐œƒ2

Page 11: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Length of

Area of

Freshman calculus revisited

= ๏ฟฝ๐ด๐ด

sin ๐œ™๐œ™ ๐‘‘๐‘‘๐œ™๐œ™ ๐‘‘๐‘‘๐œƒ๐œƒ

= ๏ฟฝ0

๐‘‡๐‘‡๏ฟฝฬ‡๏ฟฝ๐œ™2 + ๏ฟฝฬ‡๏ฟฝ๐œƒ2sin ๐œ™๐œ™ ๐‘‘๐‘‘๐‘ก๐‘ก

Calculating lengths and areas on the sphere using spherical coordinates:

Page 12: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Manifolds

Manifold โ„ณ

local coordinates x

*Invertible with a differentiable inverse. Essentialy, one can be smoothly deformed into the other.

A differentiable manifold is a space that is locally diffeomorphic* to Euclidean space (e.g., a multidimensional surface)

Page 13: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Riemannian metrics

๐‘‘๐‘‘๐‘ ๐‘ 2 = ๏ฟฝ๐‘–๐‘–

๏ฟฝ๐‘—๐‘—

๐‘”๐‘”๐‘–๐‘–๐‘—๐‘— ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘–๐‘–๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘—๐‘—

= ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘‡๐‘‡๐บ๐บ ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

A Riemannian metric is an inner product defined on each tangent space that varies smoothly over โ„ณ

๐บ๐บ ๐‘ฅ๐‘ฅ โˆˆ โ„๐‘š๐‘šร—๐‘š๐‘š

symmetric positive-definite

Page 14: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Calculus on Riemannian manifolds

= ๏ฟฝโ‹ฏ๏ฟฝ๐’ฑ๐’ฑ

det ๐บ๐บ(๐‘ฅ๐‘ฅ) ๐‘‘๐‘‘๐‘ฅ๐‘ฅ1 โ‹ฏ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘š๐‘š

Volume of a subset ๐’ฑ๐’ฑ of โ„ณ:Volume = โˆซ๐’ฑ๐’ฑ ๐‘‘๐‘‘๐‘‘๐‘‘

= ๏ฟฝ0

๐‘‡๐‘‡๏ฟฝฬ‡๏ฟฝ๐‘ฅ ๐‘ก๐‘ก ๐‘‡๐‘‡๐บ๐บ ๐‘ฅ๐‘ฅ ๐‘ก๐‘ก ๏ฟฝฬ‡๏ฟฝ๐‘ฅ ๐‘ก๐‘ก ๐‘‘๐‘‘๐‘ก๐‘ก

Length of a curve ๐ถ๐ถ on โ„ณ:

Length = ๏ฟฝ๐ถ๐ถ๐‘‘๐‘‘๐‘ ๐‘ 

Page 15: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Lie groups A manifold that is also an algebraic group is a Lie group The tangent space at the identity is the Lie algebra โ„Š. The exponential map exp: โ„Š โ†’ ๐’ข๐’ข

acts as a set of local coordinates for ๐’ข๐’ข [Example] GL(n), the set of ๐‘›๐‘› ร— ๐‘›๐‘›

nonsingular real matrices, is a Lie group under matrix multiplication. Its Lie algebra gl(n) is โ„๐‘›๐‘›ร—๐‘›๐‘›.

Page 16: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Mappings may be in complicated parametric form Sometimes the manifolds are unknown or changing Riemannian metrics must be specified on one or both spaces Noise models on manifolds may need to be defined

Robots and manifolds

๐‘‘๐‘‘๐‘ ๐‘ 2 = ๏ฟฝ๐‘–๐‘–

๏ฟฝ๐‘—๐‘—

๐‘”๐‘”๐‘–๐‘–๐‘—๐‘— ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘–๐‘–๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘—๐‘—

Joint Configuration Space

local coordinates

forward kinematics

Task Space

local coordinates

๐‘‘๐‘‘๐‘ ๐‘ 2 = ๏ฟฝ๐›ผ๐›ผ

๏ฟฝ๐›ฝ๐›ฝ

โ„Ž๐›ผ๐›ผ๐›ฝ๐›ฝ ๐‘ฆ๐‘ฆ ๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐›ผ๐›ผ๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐›ฝ๐›ฝ

Page 17: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Kinematics and Path Planning

Page 18: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Minimal geodesics on Lie groupsLet ๐’ข๐’ข be a matrix Lie group with Lie algebra โ„Š, and let โŸจ โ‹… , โ‹… โŸฉ be an inner product on โ„Š. The (left-invariant) minimal geodesic between ๐‘‹๐‘‹0,๐‘‹๐‘‹1 โˆˆ ๐’ข๐’ข can be found by solving the following optimal control problem:

min๐‘ˆ๐‘ˆ ๐‘ก๐‘ก

๏ฟฝ0

1โŸจ๐‘ˆ๐‘ˆ ๐‘ก๐‘ก ,๐‘ˆ๐‘ˆ ๐‘ก๐‘ก โŸฉ๐‘‘๐‘‘๐‘ก๐‘ก

Subject to ๏ฟฝฬ‡๏ฟฝ๐‘‹ = ๐‘‹๐‘‹๐‘ˆ๐‘ˆ,๐‘‹๐‘‹(๐‘ก๐‘ก) โˆˆ ๐’ข๐’ข, ๐‘ˆ๐‘ˆ(๐‘ก๐‘ก) โˆˆ โ„Š, with boundary condition ๐‘‹๐‘‹ 0 = ๐‘‹๐‘‹0,๐‘‹๐‘‹ 1 = ๐‘‹๐‘‹1.

Page 19: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Minimal geodesics on Lie groupsFor the choice โŸจ๐‘ˆ๐‘ˆ,๐‘‘๐‘‘โŸฉ = Tr(๐‘ˆ๐‘ˆ๐‘‡๐‘‡๐‘‘๐‘‘) , the solution must satisfy

๏ฟฝฬ‡๏ฟฝ๐‘‹ = ๐‘‹๐‘‹๐‘ˆ๐‘ˆ๏ฟฝฬ‡๏ฟฝ๐‘ˆ = ๐‘ˆ๐‘ˆ๐‘‡๐‘‡๐‘ˆ๐‘ˆ โˆ’ ๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ๐‘‡๐‘‡ = ๐‘ˆ๐‘ˆ๐‘‡๐‘‡ ,๐‘ˆ๐‘ˆ .

If the objective function is replaced by โˆซ01 ๏ฟฝฬ‡๏ฟฝ๐‘ˆ , ๏ฟฝฬ‡๏ฟฝ๐‘ˆ ๐‘‘๐‘‘๐‘ก๐‘ก, the

solution must satisfy ๏ฟฝฬ‡๏ฟฝ๐‘‹ = ๐‘‹๐‘‹๐‘ˆ๐‘ˆ and ๏ฟฝโƒ›๏ฟฝ๐‘ˆ = ๐‘ˆ๐‘ˆ๐‘‡๐‘‡, ๏ฟฝฬˆ๏ฟฝ๐‘ˆ .

Minimal geodesics, and minimum acceleration paths, can be found on various Lie groups by solving the above two-point boundary value problems. For SO(n) and SE(n) the minimal geodesics are particularly simple to characterize.

Page 20: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Distance metrics on SE(3)

๐‘‘๐‘‘ ๐‘‹๐‘‹1,๐‘‹๐‘‹2 = distance between ๐‘‹๐‘‹1 and ๐‘‹๐‘‹2

Page 21: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Distance metrics on SE(3)

If ๐‘‘๐‘‘ ๐‘‹๐‘‹1๐‘ƒ,๐‘‹๐‘‹2๐‘ƒ = ๐‘‘๐‘‘ ๐‘ˆ๐‘ˆ๐‘‹๐‘‹1,๐‘ˆ๐‘ˆ๐‘‹๐‘‹2 =๐‘‘๐‘‘ ๐‘‹๐‘‹1,๐‘‹๐‘‹2 for all U โˆˆ ๐‘†๐‘†๐‘†๐‘†(3),๐‘‘๐‘‘ ๏ฟฝ ,๏ฟฝ is a left-invariant distance metric.

Page 22: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Distance metrics on SE(3)

If ๐‘‘๐‘‘ ๐‘‹๐‘‹1๐‘ƒ,๐‘‹๐‘‹2๐‘ƒ = ๐‘‘๐‘‘ ๐‘‹๐‘‹1๐‘‘๐‘‘,๐‘‹๐‘‹2๐‘‘๐‘‘ =๐‘‘๐‘‘ ๐‘‹๐‘‹1,๐‘‹๐‘‹2 for all V โˆˆ ๐‘†๐‘†๐‘†๐‘†(3),๐‘‘๐‘‘ ๏ฟฝ ,๏ฟฝ is a right-invariant distance metric.

Page 23: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Distance metrics on SE(3)

If ๐‘‘๐‘‘ ๐‘‹๐‘‹1๐‘ƒ,๐‘‹๐‘‹2๐‘ƒ = ๐‘‘๐‘‘ ๐‘ˆ๐‘ˆ๐‘‹๐‘‹1๐‘‘๐‘‘,๐‘ˆ๐‘ˆ๐‘‹๐‘‹2๐‘‘๐‘‘ =๐‘‘๐‘‘ ๐‘‹๐‘‹1,๐‘‹๐‘‹2 for all U, V โˆˆ ๐‘†๐‘†๐‘†๐‘†(3),๐‘‘๐‘‘ ๏ฟฝ ,๏ฟฝ is a bi-invariant distance metric.

Page 24: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Bi-invariant metrics on SO(3) exist: some simple ones are๐‘‘๐‘‘ ๐‘…๐‘…1,๐‘…๐‘…2 = || log ๐‘…๐‘…1๐‘‡๐‘‡๐‘…๐‘…2 || = ๐œ™๐œ™ โˆˆ [0,๐œ‹๐œ‹]

๐‘‘๐‘‘ ๐‘…๐‘…1,๐‘…๐‘…2 = ๐‘…๐‘…1 โˆ’ ๐‘…๐‘…2 = 3 โˆ’ ๐‘‡๐‘‡๐‘‡๐‘‡(๐‘…๐‘…1๐‘‡๐‘‡๐‘…๐‘…2) = 1 โˆ’ cos ๐œ™๐œ™

No bi-invariant metric exists on SE(3) Left- and right-invariant metrics exist on SE(3): a simple

left-invariant metric is ๐‘‘๐‘‘ ๐‘‹๐‘‹1,๐‘‹๐‘‹2 = ๐‘‘๐‘‘ ๐‘…๐‘…1,๐‘…๐‘…2 + ๐‘๐‘1 โˆ’ ๐‘๐‘2 Any distance metric on SE(3) depends on the choice of

length scale for physical space

Some facts about distance metrics on SE(3)

Page 25: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

(Too) many papers on SE(3) distance metrics have been written! Robots are doing fine even without bi-invariance (but make

sure the metric you use is left-invariant) Notwithstanding J. Duffyโ€™s claims about โ€œThe fallacy of

modern hybrid control theory that is based on โ€œorthogonal complementsโ€ of twist and wrench spaces,โ€ J. Robotic Systems, 1989, hybrid force-position control seems to be working well.

Remarks

Page 26: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

The product-of-exponentials (PoE) formula for open kinematic chains (Brockett 1989) puts on a more sure footing the classical screw-theoretic tools for kinematic modeling and analysis:

๐‘‡๐‘‡ = ๐‘’๐‘’ ๐‘†๐‘†1 ๐œƒ๐œƒ1 โ‹ฏ ๐‘’๐‘’ ๐‘†๐‘†๐‘›๐‘› ๐œƒ๐œƒ๐‘›๐‘›๐‘€๐‘€ Some advantages: no link frames needed, intuitive physical meaning,

easy differentiation, can apply well-known machinery and results of general matrix Lie groups, etc. It is mystifying to me why the PoE formula is not more widely taught

and used, and why people still cling to their Denavit-Hartenbergparameters.

Robot kinematics: modern screw theory

Page 27: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Some relevant robotics textbooksTargeted to upper-level undergraduates, can be complemented by more advanced textbooks like A Mathematical Introduction to Robotic Manpulation (Murray, Li, Sastry) and Mechanics of Robot Manipulation(Mason). Free PDF available athttp://modernrobotics.org

Page 28: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Closed chain kinematics

Differential geometric methods have been especially useful in their analysis: representing the forward kinematics ๐‘“๐‘“ ๐‘€๐‘€,๐‘”๐‘” โ†’ ๐‘๐‘,โ„Ž as a mapping between Riemannian manifolds, manipulabilityand singularity analysis can be performed via analysis of the pullback form (in local coordinates, ๐ฝ๐ฝ๐‘‡๐‘‡๐ป๐ป๐ฝ๐ฝ๐บ๐บโˆ’1).

Closed chains typically have curved configuration spaces, and can be under- or over-actuated. Their singularity behavior is also more varied and subtle.

Page 29: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Dmitry Berenson et al, "Manipulation planning on constraint manifolds," ICRA 2009.

Path planning on constraint manifolds

Path planning for robots subject to holonomic constraints (e.g., closed chains, contact conditions). The configuration space is a curved manifold whose structure we do not exactly know in advance.

Page 30: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

A simple RRT sampling-based algorithm

Start node

Goal node

Random node

Constraint manifold

Page 31: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

A simple RRT sampling-based algorithm

Start node

Goal node

Nearestneighbornode

Random node

Constraint manifold

Page 32: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Start node

Goal node

Nearestneighbornode

Random node

Constraint manifold

A simple RRT sampling-based algorithm

Page 33: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Start node

Goal node

qs4reached

qgreached

Constraint manifold

A simple RRT sampling-based algorithm

Page 34: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Tangent Bundle RRT (Kim et al 2016)

Tangent Bundle RRT: An RRT algorithm for planning on curved configuration spaces:

- Trees are first propagated on the tangent bundle- Local curvature information is used to grow the tangent space

trees to an appropriate size.

Start node

Goal node

New node

Nearest neighbornode

Page 35: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Tangent Bundle RRT

Start node

Goal node

Constraint manifold

Initializing- Start and goal nodes assumed to be on constraint manifold.- Tangent spaces are constructed at start and goal nodes.

Page 36: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Tangent Bundle RRT

Start node

Goal node

Random node

Constraint manifold

New node

New node

Random sampling on tangent spaces:- Generate a random sample node on a tangent space.- Find the nearest neighbor node in the tangent space and take a

single step of fixed size toward random target node.- Find the nearest neighbor node on the opposite tree and then

extend tree via tangent space.

Page 37: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Tangent Bundle RRT

Goal node

Random node

Constraint manifold

Start node

New node

New node

Creating a new tangent space:- When the distance to the constraint manifold exceeds a certain

threshold, project the extended node to the constraint manifold and create a new bounded tangent space.

Page 38: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Tangent Bundle RRT

Start node

Goal node

New node

Nearest neighbornode

Select a tangent space using a size-biased function (roulette selection): For each tangent space, assigned a fitness value that is- proportional to the size of the tangent space and,- Inversely proportional to the number of nodes belonging to the

tangent space.

Page 39: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Tangent bundle RRTConstructing a bounded tangent space: Use local curvature information to find the

principal basis of the tangent space, and to bound the tangent space domain.

Principal curvatures and principal vectors can be computed from the second fundamental form of the constraint manifold (details need to be worked out if there is more than one normal direction)

If the principal curvatures are close to zero, the manifold is nearly flat, and thus relatively larger steps can be taken along the corresponding principal directions

Page 40: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Tangent bundle RRTQ: Is the extra computation and bookkeeping worth it?A: Itโ€™s highly problem-dependent, but for higher-dimensional systems, it seems so.

Page 41: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Planning on Foliations

Page 42: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Planning on Foliations

Page 43: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Planning on Foliations

Page 44: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Planning on Foliations

Page 45: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Planning on Foliations

Page 46: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Planning on Foliations

Page 47: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Release posture

Re-grasp posture

Jump motion

Planning on Foliations

Page 48: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Leaf

Planning on Foliations

Page 49: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Planning on Foliations

Page 50: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Planning on Foliations

Foliation, โ„ฑ

Page 51: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Planning on Foliations

Connected path

Jump path

Connected path

Page 52: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Planning on Foliations (J Kim et al 2016)

Page 53: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Planning on Foliations

Page 54: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Dynamics and Motion Optimization

Page 55: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

B. Armstrong, O. Khatib, J. Burdick, โ€œThe explicit dynamic model and inertial parameters of the Puma 560 Robot arm,โ€ Proc. ICRA, 1986.

PUMA 560 dynamics equations

Page 56: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

PUMA 560 dynamics equations

Page 57: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

PUMA 560 dynamics equations (page 2)

Page 58: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

PUMA 560 dynamics equations (page 3)

Page 59: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

- Recursive formulations of Newton-Euler dynamics already derived in early 1980s.

- Recursive formulations based on screw theory (Featherstone), spatial operator algebra (Rodriguez and Jain), Lie group concepts.

- Initialization: ๐‘‘๐‘‘0 = ๏ฟฝฬ‡๏ฟฝ๐‘‘0 = ๐น๐น๐‘›๐‘›+1 = 0- For ๐‘–๐‘– = 1 to ๐‘›๐‘› do:

- ๐‘‡๐‘‡๐‘–๐‘–โˆ’1,๐‘–๐‘– = ๐‘€๐‘€๐‘–๐‘–๐‘’๐‘’S๐‘–๐‘–๐‘ž๐‘ž๐‘–๐‘–- ๐‘‘๐‘‘๐‘–๐‘– = Ad๐‘‡๐‘‡๐‘–๐‘–,๐‘–๐‘–โˆ’1 ๐‘‘๐‘‘๐‘–๐‘–โˆ’1 + ๐‘†๐‘†๐‘–๐‘– ๏ฟฝฬ‡๏ฟฝ๐‘ž๐‘–๐‘–- ๏ฟฝฬ‡๏ฟฝ๐‘‘๐‘–๐‘– = ๐‘†๐‘†๐‘–๐‘–๏ฟฝฬˆ๏ฟฝ๐‘ž๐‘–๐‘– + ๐ด๐ด๐‘‘๐‘‘๐‘‡๐‘‡๐‘–๐‘–,๐‘–๐‘–โˆ’1 ๏ฟฝฬ‡๏ฟฝ๐‘‘๐‘–๐‘–โˆ’1 + [Ad๐‘‡๐‘‡๐‘–๐‘–,๐‘–๐‘–โˆ’1 ๐‘‘๐‘‘๐‘–๐‘–โˆ’1 , ๐‘†๐‘†๐‘–๐‘–๏ฟฝฬ‡๏ฟฝ๐‘ž๐‘–๐‘–]

- For ๐‘–๐‘– = ๐‘›๐‘› to 1 do: - ๐น๐น๐‘–๐‘– = Ad๐‘‡๐‘‡๐‘–๐‘–,๐‘–๐‘–โˆ’1

โˆ— ๐น๐น๐‘–๐‘–+1 + ๐บ๐บ๐‘–๐‘–๏ฟฝฬ‡๏ฟฝ๐‘‘๐‘–๐‘–ad๐‘‰๐‘‰๐‘–๐‘–โˆ— ๐บ๐บ๐‘–๐‘–๐‘‘๐‘‘๐‘–๐‘–

- ๐œ๐œ๐‘–๐‘– = ๐‘†๐‘†๐‘–๐‘–๐‘‡๐‘‡๐น๐น๐‘–๐‘–

Recursive dynamics to the rescue

Page 60: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

- Finite difference approximations of gradients (and Hessians) often lead to poor convergence and numerical instabilities.

- Derivation of recursive algorithms for analytic gradients and Hessians using Lie group operators and transformations:

The importance of analytic gradients

Page 61: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

J. Bobrow et al, ICRA Video Proceedings, 1999.

Maximum payload lifting

Page 62: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Vision processing, object recognition, classification

Sensing (joint, force, tactile, laser, sonar, etc.)

Localization/SLAM Manipulation planning Control (arms, legs, torso,

hands, wheels) Communication Task scheduling and

planning

Things a robot must do (in parallel)Robots are being asked to simultaneously do more and more with only limited resources available for computation, communication, memory, etc.

Control laws and trajectories need to be designed in a way that minimizes the use of such resources.

Page 63: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods
Page 64: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Control depends on both time and state Simplest control is a constant one Cost of control implementation (โ€œattentionโ€) is

proportional to the rate at which the control changes with respect to state and time. A control that requires little attention is one that is robust

to discretization of time and state

Measuring the cost of control

Page 65: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Given system ๏ฟฝฬ‡๏ฟฝ๐‘ฅ = ๐‘“๐‘“(๐‘ฅ๐‘ฅ,๐‘ข๐‘ข, ๐‘ก๐‘ก), consider the following controller cost:

๏ฟฝ๐œ•๐œ•๐‘ข๐‘ข๐œ•๐œ•๐‘ฅ๐‘ฅ

2

+๐œ•๐œ•๐‘ข๐‘ข๐œ•๐œ•๐‘ก๐‘ก

2

dx dt

- A multi-dimensional calculus of variations problem (integral over both space and time)

- Existence of solutions not always guaranteed

Brockettโ€™s attention functional

Page 66: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Assuming control of the form ๐‘ข๐‘ข = ๐พ๐พ ๐‘ก๐‘ก ๐‘ฅ๐‘ฅ + ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก and state space integration is bounded, a minimum attention LQR control law* can be formulated as a finite-dimensional optimization problem:

min๐‘ƒ๐‘ƒ๐‘“๐‘“,๐‘„๐‘„>0

๐ฝ๐ฝ๐‘Ž๐‘Ž๐‘ก๐‘ก๐‘ก๐‘ก = ๏ฟฝ๐‘ก๐‘ก0

๐‘ก๐‘ก๐‘“๐‘“๐พ๐พ(๐‘ก๐‘ก) 2 + ๏ฟฝฬ‡๏ฟฝ๐‘ขโˆ— โˆ’ ๐พ๐พ(๐‘ก๐‘ก) ๏ฟฝฬ‡๏ฟฝ๐‘ฅโˆ— 2๐‘‘๐‘‘๐‘ก๐‘ก

๐‘ข๐‘ข ๐‘ฅ๐‘ฅ, ๐‘ก๐‘ก = ๐พ๐พ ๐‘ก๐‘ก ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅโˆ— ๐‘ก๐‘ก + ๐‘ข๐‘ขโˆ— ๐‘ก๐‘ก๐พ๐พ ๐‘ก๐‘ก = โˆ’๐‘…๐‘…โˆ’1๐ต๐ต๐‘‡๐‘‡ ๐‘ก๐‘ก ๐‘ƒ๐‘ƒ(๐‘ก๐‘ก)

โˆ’๏ฟฝฬ‡๏ฟฝ๐‘ƒ = ๐‘ƒ๐‘ƒ๐ด๐ด ๐‘ก๐‘ก + ๐ด๐ด๐‘‡๐‘‡ ๐‘ก๐‘ก โˆ’ ๐‘ƒ๐‘ƒ๐ต๐ต ๐‘ก๐‘ก ๐‘…๐‘…โˆ’1๐ต๐ต๐‘‡๐‘‡ ๐‘ก๐‘ก ๐‘ƒ๐‘ƒ + ๐‘„๐‘„,๐‘ƒ๐‘ƒ ๐‘ก๐‘ก๐‘“๐‘“ = ๐‘ƒ๐‘ƒ๐‘“๐‘“

x*,u* are given, e.g., as the outcome of some offline optimization procedure or supplied by the user.

An approximate solution

Page 67: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Numerical experiments for a 2-dof arm catching a ball while tracking a minimum torque change trajectory:

Feedback gains increase with timeFeedforward inputs decrease with time

Feedback gain Feedforward input

Example: Robot ball catching

Page 68: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Vision and Image Analysis

Page 69: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

๐ด๐ด,๐ต๐ต,๐‘‹๐‘‹,๐‘Œ๐‘Œ can be elements of ๐‘†๐‘†๐‘†๐‘† 3 or ๐‘†๐‘†๐‘†๐‘† 3

๐ด๐ด,๐ต๐ต are obtained from sensor measurements

๐‘‹๐‘‹,๐‘Œ๐‘Œ are unknowns to be determined.

Two-frame sensor calibration

Page 70: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Two-frame sensor calibration

Given ๐‘๐‘ measurement pairs

Find the optimal pair that minimizes the fitting criterion.

Page 71: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Two-frame sensor calibration

โ€ข are noisy; there does not exist any

that perfectly satisfies

โ€ข Determine that minimizes

noisenoise

Page 72: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Multimodal image volume registration: Find optimal transformation that maximizes the mutual information between two image volumes.

Multimodal image registration

Detailed tissue structure provided by MRI (upper left) is combined with abnormal regions detected by PET (upper right). The red regions in the fused image represent the anomalous regions.

Page 73: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Problem definition: ๐‘‡๐‘‡โˆ— = arg max๐‘‡๐‘‡

๐ผ๐ผ(๐ด๐ด ๐‘‡๐‘‡๐‘ฅ๐‘ฅ ,๐ต๐ต ๐‘ฅ๐‘ฅ ) where T is an element of some transformation group (SO(3), SE(3),

SL(3) are widely used). ๐‘ฅ๐‘ฅ โˆˆ โ„œ3 are the volume coordinates, A,B are volume data, ๐ผ๐ผ โ‹…,โ‹… is the mutual information criterion,

Evaluating the objective function is numerically expensive and analytic gradients are not available. Instead, it is common to resort to direct search methods like the Nelder-Mead algorithm.

Multimodal image registration

Page 74: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

The above reduce to an optimization problem on matrix Lie groups: For the n-frame sensor calibration problem, the objective function reduces to

the form โˆ‘๐‘–๐‘– ๐‘‡๐‘‡๐‘‡๐‘‡(๐‘‹๐‘‹๐ด๐ด๐‘–๐‘–๐‘‹๐‘‹๐‘‡๐‘‡๐ต๐ต๐‘–๐‘– โˆ’ ๐‘‹๐‘‹๐ถ๐ถ๐‘–๐‘–). Analytic gradients and Hessians are available, and steepest descent along minimal geodesics seems to work quite well.

In the multimodal image registration problem, Nelder-Mead can be generalized to the group by using minimal geodesics as the edges of the simplex.

There is a well-developed literature on optimization on Lie groups, including generalizations of common vector space algorithms to matrix Lie groups and manifolds.

Optimization on matrix Lie groups

Page 75: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Each voxel is a 3D multivariate normal distribution. The mean indicates the position, while the covariance indicates the direction of diffusion of water molecules. Segmentation of a DTI image requires a metric on the manifold of multivariate Gaussian distributions.

Diffusion tensor image segmentation

Page 76: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Using the standard approach of calculating distances on the means and covariances separately, and summing the two for the total distance, results in dist(a,b) = dist(b,c), which is unsatisfactory.

In this example, water molecules are able to move more easily in the x-axis direction. Therefore, diffusion tensors (b) and (c) are closer than (a) and (b)

Geometry of DTI segmentation

Page 77: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

An n-dimensional statistical manifold โ„ณ is a set of probability distributions parametrized by some smooth, continuously-varying parameter ๐œƒ๐œƒ โˆˆ โ„๐‘›๐‘›.

๐‘ฅ๐‘ฅ

๐‘ฅ๐‘ฅ

๐œƒ๐œƒ1 โˆˆ โ„๐‘›๐‘›๐œƒ๐œƒ2 โˆˆ โ„๐‘›๐‘›

๐‘๐‘(๐‘ฅ๐‘ฅ|๐œƒ๐œƒ1)

๐‘๐‘(๐‘ฅ๐‘ฅ|๐œƒ๐œƒ2)

(โ„ณ,๐‘”๐‘”)โ„๐‘›๐‘›

Geometry of statistical manifolds

Page 78: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

The Fisher information defines a Riemannian metric ๐‘”๐‘”on a statistical manifold โ„ณ:

๐‘”๐‘”๐‘–๐‘–๐‘—๐‘— ๐œƒ๐œƒ = ๐”ผ๐”ผ๐‘ฅ๐‘ฅ ~๐‘๐‘(.|๐œƒ๐œƒ)๐œ•๐œ• log ๐‘๐‘ ๐‘ฅ๐‘ฅ ๐œƒ๐œƒ

๐œ•๐œ•๐œƒ๐œƒ๐‘–๐‘–๐œ•๐œ• log ๐‘๐‘ ๐‘ฅ๐‘ฅ ๐œƒ๐œƒ

๐œ•๐œ•๐œƒ๐œƒ๐‘—๐‘—

Connection to KL divergence:๐ท๐ท๐พ๐พ๐พ๐พ ๐‘๐‘ . ๐œƒ๐œƒ ||๐‘๐‘ . ๐œƒ๐œƒ + ๐‘‘๐‘‘๐œƒ๐œƒ =

12๐‘‘๐‘‘๐œƒ๐œƒ๐‘‡๐‘‡๐‘”๐‘” ๐œƒ๐œƒ ๐‘‘๐‘‘๐œƒ๐œƒ + ๐‘œ๐‘œ( ๐‘‘๐‘‘๐œƒ๐œƒ 2)

Geometry of statistical manifolds

Page 79: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

The manifold of Gaussian distributions ๐’ฉ๐’ฉ ๐‘›๐‘›๐’ฉ๐’ฉ ๐‘›๐‘› = ๐œƒ๐œƒ = ๐œ‡๐œ‡, ฮฃ ๐œ‡๐œ‡ โˆˆ โ„๐‘›๐‘›,ฮฃ โˆˆ ๐’ซ๐’ซ(๐‘›๐‘›)} , where ๐’ซ๐’ซ ๐‘›๐‘› = ๐‘ƒ๐‘ƒ โˆˆ โ„๐‘›๐‘›ร—๐‘›๐‘› ๐‘ƒ๐‘ƒ = ๐‘ƒ๐‘ƒ๐‘‡๐‘‡ ,๐‘ƒ๐‘ƒ โ‰ป 0}

Fisher information metric on ๐’ฉ๐’ฉ ๐‘›๐‘›๐‘‘๐‘‘๐‘ ๐‘ 2 = ๐‘‘๐‘‘๐œƒ๐œƒ๐‘‡๐‘‡๐‘”๐‘” ๐œƒ๐œƒ ๐‘‘๐‘‘๐œƒ๐œƒ = ๐‘‘๐‘‘๐œ‡๐œ‡๐‘‡๐‘‡ฮฃโˆ’1๐‘‘๐‘‘๐œ‡๐œ‡ +

12๐‘ก๐‘ก๐‘‡๐‘‡ ฮฃโˆ’1๐‘‘๐‘‘ฮฃ 2

Euler-Lagrange equations for geodesics on ๐’ฉ๐’ฉ ๐‘›๐‘›๐‘‘๐‘‘2๐œ‡๐œ‡๐‘‘๐‘‘๐‘ก๐‘ก2

โˆ’ ๐‘‘๐‘‘ฮฃ๐‘‘๐‘‘๐‘ก๐‘กฮฃโˆ’1 ๐‘‘๐‘‘๐œ‡๐œ‡

๐‘‘๐‘‘๐‘ก๐‘ก= 0

๐‘‘๐‘‘2ฮฃ๐‘‘๐‘‘๐‘ก๐‘ก2

+ ๐‘‘๐‘‘๐œ‡๐œ‡๐‘‘๐‘‘๐‘ก๐‘ก

๐‘‘๐‘‘๐œ‡๐œ‡๐‘‡๐‘‡

๐‘‘๐‘‘๐‘ก๐‘กโˆ’ ๐‘‘๐‘‘ฮฃ

๐‘‘๐‘‘๐‘ก๐‘กฮฃโˆ’1 ๐‘‘๐‘‘ฮฃ

๐‘‘๐‘‘๐‘ก๐‘ก= 0

Geometry of Gaussian distributions

Page 80: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Geodesic Path on ๐’ฉ๐’ฉ 2

๐œ‡๐œ‡0 = 00 , ฮฃ0 = 1 0

0 0.1 , ๐œ‡๐œ‡1 = 11 , ฮฃ1 = 0.1 0

0 1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Geometry of Gaussian distributions

Page 81: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Fisher information metric on ๐’ฉ๐’ฉ ๐‘›๐‘› with fixed mean ๏ฟฝฬ…๏ฟฝ๐œ‡๐‘‘๐‘‘๐‘ ๐‘ 2 =

12๐‘ก๐‘ก๐‘‡๐‘‡ ฮฃโˆ’1๐‘‘๐‘‘ฮฃ 2

Affine-invariant metric on ๐“Ÿ๐“Ÿ ๐’๐’ Invariant under general linear group ๐บ๐บ๐บ๐บ(๐‘›๐‘›) action

ฮฃ โ†’ ๐‘†๐‘†๐‘‡๐‘‡ฮฃ๐‘†๐‘†, ๐‘†๐‘† โˆˆ ๐บ๐บ๐บ๐บ ๐‘›๐‘›which implies coordinate invariance. Closed-form geodesic distance

๐‘‘๐‘‘๐’ซ๐’ซ(๐‘›๐‘›) ฮฃ1, ฮฃ2 = ๏ฟฝ๐‘–๐‘–=1

๐‘›๐‘›

(log ๐œ†๐œ†๐‘–๐‘–(ฮฃ1โˆ’1ฮฃ2))21/2

Restriction to covariances

Page 82: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Using covarianceand Euclidean distance Using MND distance

Results of segmentation for brain DTI

Page 83: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Human and Robot Model Identification

Page 84: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Need to identify mass-inertial parameters ฮฆ.ฮฆ is linear with respect to the

dynamics.

Inertial parameter identificationDynamics:

๏ฟฝฬ‚๏ฟฝ๐œ = ๐œ๐œ โˆ’ ๐ฝ๐ฝ๐‘‡๐‘‡ ๐‘ž๐‘ž ๐น๐น๐‘’๐‘’๐‘ฅ๐‘ฅ๐‘ก๐‘ก= ๐‘€๐‘€ ๐‘ž๐‘ž,ฮฆ ๏ฟฝฬˆ๏ฟฝ๐‘ž + ๐‘๐‘ ๐‘ž๐‘ž, ๏ฟฝฬ‡๏ฟฝ๐‘ž,ฮฆ

= ฮ“ ๐‘ž๐‘ž, ๏ฟฝฬ‡๏ฟฝ๐‘ž, ๏ฟฝฬˆ๏ฟฝ๐‘ž โ‹… ฮฆ

Page 85: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Rigid body mass-inertial properties

๐ผ๐ผ๐‘๐‘ =๐ผ๐ผ๐‘๐‘๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๐ผ๐ผ๐‘๐‘

๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ

๐ผ๐ผ๐‘๐‘๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ ๐ผ๐ผ๐‘๐‘

๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๐ผ๐ผ๐‘๐‘๐‘ฅ๐‘ฅ๐‘ง๐‘ง

๐ผ๐ผ๐‘๐‘๐‘ฆ๐‘ฆ๐‘ง๐‘ง

๐ผ๐ผ๐‘๐‘๐‘ฅ๐‘ฅ๐‘ง๐‘ง ๐ผ๐ผ๐‘๐‘๐‘ฆ๐‘ฆ๐‘ง๐‘ง ๐ผ๐ผ๐‘๐‘๐‘ง๐‘ง๐‘ง๐‘ง

๐‘๐‘

๐‘š๐‘š๏ฟฝโƒ—๏ฟฝ๐‘”

Clearly ๐‘š๐‘š > 0 and ๐ผ๐ผ๐‘๐‘ > 0 The fact that ๐ผ๐ผ๐‘๐‘ > 0 is necessary but

not sufficient: Because mass density is non-negative everywhere, the following must also hold:

๐€๐€๐Ÿ๐Ÿ + ๐€๐€๐Ÿ๐Ÿ > ๐€๐€๐Ÿ‘๐Ÿ‘๐€๐€๐Ÿ๐Ÿ + ๐€๐€๐Ÿ‘๐Ÿ‘ > ๐€๐€๐Ÿ๐Ÿ๐€๐€๐Ÿ‘๐Ÿ‘ + ๐€๐€๐Ÿ๐Ÿ > ๐€๐€๐Ÿ๐Ÿ

where ๐œ†๐œ†1, ๐œ†๐œ†2, ๐œ†๐œ†3 are the eigenvalues of ๐ผ๐ผ๐‘๐‘ (so-called triangle inequality relation for rigid body inertias)

Page 86: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Rigid body mass-inertial properties

โ„Ž๐‘๐‘ = ๐‘š๐‘š โ‹… ๐‘๐‘๐‘๐‘

๐ผ๐ผ๐‘๐‘ =๐ผ๐ผ๐‘๐‘๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๐ผ๐ผ๐‘๐‘

๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ

๐ผ๐ผ๐‘๐‘๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ ๐ผ๐ผ๐‘๐‘

๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๐ผ๐ผ๐‘๐‘๐‘ฅ๐‘ฅ๐‘ง๐‘ง

๐ผ๐ผ๐‘๐‘๐‘ฆ๐‘ฆ๐‘ง๐‘ง

๐ผ๐ผ๐‘๐‘๐‘ฅ๐‘ฅ๐‘ง๐‘ง ๐ผ๐ผ๐‘๐‘๐‘ฆ๐‘ฆ๐‘ง๐‘ง ๐ผ๐ผ๐‘๐‘๐‘ง๐‘ง๐‘ง๐‘ง

๐‘๐‘

๐‘๐‘๐‘๐‘๐‘๐‘

๐‘š๐‘š๏ฟฝโƒ—๏ฟฝ๐‘”

For the purposes of dynamic calibration it is more convenient to identify the inertia parameters with respect to a body frame {b}, i.e., the six parameters associated with ๐ผ๐ผ๐‘๐‘ , the three parameters associated with โ„Ž๐‘๐‘, and the mass ๐‘š๐‘š, resulting in a total of 10 parameters, denoted ๐œ™๐œ™ โˆˆ โ„10, per rigid body.

Page 87: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Wensing et al (2017) showed that Traversaroโ€™s sufficiency conditions are equivalent to the following:

๐‘ƒ๐‘ƒ ๐œ™๐œ™ =๐‘†๐‘†๐‘๐‘ โ„Ž๐‘๐‘โ„Ž๐‘๐‘๐‘‡๐‘‡ ๐‘š๐‘š โˆˆ โ„4ร—4

is positive definite (i.e. ๐‘ƒ๐‘ƒ ๐œ™๐œ™ โˆˆ ๐’ซ๐’ซ(4)) , where๐‘†๐‘†๐‘๐‘ = โˆซ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘‡๐‘‡๐œŒ๐œŒ ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘‘๐‘‘ = 1

2๐‘ก๐‘ก๐‘‡๐‘‡ ๐ผ๐ผ๐‘๐‘ โ‹… ๐•๐• โˆ’ ๐ผ๐ผ๐‘๐‘

with ๐œŒ๐œŒ ๐‘ฅ๐‘ฅ the mass density function.

Rigid body mass-inertial properties

Page 88: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Let ๐œ™๐œ™๐‘–๐‘– โˆˆ โ„10 be the inertial parameters for link ๐‘–๐‘–, and ฮฆ = ๐œ™๐œ™1,โ‹ฏ ,๐œ™๐œ™๐‘๐‘ โˆˆ โ„10๐‘๐‘.

Sampling the dynamics at T time instances, the identification problem reduces to a least-squares problem:

๐‘จ๐‘จ โ‹… ๐œฑ๐œฑ = ๐’ƒ๐’ƒ โˆˆ โ„๐‘š๐‘š๐‘‡๐‘‡

where ๐ด๐ด =ฮ“ ๐‘ž๐‘ž(๐‘ก๐‘ก1 , ๏ฟฝฬ‡๏ฟฝ๐‘ž ๐‘ก๐‘ก1 , ๏ฟฝฬˆ๏ฟฝ๐‘ž(๐‘ก๐‘ก1)) โˆˆ โ„๐‘š๐‘šร—10๐‘๐‘

โ‹ฎฮ“ ๐‘ž๐‘ž(๐‘ก๐‘ก๐‘‡๐‘‡ , ๏ฟฝฬ‡๏ฟฝ๐‘ž ๐‘ก๐‘ก๐‘‡๐‘‡ , ๏ฟฝฬˆ๏ฟฝ๐‘ž(๐‘ก๐‘ก๐‘‡๐‘‡)) โˆˆ โ„๐‘š๐‘šร—10๐‘๐‘

=๐‘Ž๐‘Ž1๐‘‡๐‘‡โ‹ฎ

๐‘Ž๐‘Ž๐‘š๐‘š๐‘‡๐‘‡๐‘‡๐‘‡and ๐‘๐‘ =

๏ฟฝฬ‚๏ฟฝ๐œ ๐‘ก๐‘ก1 โˆˆ โ„๐‘š๐‘š

โ‹ฎ๏ฟฝฬ‚๏ฟฝ๐œ(๐‘ก๐‘ก๐‘‡๐‘‡) โˆˆ โ„๐‘š๐‘š

=๐‘๐‘1โ‹ฎ

๐‘๐‘๐‘š๐‘š๐‘‡๐‘‡

๐›ท๐›ท should also satisfy๐‘ท๐‘ท ๐“๐“๐’Š๐’Š > ๐ŸŽ๐ŸŽ , ๐’Š๐’Š = ๐Ÿ๐Ÿ,โ‹ฏ ,๐‘ต๐‘ต.

Inertial parameter identification

Page 89: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

ฮฆโ„ณ๐‘›๐‘› โ‰ƒ ๐’ซ๐’ซ 4 ๐‘›๐‘›

โ„10๐‘›๐‘›

โ„‹2 โ„‹3

โ„‹1 โ„‹๐‘š๐‘š๐‘š๐‘š

Find ฮฆ in โ„ณ๐‘›๐‘› โ‰ƒ ๐’ซ๐’ซ 4 ๐‘›๐‘› closest to each of the hyperplanes โ„‹๐‘–๐‘– =๐‘ฅ๐‘ฅ โˆถ ๐‘Ž๐‘Ž๐‘–๐‘–๐‘‡๐‘‡๐‘ฅ๐‘ฅ = ๐‘๐‘๐‘–๐‘– . Implies the need for a distance metric ๐‘‘๐‘‘(โ‹…,โ‹…) on ฮฆ.

Geometry of ๐‘จ๐‘จ โ‹… ๐œฑ๐œฑ = ๐’ƒ๐’ƒ

minฮฆ, ๏ฟฝฮฆ๐‘–๐‘– i=1

mk๏ฟฝ๐‘–๐‘–=1

๐‘š๐‘š๐‘š๐‘š

๐‘ค๐‘ค๐‘–๐‘– โ‹… ๐‘‘๐‘‘ ฮฆ, ๏ฟฝฮฆ๐‘–๐‘–2 + ๐›พ๐›พ โ‹… ๐‘‘๐‘‘ ฮฆ, ๏ฟฝฮฆ0

2

regularizationterm

s.t.๏ฟฝฮฆ๐‘–๐‘– โˆˆ โ„‹๐‘–๐‘– , ๐‘–๐‘– = 1,โ‹ฏ ,๐‘š๐‘š๐‘š๐‘š

๏ฟฝฮฆ๐‘–๐‘– : Projection of ฮฆ onto โ„‹๐‘–๐‘– ๐‘–๐‘– = 1,โ‹ฏ ,๐‘š๐‘š๐‘‡๐‘‡๏ฟฝฮฆ0 : Nominal values (from, e.g., CAD orstatistical data)

Page 90: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

For Standard Euclidean metric on ฮฆ : ๐‘‘๐‘‘ ฮฆ, ๏ฟฝฮฆ = ฮฆโˆ’ ๏ฟฝฮฆ

Geometry of ordinary least squares

ฮฆโ„ณ๐‘›๐‘› โ‰ƒ ๐’ซ๐’ซ 4 ๐‘›๐‘›

โ„‹2 โ„‹3

โ„‹1 โ„‹๐‘š๐‘š๐‘š๐‘š

โ„10๐‘›๐‘›

ฮฆ1

ฮฆ2ฮฆ3

ฮฆ๐‘š๐‘š๐‘š๐‘š

ฮฆ0

Ordinary least squaresminฮฆ

๐ด๐ดฮฆ โˆ’ ๐‘๐‘ 2 + ๐›พ๐›พ ฮฆ โˆ’ ๏ฟฝฮฆ02

๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ž๐‘Ž๐‘Ÿ๐‘Ÿ๐‘–๐‘–๐‘ง๐‘ง๐‘Ž๐‘Ž๐‘ก๐‘ก๐‘–๐‘–๐‘Ÿ๐‘Ÿ๐‘›๐‘›โˆ’๐‘ก๐‘ก๐‘’๐‘’๐‘Ÿ๐‘Ÿ๐‘š๐‘š

with closed-form solution ฮฆ๐พ๐พ๐‘†๐‘† = ๐ด๐ด๐‘‡๐‘‡๐ด๐ด + ๐›พ๐›พ๐ผ๐ผ โˆ’1

(๐ด๐ด๐‘‡๐‘‡๐‘๐‘ + ๐›พ๐›พฮฆ0) is equivalent to the following :

minฮฆ, ๏ฟฝฮฆ๐‘–๐‘– i=1

mk๏ฟฝ๐‘–๐‘–=1

๐‘š๐‘š๐‘š๐‘š

๐‘Ž๐‘Ž๐‘–๐‘– 2 ฮฆ โˆ’ ๏ฟฝฮฆ๐‘–๐‘–2 + ๐›พ๐›พ ฮฆ โˆ’ ๏ฟฝฮฆ0

2

regularizationterm

s.t.๏ฟฝฮฆ๐‘–๐‘– โˆˆ โ„‹๐‘–๐‘– , ๐‘–๐‘– = 1,โ‹ฏ ,๐‘š๐‘š๐‘š๐‘š๏ฟฝฮฆ๐‘–๐‘– : Euclidean Projection of ฮฆ onto โ„‹๐‘–๐‘–

๏ฟฝฮฆ0 : Prior value

Page 91: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Geodesic distance based least-squares solution:

๐‘‘๐‘‘โ„ณ๐‘›๐‘› ฮฆ, ๏ฟฝฮฆ = โˆ‘๐‘—๐‘—=1๐‘›๐‘› ๐‘‘๐‘‘๐’ซ๐’ซ 4 ๐‘ƒ๐‘ƒ ๐œ™๐œ™๐‘—๐‘— ,๐‘ƒ๐‘ƒ ๏ฟฝ๐œ™๐œ™๐‘—๐‘—

Using geodesic distance on P(n)

minฮฆ, ๏ฟฝฮฆ๐‘–๐‘– i=1

mk๏ฟฝ๐‘–๐‘–=1

๐‘š๐‘š๐‘š๐‘š

๐‘ค๐‘ค๐‘–๐‘– โ‹… ๐‘‘๐‘‘โ„ณ๐‘›๐‘› ฮฆ, ๏ฟฝฮฆ๐‘–๐‘–2 + ๐›พ๐›พ๐‘‘๐‘‘โ„ณ๐‘›๐‘› ฮฆ, ๏ฟฝฮฆ0

2

๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ž๐‘Ž๐‘Ÿ๐‘Ÿ๐‘–๐‘–๐‘ง๐‘ง๐‘Ž๐‘Ž๐‘ก๐‘ก๐‘–๐‘–๐‘Ÿ๐‘Ÿ๐‘›๐‘›โˆ’๐‘ก๐‘ก๐‘’๐‘’๐‘Ÿ๐‘Ÿ๐‘š๐‘š

s.t.๏ฟฝฮฆ๐‘–๐‘– โˆˆ โ„‹๐‘–๐‘– , ๐‘–๐‘– = 1,โ‹ฏ ,๐‘š๐‘š๐‘š๐‘š

โ„10๐‘›๐‘›

ฮฆโ„ณ๐‘›๐‘› โ‰ƒ ๐’ซ๐’ซ 4 ๐‘›๐‘›

โ„‹2 โ„‹3

โ„‹1 โ„‹๐‘š๐‘š๐‘š๐‘š

ฮฆ1

ฮฆ2

ฮฆ3

ฮฆ๐‘š๐‘š๐‘š๐‘š

ฮฆ0

๏ฟฝฮฆ๐‘–๐‘– : Geodesic Projection of ฮฆ onto โ„‹๐‘–๐‘–

๏ฟฝฮฆ0 : Prior value

Page 92: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Example

Prior

Ordinary least-squares with LMI

Geodesic distance on P(n)

Mass deviations

Mass deviations

Page 93: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Machine Learning

Page 94: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Manifold hypothesis Consider vector representation of data, e.g., an image, as ๐‘ฅ๐‘ฅ โˆˆ โ„๐ท๐ท

Meaningful data lie on a ๐‘‘๐‘‘-dim. manifold in โ„๐ท๐ท, ๐‘‘๐‘‘ โ‰ช ๐ท๐ท Ex) image of number โ€˜7โ€™

โ„๐ท๐ท

โ‹ฎ

๐‘ฅ๐‘ฅ โˆˆ โ„๐ท๐ท

A random vector in โ„๐ท๐ท

Page 95: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Manifold learning and dimension reductionGiven data ๐‘ฅ๐‘ฅ๐‘–๐‘– ๐‘–๐‘–=1,โ‹ฏ,๐‘๐‘, ๐‘ฅ๐‘ฅ๐‘–๐‘– โˆˆ โ„๐ท๐ท, find a map ๐‘“๐‘“ from data space to

lower dimensional space while minimizing a global measure of distortion:

Existing methods Linear methods: PCA (Principal Component Analysis), MDS (Multi-

Dimensional Scaling), โ€ฆ Nonlinear methods (manifold learning): LLE (Locally Linear Embedding),

Isomap, LE (Laplacian Eigenmap), DM (Diffusion Map), โ€ฆ

๐‘“๐‘“โ„๐ท๐ท

usually โ„๐‘›๐‘›, ๐‘›๐‘› โ‰ช ๐ท๐ท

๐‘ฅ๐‘ฅ๐‘–๐‘– โˆˆ โ„๐ท๐ท๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘–๐‘–) โˆˆ โ„๐‘›๐‘›

Page 96: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Coordinate-Invariant Distortion Measures Consider a smooth map ๐‘“๐‘“:โ„ณ โ†’๐’ฉ๐’ฉ between two compact

Riemannian manifolds (โ„ณ,๐‘”๐‘”): local coord. ๐‘ฅ๐‘ฅ = (๐‘ฅ๐‘ฅ1,โ‹ฏ , ๐‘ฅ๐‘ฅ๐‘š๐‘š), Riemannain metric ๐บ๐บ = (๐‘”๐‘”๐‘–๐‘–๐‘—๐‘—) (๐’ฉ๐’ฉ,โ„Ž): local coord. ๐‘ฆ๐‘ฆ = (๐‘ฆ๐‘ฆ1,โ‹ฏ ,๐‘ฆ๐‘ฆ๐‘›๐‘›), Riemannian metric ๐ป๐ป = (โ„Ž๐›ผ๐›ผ๐›ฝ๐›ฝ)

Isometry Map preserving length, angle, and volume - the ideal case of no distortion If dim โ„ณ โ‰ค dim(๐’ฉ๐’ฉ), ๐‘“๐‘“ is an isometry when ๐‘ฑ๐‘ฑ ๐’™๐’™ โŠค๐‘ฏ๐‘ฏ(๐’‡๐’‡(๐’™๐’™))๐‘ฑ๐‘ฑ(๐’™๐’™) = ๐‘ฎ๐‘ฎ(๐’™๐’™) for

all ๐‘ฅ๐‘ฅ โˆˆ โ„ณ, where ๐ฝ๐ฝ = ๐œ•๐œ•๐‘“๐‘“๐›ผ๐›ผ

๐œ•๐œ•๐‘ฅ๐‘ฅ๐‘–๐‘–โˆˆ โ„๐‘›๐‘›ร—๐‘š๐‘š

๐‘“๐‘“

โ„ณ ๐’ฉ๐’ฉ

๐‘๐‘

๐‘“๐‘“(๐‘๐‘)

๐‘ž๐‘ž

๐‘“๐‘“(๐‘ž๐‘ž)๐‘ฃ๐‘ฃ ๐‘ค๐‘ค

๐‘‘๐‘‘๐‘“๐‘“๐‘๐‘(๐‘ฃ๐‘ฃ)๐‘‘๐‘‘๐‘“๐‘“๐‘๐‘(๐‘ค๐‘ค)๐‘‡๐‘‡๐‘๐‘โ„ณ

๐‘‡๐‘‡๐‘“๐‘“(๐‘๐‘)๐’ฉ๐’ฉ

๐‘‘๐‘‘๐‘“๐‘“๐‘ฅ๐‘ฅ:๐‘‡๐‘‡๐‘ฅ๐‘ฅโ„ณ โ†’ ๐‘‡๐‘‡๐‘“๐‘“(๐‘ฅ๐‘ฅ)๐’ฉ๐’ฉ is the differential of ๐‘“๐‘“:โ„ณ โ†’๐’ฉ๐’ฉ

Page 97: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Coordinate-Invariant Distortion Measures Comparing pullback metric ๐ฝ๐ฝโŠค๐ป๐ป๐ฝ๐ฝ(๐‘๐‘) to ๐บ๐บ(๐‘๐‘)

Let ๐œ†๐œ†1,โ‹ฏ , ๐œ†๐œ†๐‘š๐‘š be roots of det ๐ฝ๐ฝโŠค๐ป๐ป๐ฝ๐ฝ โˆ’ ๐œ†๐œ†๐บ๐บ = 0(๐œ†๐œ†1,โ‹ฏ , ๐œ†๐œ†๐‘š๐‘š = 1 in the case of isometry) ๐œŽ๐œŽ(๐œ†๐œ†1,โ‹ฏ , ๐œ†๐œ†๐‘š๐‘š) denote any symmetric function, e.g., ๐œŽ๐œŽ(๐œ†๐œ†1,โ‹ฏ , ๐œ†๐œ†๐‘š๐‘š) = โˆ‘๐‘–๐‘–=1๐‘š๐‘š 1

2๐œ†๐œ†๐‘–๐‘– โˆ’ 1 2

Global distortion measure

๏ฟฝโ„ณ๐œŽ๐œŽ(๐œ†๐œ†1,โ‹ฏ , ๐œ†๐œ†๐‘š๐‘š) det๐บ๐บ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ1 โ‹ฏ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘š๐‘š

๐‘“๐‘“๐‘‡๐‘‡๐‘๐‘โ„ณ ๐บ๐บ(๐‘๐‘)

๐ฝ๐ฝ๐‘‡๐‘‡๐ป๐ป๐ฝ๐ฝ(๐‘๐‘)

๐‘๐‘

โ„ณ

๐ป๐ป(๐‘“๐‘“(๐‘๐‘))

๐‘“๐‘“(๐‘๐‘)

๐‘‡๐‘‡๐‘“๐‘“(๐‘๐‘)๐’ฉ๐’ฉ

๐’ฉ๐’ฉpullback metric

Page 98: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Harmonic Maps Assume ๐œŽ๐œŽ ๐œ†๐œ†1,โ‹ฏ , ๐œ†๐œ†๐‘š๐‘š = โˆ‘๐‘–๐‘–=1๐‘š๐‘š ๐œ†๐œ†๐‘–๐‘–, and boundary conditions ๐œ•๐œ•๐’ฉ๐’ฉ = ๐‘“๐‘“(๐œ•๐œ•โ„ณ)

are given Define the global distortion measure as

๐ท๐ท ๐‘“๐‘“ = ๏ฟฝโ„ณ

๐‘‡๐‘‡๐‘‡๐‘‡ ๐ฝ๐ฝโŠค๐ป๐ป๐ฝ๐ฝ๐บ๐บโˆ’1 det๐บ๐บ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ1 โ‹ฏ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘š๐‘š

Extremals of ๐ท๐ท ๐‘“๐‘“ are known as harmonic maps Variational equation (for ๐›ผ๐›ผ = 1,โ‹ฏ ,๐‘›๐‘›)

๏ฟฝ๐‘–๐‘–=1

๐‘š๐‘š

๏ฟฝ๐‘—๐‘—=1

๐‘š๐‘š1

det๐บ๐บ๐œ•๐œ•๐œ•๐œ•๐‘ฅ๐‘ฅ๐‘–๐‘–

๐œ•๐œ•๐‘“๐‘“๐›ผ๐›ผ

๐œ•๐œ•๐‘ฅ๐‘ฅ๐‘—๐‘—๐‘”๐‘”๐‘–๐‘–๐‘—๐‘— det๐บ๐บ + ๏ฟฝ

๐›ฝ๐›ฝ=1

๐‘›๐‘›

๏ฟฝ๐›พ๐›พ=1

๐‘›๐‘›

๐‘”๐‘”๐‘–๐‘–๐‘—๐‘—ฮ“๐›ฝ๐›ฝ๐›พ๐›พ๐›ผ๐›ผ ๐œ•๐œ•๐‘“๐‘“๐›ฝ๐›ฝ

๐œ•๐œ•๐‘ฅ๐‘ฅ๐‘–๐‘–๐œ•๐œ•๐‘“๐‘“๐›พ๐›พ

๐œ•๐œ•๐‘ฅ๐‘ฅ๐‘—๐‘—= 0

where ๐‘”๐‘”๐‘–๐‘–๐‘—๐‘— is (๐‘–๐‘–, ๐‘—๐‘—) entry of ๐บ๐บโˆ’1, ฮ“๐›ฝ๐›ฝ๐›พ๐›พ๐›ผ๐›ผ denote the Christoffel symbols of the second kind

Physical interpretation: Wrap marble (๐“๐“) with rubber (๐“œ๐“œ) (Harmonic maps correspond to elastic equilibria)

โ„ณ

๐’ฉ๐’ฉ ๐‘“๐‘“

Page 99: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Examples of Harmonic Maps Lines (๐‘“๐‘“: 0, 1 โ†’ [0, 1]) ๐ท๐ท ๐‘“๐‘“ = โˆซ0

1 ฬ‡๐‘“๐‘“2๐‘‘๐‘‘๐‘ก๐‘ก ฬˆ๐‘“๐‘“ = 0

Geodesics (๐‘“๐‘“: 0, 1 โ†’ ๐’ฉ๐’ฉ) ๐ท๐ท ๐‘“๐‘“ = โˆซ0

1 ฬ‡๐‘“๐‘“โŠค๐ป๐ป ฬ‡๐‘“๐‘“๐‘‘๐‘‘๐‘ก๐‘ก

๐‘‘๐‘‘2๐‘“๐‘“๐›ผ๐›ผ

๐‘‘๐‘‘๐‘ก๐‘ก2+ โˆ‘๐›ฝ๐›ฝ=1

๐‘›๐‘› โˆ‘๐›พ๐›พ=1๐‘›๐‘› ฮ“๐›ฝ๐›ฝ๐›พ๐›พ๐›ผ๐›ผ ๐‘‘๐‘‘๐‘“๐‘“๐›ฝ๐›ฝ

๐‘‘๐‘‘๐‘ก๐‘ก๐‘‘๐‘‘๐‘“๐‘“๐›พ๐›พ

๐‘‘๐‘‘๐‘ก๐‘ก= 0

Laplaceโ€™s equation on โ„2 (๐‘“๐‘“: โ„2 โ†’ โ„) ๐›ป๐›ป2๐‘“๐‘“ = 0 Harmonic functions

2R Spherical mechanism (๐‘“๐‘“:๐‘‡๐‘‡2 โ†’ ๐‘†๐‘†2) ๐‘‘๐‘‘๐‘ ๐‘ 2 = ๐œ–๐œ–1๐‘‘๐‘‘๐‘ข๐‘ข12 + ๐œ–๐œ–2๐‘‘๐‘‘๐‘ข๐‘ข22, ๐œ–๐œ–1๐œ–๐œ–2 = 1 ๐ท๐ท ๐‘“๐‘“ = ๐œ‹๐œ‹2(๐œ–๐œ–1 + 2๐œ–๐œ–2), ๐œ–๐œ–1โˆ— = 2, ๐œ–๐œ–2โˆ— = 1/ 2

๐‘“๐‘“ 0 = 0 ๐‘“๐‘“ 1 = 1

๐’ฉ๐’ฉ

๐‘“๐‘“ 0 = ๐‘๐‘๐‘“๐‘“ 1 = ๐‘ž๐‘ž

๐‘ข๐‘ข1

๐‘ข๐‘ข2

Page 100: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Harmonic Maps and Robot KinematicsOpen chain planar mechanism (๐‘“๐‘“:๐‘‡๐‘‡๐‘›๐‘› โ†’ SE(2)) ๐‘“๐‘“ ๐‘ฅ๐‘ฅ1,โ‹ฏ , ๐‘ฅ๐‘ฅ๐‘›๐‘› = ๐‘€๐‘€๐‘’๐‘’๐ด๐ด1๐‘ฅ๐‘ฅ1 โ‹ฏ ๐‘’๐‘’๐ด๐ด๐‘›๐‘›๐‘ฅ๐‘ฅ๐‘›๐‘› ๐ท๐ท ๐‘“๐‘“ = ๐บ๐บ12 + 2๐บ๐บ22 + โ‹ฏ+ ๐‘›๐‘›๐บ๐บ๐‘›๐‘›2 ๐‘‘๐‘‘ + ๐‘›๐‘›๐‘๐‘ Optimal link length: ๐บ๐บ1โˆ— ,โ‹ฏ , ๐บ๐บ๐‘›๐‘›โˆ— = (1, 1

2, 13

,โ‹ฏ , 1๐‘›๐‘›

)

3R Spherical mechanism (๐‘“๐‘“:๐‘‡๐‘‡3 โ†’ SO(3)) ๐‘“๐‘“ ๐‘ฅ๐‘ฅ1, ๐‘ฅ๐‘ฅ2, ๐‘ฅ๐‘ฅ3 = ๐‘’๐‘’๐ด๐ด1๐‘ฅ๐‘ฅ1๐‘’๐‘’๐ด๐ด2๐‘ฅ๐‘ฅ2๐‘’๐‘’๐ด๐ด3๐‘ฅ๐‘ฅ3 ๐ท๐ท ๐‘“๐‘“ is invariant to ๐›ผ๐›ผ,๐›ฝ๐›ฝ Workspace volume ๐‘Š๐‘Š ๐‘“๐‘“ = sin๐›ผ๐›ผ sin๐›ฝ๐›ฝ Volume(SO(3)) ๐›ผ๐›ผ = 90ยฐ,๐›ฝ๐›ฝ = 90ยฐ maximize the workspace volume

๐ด๐ด1

๐ด๐ด2๐ด๐ด3

๐บ๐บ1 = 6

๐บ๐บ2 = 3๐บ๐บ3 = 2

๐›ผ๐›ผ๐›ฝ๐›ฝ

๐‘ฅ๐‘ฅ1

๐‘ฅ๐‘ฅ2

๐‘ฅ๐‘ฅ3

๐ด๐ด1

๐ด๐ด2

๐ด๐ด3

3-link finger example

3-link spherical wrist mechanism

Page 101: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Taxonomy of Manifold Learning Algorithmsโ„ณ ๐’ฉ๐’ฉ ๐‘ฎ๐‘ฎโˆ’๐Ÿ๐Ÿ

(inverse pseudo-metric) ๐‘ฏ๐‘ฏ ๐ˆ๐ˆ(๐€๐€) Volume form Constraint

LLE(Locally Linear

Embedding)

Bounded region in โ„๐ท๐ท

containing data points โ„๐‘‘๐‘‘ฮ”๐‘ฅ๐‘ฅฮ”๐‘ฅ๐‘ฅโŠค

(ฮ”๐‘ฅ๐‘ฅ is local reconstruction error obtained when running the algorithm)

๐ผ๐ผ ๏ฟฝ๐‘–๐‘–=1

๐‘š๐‘š

๐œ†๐œ†๐‘–๐‘– ๐œŒ๐œŒ ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๏ฟฝโ„ณ๐‘“๐‘“ ๐‘ฅ๐‘ฅ ๐‘“๐‘“ ๐‘ฅ๐‘ฅ โŠค๐œŒ๐œŒ ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐ผ๐ผ

LE(Laplacian Eigenmap)

Same as above โ„๐‘‘๐‘‘ ๏ฟฝโ„ณโˆฉ๐ต๐ต๐œ–๐œ–(๐‘ฅ๐‘ฅ)

๐‘š๐‘š ๐‘ฅ๐‘ฅ, ๐‘ง๐‘ง ๐‘ฅ๐‘ฅ โˆ’ ๐‘ง๐‘ง ๐‘ฅ๐‘ฅ โˆ’ ๐‘ง๐‘ง โŠค๐œŒ๐œŒ ๐‘ง๐‘ง ๐‘‘๐‘‘๐‘ง๐‘ง ๐ผ๐ผ ๏ฟฝ๐‘–๐‘–=1

๐‘š๐‘š

๐œ†๐œ†๐‘–๐‘– ๐œŒ๐œŒ ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๏ฟฝโ„ณ๐‘‘๐‘‘(๐‘ฅ๐‘ฅ)๐‘“๐‘“ ๐‘ฅ๐‘ฅ ๐‘“๐‘“ ๐‘ฅ๐‘ฅ โŠค๐œŒ๐œŒ ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐ผ๐ผ

(๐‘‘๐‘‘ ๐‘ฅ๐‘ฅ = โˆซโ„ณโˆฉ๐ต๐ต๐œ–๐œ–(๐‘ฅ๐‘ฅ) ๐‘š๐‘š ๐‘ฅ๐‘ฅ, ๐‘ง๐‘ง ๐œŒ๐œŒ ๐‘ง๐‘ง ๐‘‘๐‘‘๐‘ง๐‘ง)

DM(Diffusion

Map)Same as above โ„๐‘‘๐‘‘ ๏ฟฝ

โ„ณโˆฉ๐ต๐ต๐œ–๐œ–(๐‘ฅ๐‘ฅ)๐‘š๐‘š ๐‘ฅ๐‘ฅ, ๐‘ง๐‘ง ๐‘ฅ๐‘ฅ โˆ’ ๐‘ง๐‘ง ๐‘ฅ๐‘ฅ โˆ’ ๐‘ง๐‘ง โŠค๐‘‘๐‘‘๐‘ง๐‘ง ๐ผ๐ผ ๏ฟฝ

๐‘–๐‘–=1

๐‘š๐‘š

๐œ†๐œ†๐‘–๐‘– 1๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๏ฟฝโ„ณ๐‘“๐‘“ ๐‘ฅ๐‘ฅ ๐‘“๐‘“ ๐‘ฅ๐‘ฅ โŠค๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐ผ๐ผ

๐‘š๐‘š(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) is a kernel function usually chosen by the user

Using heat kernel ๐‘š๐‘š ๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ = 4๐œ‹๐œ‹โ„Ž โˆ’๐‘‘๐‘‘/2 exp(โˆ’ ๐‘ฅ๐‘ฅโˆ’๐‘ง๐‘ง 2

4โ„Ž)

gives a way to estimate the Laplace-Beltrami operator

Manifold learning algorithms such as LLE, LE, DM share a similar objective as harmonic maps while having equality constraint to avoid trivial solution ๐‘“๐‘“ = ๐‘๐‘๐‘œ๐‘œ๐‘›๐‘›๐‘ ๐‘ ๐‘ก๐‘ก.โˆˆ โ„๐‘‘๐‘‘

Page 102: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Example: Swiss roll (diffusion map)

Flattened swiss roll

: data points

Diffusion map embedding

Swiss roll data (2-dim manifold in 3-dim space)

Page 103: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Example: Swiss roll (geometric distortion)

๐œŽ๐œŽ(๐€๐€) = โˆ‘๐‘–๐‘–=1๐‘š๐‘š 12๐œ†๐œ†๐‘–๐‘– โˆ’ 1 2

Harmonic mapping + ๐œŽ๐œŽ(๐€๐€) = โˆ‘๐‘–๐‘–=1๐‘š๐‘š 1

2๐œ†๐œ†๐‘–๐‘– โˆ’ 1 2

for boundary pointsFlattened swiss roll

: boundary points

: data points

Swiss roll data (2-dim manifold in 3-dim space)

Minimum distortion results

Page 104: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Example: FacesMin distortion

(๐œŽ๐œŽ(๐€๐€) = โˆ‘๐‘–๐‘–=1๐‘š๐‘š 12๐œ†๐œ†๐‘–๐‘– โˆ’ 1 2)

Laplacian eigenmap embedding

headingangle

mouthshapeheading

angle mouthshape

headingangle

Min distortion (Harmonic mapping + ๐œŽ๐œŽ(๐€๐€) = โˆ‘๐‘–๐‘–=1๐‘š๐‘š 1

2๐œ†๐œ†๐‘–๐‘– โˆ’ 1 2 for boundary points)

mouthshape

Original face image located on embedding

coordinates

Embedding coordinate

Page 105: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Concluding Remarks

Page 106: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Geometric methods have unquestionably been effective in solving a wide range of problems in roboticsMany problems in perception, planning, control,

learning, and other aspects of robotics can be reduced to a geometric problem, and geometric methods offer a powerful set of coordinate-invariant tools for their solution.

Concluding Remarks

Page 107: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

References

Page 108: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

(http://robotics.snu.ac.kr/fcp)

Robot Mechanics and Control

"Modern Robotics: Mechanics, Planning, and Control," KM Lynch, FC Park, Cambridge University Press, 2017 (http://modernrobotics.org)

โ€œA Mathematical Introduction to Robotic Manpulation,โ€ RM Murray, ZX Li, S Sastry, CRC Press, 1994

A Lie group formulation of robot dynamics, FC Park, J Bobrow, S Ploen, Int. J. Robotics Research, 1995

Distance metrics on the rigid body motions with applications to kinematic design, FC Park, ASME J. Mech. Des., 1995

Singularity analysis of closed kinematic chains, Jinwook Kim, FC Park, ASME J. Mech. Des, 1999

Kinematic dexterity of robotic mechanisms, FC Park, R. Brockett, Int. J. Robotics Research, 1994

Least squares tracking on the Euclidean group, IEEE Trans. Autom. Contr., Y. Han and F.C. Park, 2001

Newton-type algorithms for dynamics-based robot motion optimization, SH Lee, JG Kim, FC Park et al, IEEE Trans. Robotics, 2005

References

Page 109: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Trajectory Optimization and Motion Planning

Newton-type algorithms for dynamics-based robot motion optimization, SH Lee, JG Kim, FC Park et al, IEEE Trans. Robotics, 2005

Smooth invariant interpolation of rotations, FC Park and B. Ravani, ACM Trans. Graphics, 1997

Progress on the algorithmic optimization of robot motion, A Sideris, J Bobrow, FC Park, in Lecture Notes in Control and Information Sciences, vol. 340, Springer-Verlag, October 2006

Convex optimization algorithms for active balancing of humanoid robots, Juyong Park, J Haan, FC Park, IEEE Trans. Robotics, 2007

Tangent bundle RRT: a randomized algorithm for constrained motion planning, B Kim, T Um, C Suh, FC Park, Robotica, 2016

Randomized path planning for tasks requiring the release and regrasp of objects, J Kim, FC Park, Advanced Robotics, 2016

Randomized path planning on vector fields, I Ko, FC Park, Int. J. Robotics Res., 2014

Motion optimization using Gaussian processs dynamical models, H Kang, FC Park, Multibody Sys. Dyn. 2014

References

Page 110: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Vision and Image Analysis

Numerical optimization on the Euclidean group with applications to camera calibration, S Gwak, JG Kim, FC Park, IEEE Trans. Robotics Autom., 2003.

Geometric direct search algorithms for image registration, S Lee, M Choi, H. Kim, FC Park, IEEE Trans. Image Proc., 2007.

Particle filtering on the Euclidean group: framework and applications, JH Kwon, M Choi, FC Park, CM Chun, Robotica, 2007.

Visual tracking via particle filtering on the affine group, JH Kwon, FC Park, Int. J. Robotics Res., 2010.

A geometric particle filter for template-based visual tracking, JH Kwon, HS Lee, FC Park, KM Lee, IEEE Trans. PAMI, 2014

DTI segmentation and fiber tracking using metrics on multivariate normal distributions, M Han, FC Park, J. Math. Imaging and Vision, 2014

A stochastic global optimization algorithm for the two-frame sensor calibration problem, JH Ha, DH Kang, FC Park, IEEE Trans. Ind. Elec 2016

References

Page 111: Manifolds, Geometry, and Roboticsrss2017.lids.mit.edu/docs/invitedtalks/park-manifolds...Manifolds, Geometry, and Robotics Frank C. Park Seoul National University Ideas and methods

Attention, Learning, Geometry

A minimum attention control law for ball catching, CJ Jang, JE Lee, SH Lee, FC Park, Bioinsp. Biomim. 2015

Kinematic feedback control laws for generating natural arm movements, DH Kim, CJ Jang, FC Park, Bioinsp. Biomim. 2013

Kinematic dexterity of robotic mechanisms, FC Park, RW Brockett, Int. J. Robotics Res. 1994

References