Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

33
Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on Acetone Conversion to Aromatic Chemicals Disampaikan dalam Forum Seminar Nasional Teknik Kimia Palembang, 19 Juli 2006 Oleh Setiadi setiadi@ che . ui . edu or hasbila @eng. ui .ac.id SMS. 08159088431 Department Of Chemical Engineering Faculty Of Engineering - University Of Indonesia

description

Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on Acetone Conversion to Aromatic Chemicals Disampaikan dalam Forum Seminar Nasional Teknik Kimia Palembang, 19 Juli 2006 Oleh Setiadi [email protected] or [email protected] SMS. 08159088431 - PowerPoint PPT Presentation

Transcript of Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Page 1: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Makalah (Code KKR 09)

Time on Stream Stability of H-ZSM-5 Catalyst on Acetone Conversion to Aromatic Chemicals

Disampaikan dalam Forum Seminar Nasional Teknik Kimia

Palembang, 19 Juli 2006

Oleh

[email protected] or [email protected]. 08159088431

Department Of Chemical EngineeringFaculty Of Engineering - University Of Indonesia

Page 2: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Hidrokarbon

C1- C10

AsetonAseton : senyawa organic polar yang dapat diproduksi dari materi hayati renewable mll. fermentasi, pirolisis , maupun new process via supercritical decomposition

Kemampuan shape-selectivity ZSM-5 terletak pada bangunan struktur kristalnya yang diameter/bukaan pori sekitar 0,56 nm dan hampir homogen. Katalis ZSM-5 banyak digunakan untuk transformasi reaksi-reaksi hidrokarbon dibanding dgn. ZSM-5 digunakan reaksi senyawa organik polar

C1 : CH4 C2 : C2H4, C2H6C3 : C3H6, C3H8 C4 : C4H8, C4H10 C5 : C5H10, C6 : C6H6, C6 alifatik C7 : Toulena, Alifatik, C8 : Xylena, alifatik C9 : Mesitylene (1,3,5 TMB) C10 : Durene, Naphthalene

ZSM-5

Proses Katalitik

Introduction

Page 3: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Non-Renewable Route

H2O

Biomass Materials

CO2

Fuel : LPG (C3-C4 H.Cs), Gasoline(C5-C10 H.Cs), Diesel Fuel, Kerosene, Avian Jet Fuel, etc

Biomass derived liquid

Fotosintesis

Fossil Resources – Crude Oils(C1-C40) Hydrocarbons

Fuel Combustion Waste

Transformation & Utilization

Geological Time Frame Process (Millions years)

biological activities

Biological time frame

The Concept Carbon Cycle Route for renewable biomass and non-renewable as the origins of hydrocarbons for fuels & chemicals (developed from Kojima, 1998; Metzger & Eissen, 2004 dan Padabed et al.,2002)

Ren

ew

ab

le

Rou

te

(Th

e Y

ellow

A

rrow

s)

CO2

Un-converted CO2

Introduction

Page 4: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Introduction

Fossil Resources(Petroleum crude

Oil)

Refinery Process & Catalytic Cracking Unit (FCC)

Biomass Materials

Biomass-derived liquid from fermentation Products (sagu, singkong, tetes

tebu/molasses, 80 % Yield Limbah Tandan Kosong Sawit,

dll.)

Renewable

EthanolAcetone, Butanol

C1-C10 Aromatic

Compounds

Fuel (Gasohol), (O.N., RVP)

Petrochemicals

Non-renewable

Resources

A Schematic Diagram of C1-C10 Hydrocarbons Route from the Origin

Target Compounds

Biomass-Based Technology established ???•Catalytic Reaction Process? Catalyst ? HZSM-5 & Nat. Zeolite

•Reaction condition?

Scope of this Research Work

•Minyak Nabati ( Sawit, Jarak, )

Page 5: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

A reaction mechanism for the acetone conversion for C3-C4 or C5-C10

Aromatic hydrocarbons formation

O ║

H3C- C-CH=C(CH3)2

Mesityl oxide (MSO)

O OH ║ │CH3 C CH2 C (CH3)2

Diacetone alcohol (DAA)

O ║(H3C)2C=CHCCH=C(CH3)2

phorone or diisopropylideneketone

O ║

2 [ H3C-C- CH3]

2 molecules of

Acetones

Self Aldol condensation

Dehydration - H2O

Further self Aldol condensation + (CH3)2CO - H2O

In progress of reaction: Continued condensation, forming higher

molecular weight species which may accumulate in pore channel and shutting

down the reaction

O

isophorone

Cracking inside the Pores at higher Temp > 350 oC

C3-C4 LPG

Acetic acid

1,3,5-Trimethylbe

nzene(Mesitylene)

Monoaromatic :BenzeneXyleneToluene

EthylBenzeneC9 monoaromaticC10monoaromatic

Diaromatics :Napthalene

Monomethylnaphthalene

Dimethylnapthalene

Trimetylnaphthalene

Tetramethylnapthalen

C5-C10 H.Cs of Gasoline (Shape Selective

Formation)

Dimerization Condensation –

Dehydrocyclization

Reaction at the external surface of ZSM-5

CH4COx

H3C CH3

C=HC O CH=C H3C ║ CH3 C=CH-C-CH=C H3C CH3

C=HC CH=CH3C CH3

Decomposition

Reaction at the internal or external surface of Zeolite

Reaction at the internal surface of ZSM-5

Fundamental Review

Page 6: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Chang C.D dan A.J. Silvestri, 1977, The conversion of Methanol and Other O-Compounds to hydrocarbons over Zeolite Catalysts, Journal of Catalysis, 47, 249-259

Chang, Clarence D., W. H. Lang, and W.K. Bell, 1981, "Molecular Shape-Selective Catalysis in Zeolite," in Catalysis of Organic Reactions edited by William R. Moser, Marcel Dekker Inc., 73-94

Xu, Teng, Eric J. Munson, and James F. Haw, 1994, "Toward a Systematic Chemistry of Organic Reactions in Zeolites: In Situ NMR Studies of Ketones," J. Am. Chem. Soc., 116, 1962-1972

Hutchings, Graham J., Peter Johnston, Darren F. Lee, Ali Stair Warwick, Craig D. Williams and Mark Wilkinson, 1994, "The conversion of methanol and other O-compounds to hydrocarbons over zeolite β", Journal of Catalysis 147, 177-185

Lucas, A., P. Canizares, A. Duran, A. Carrero, 1997, "Dealumination of HZSM-5 zeolites : Effect of steaming on acidity and aromatization activity," Appl. Catal. 154, 221

Stevens, Mark G., Denise Chen and Henry C. Foley, 1999, "Oxidized Cesium/Nanoporous Carbon Materials: Solid-Base Catalysts with Highly Dispersed Active Sites," J.C.S., Chemical Commun., 275-276

Dehertog, W.J.H., G.F. Fromen, 1999, "A catalytic route for aromatics production from LPG", Applied Catalysis A: General 189 63-75

Zaki, M.I., M. A. Hasan, F.A. Al-Sagheer, and L. Pasupulety, 2000, "Surface Chemistry of Acetone on Metal Oxides: IR Observation of Acetone Adsorption and Consequent Surface Reactions on Silica-Alumina versus Silica and Alumina," Langmuir, 16, 430-436

Xu, M., W. Wang and Michael Hunger; 2003, " Formation of acetone enol on acidic zeolite ZSM-5 evidenced by H/D exchange", Chem Commun, 722-723

Tracking Acuan untuk Mekanisme Reaksi

Fundamental Review

Page 7: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Shift Selectivities Due to The Temp. Changes

Contoh :

2 (dua) Temp. 350 oC & 400 oC untuk produk

• Isobutene

• Aromatics

• Aliphatics

• COx(1,3,5 Trimetilbenzena)

Konversi Aseton & Sensitivitas Pergeseran Selektivitas Produk terhadap Suhu Reaksi

(Sumber : Chang, Lang, & Bell, 1981, Catalysis of Organic Reactions by William R. Moser (Editor), Marcel Dekker Inc., 73-94)

Fundamental Review

Page 8: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

The Framework of ZSM-5 structure

Ten-membered oxygen ring structure

Zig-zags channel, Circular openings 0.54 x 0.56 nm

Straight channel, Elliptical openings 0.51 x 0.55 nm

Secondary building block, Chains of 5-membered oxygen rings

Vertically-cross sectional view

Basic unit building block-AlO4 or SiO4 tetrahedra structure

Secondary building block, Chains of 5-membered oxygen

rings

Fundamental Review

Page 9: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Ilustrasi difusi molekul senyawa Hidrokarbon diseputar mulut pori zeolit

(Source : Sierka and Sauer, J. Phys. Chem. B 2001, 105, 1603-1613)

Acidic protons migrate between the four oxygen atoms surrounding the tetrahedral aluminum center in the following fashion (Ryder, dkk., J. Phys. Chem. B 2000, 104, 6998)

Fundamental Review

Page 10: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Zeolite Pore size, nm

Y 0.72

Mordenite 0.67 x 0.7

Offreite 0.64

ZSM-5 0.54 x 0.56

Ferrierite 0.43 x 0.55

Erionite 0.52 x 0.36

Pore Dimension for some Zeolites

Fundamental Review

Page 11: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Objectives :

• To observe the Performance of HZSM-5 on Time on stream Stability (TOS) on the Acetone Reaction to get the high as possible acetone conversion, Aromatic Yield and Product Selectivity

• The influence of Si/Al ratio, Temperature during TOS Catalytic Tests

Page 12: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Batangan Baja SS 316

Reaktor Pipa, 10 mm o.d., SS 316

19 cm

Lokasi Pengukuran Suhu Unggun Katalis

35 cm

16 cm

Quartz Wool

Quartz sand

Termokope1

Unggun Katalis

Quartz Wool

6 mm , i.d

Reaktor Pipa, 10 mm o.d., SS 316

Skema Diagram Penyusunan Katalis dalam Reaktor Pipa

N2 gas

Quartz sand

Mixture of ZSM-5 & quartz sand

Flow meter Pump

Stainless steel rod

Electric furnace (1000W)

Pre-heater

Ice - water bath

Gas product

Acetone

N2

liquid drop

Acetone fed by pump

Experimental Method

Experimental Set-up for Catalytic Test

Wacetone??

Wproduk cair??

Wproduk gas??

Page 13: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Experimental conditions

Catalyst : H-ZSM-5

Origin : Japan (Commercial)

Si/Al ratio : 25 -100

Particle size (dp) : 3 meter

Weight of catalyst for bed : 1 gram

Quartz sand for blending : 5 gram (10-15 mesh)

Quartz sand for preheating : 7 gram (10-15 mesh)

Aceton (Cica) : min 99.5% purity

Carrier Gas : N2

Experimental Method

Page 14: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Data GC-FID ( Hewlett Packard ) for Analysis of liquid product

The condition of GC-TCD for gaseous product

Column DB-1 (100 % DimethylPolysloxane), non-polar60 m x 0.25 mm I.D., 0.25 μ (film) JW : 122-1062-JW

Carrier Nitrogen

Oven 40 oC for 2 min; 40 - 220 oC with heating rate at 2.5 o C/min

Injector Split 1:100; 260 oC

Detector FID 290 oC Nitrogen make up gas sebesar 30 ml/min

Gas Chromatography

GC 1 (organic) GC 2 (In-organic)

Column Porapaq Q Mol. Sieve

Carrier gas Helium Argon

Column Oven 80 oC 60 oC

Injection port 90 oC 80 oC

Detector (TCD) 90 oC 80 oC

Experimental Method

Page 15: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Waktu retensi hasil deteksi chromatogram GC-FID kolom kapier DB-1 Posisi keberadaan Peak dikonfirmasi dgn.GC-MS Larutan Standard murni/ campuran

Peak No. Compounds Retention time, minute Calibration factor

1 Acetone ~6.25 2.2

2 C5-C6 Aliphatics 6.1-9.3 1

3 Benzene 7.98 1

4 Toluene (B.P. - 110.6 oC) 9.87 1

5 Ethylbenzene (B.P. – 136.3oC) 11.85 1

6 m+p-Xylene (B.P. – 137-138 oC) 12.1 1

7 o-Xylene (B.P. - 144 oC) 12.6 1

8 C9-Aromatics group* 13.8-15.6 1

9 C10-Aromatics** 16.6-17.7 1

10 Naphthalene - 18.5 1

11 MMN group- 20.5-21.0 1

12 DMN 22,3 1

13 TMN 23.3-24 1

* n-Propylbenzene, 1-Methyl-3-Ethylbenzene, 1-ethyl--Ethylbenzene, 1,3,5-Trimethylbenzene (Mesytylene), 1-Methyl-2-Ethylbenzene, 1,2,4-Trimethylbenzene, 1,2,3-Trimethylbenzene

** 1,4-Diethylbenzene, n-butylbenzene, 1,2 diethylbenzene, 1,2,4,5-Tetramethylbenzene, 1,2,3,4-Tetramethylbenzene

Experimental Method

Page 16: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Experimental Method

Waktu retensi produk gas menggunakan GC-TCD

Peak Component Retention time, min Calibration FactorPoropak - Q Mol.Sieve

1 CO2 0.9 0.91659

2 C2H4 1.4 0.87553

3 C2H6 1.8 0.80699

4 C3H6 5.2 0.67475

5 C4 12.8 0.56479

6 H2 1.7 0.10501

7 CH4 4.1 0.34531

8 CO 4.7 1.00367

Page 17: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Tipikal GC-FID Chromatogram sampel produk cair

Experimental Method

Un-reacted Acetone

C9-aromatik (Trimethylbenzene) , 13.8-15.6'

Toluene , 9.87‘

m+p-Xylene , 12.1‘

Benzene , 7.98'

Ethanol-Absorben

C5-C6 aliph., 6.1-9.3‘

Ethylbenzene, 11.85‘

O-Xylene,12.6'

C10-aromatik ,16.6-17.7‘

Methylnaphtahlene (MMN) , 20.5-21.0'

Naphthalene, 8.5‘

Dimethylnaphtahlene (DMN) , sekitar 22.3'

Trimethylnaphtahlene (TMN), 23.3-24

Note Kandungan Hidro-karbon dalam sampel produk cair juga telah dikonfir-masi dengan GC-Mass Spectrosmeter

Page 18: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Tipikal Chromatogram GC-TCD sampel produk gas

CH4

C4

CO

C3H8

H2

C2H6

C2H4

C3H6

N2 –Carrier gas

Chromatogram resulted from GC using Molecular Sieve Column

Chromatogram resulted from GC using Poropak Q

Column

Experimental Method

Page 19: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Aceton Feed 3cc during 34.5 min. Aceton Feed [mg] 2329.50Trap -1 = 1601 mg wt% (FID) Correction wt%(recalc) mg Product in Trap1 1641.41

Acetone 0.373 0.8206 0.817 13.08 [mg]

C5~C6 2.64 2.64 2.628 42.08

C6+-Aliphatics 8.68 8.68 8.641 138.35

Benzene 3.85 3.85 3.833 61.37

Toluene 23.14 23.14 23.037 368.83

Ethylbenzene 3.82 3.82 3.803 60.89

m+p-Xylene 24.12 24.12 24.013 384.45

o-Xylene 7.27 7.27 7.238 115.88

C9-Aromatics 19.24 19.24 19.155 306.67

C10-Aromatics 1.74 1.74 1.732 27.73

Naphthalene 1.33 1.33 1.324 21.20

2-Methylnaphthalene 1.21 1.21 1.205 19.29

1-Methylnaphthalene 0.17 0.17 0.169 2.71

Dimethylnaphthalene 1.92 1.92 1.911 30.60

Trimethylnaphthalene 0.495 0.495 0.493 7.89Absorption Trap-2 : 9707 mgram     Product in trap 2 [mg] 45.254

Component Area FID Factor % w Component, mg

Ethanol 5156933.0 1.51E-07 7.79E-01 99.53 9661.746

Acetone 13091.8 1.53E-07 2.00E-03 0.26 24.848

Benzene 11702.5 6.913E-08 8.09E-04 0.10 10.037

Toluen 12089.5 6.913E-08 8.36E-04 0.11 10.369Gas Phase Products Product Gas [mg] 642.84N2 rate 30 ml/min for 34.5 min vol/mmol 23.794872 ml/mmol

Vol. N2 1035 ml Nitrogen 43.496767 mmol

Component area Factor amount % mol mmol Mol. Weight mg

N2 1435406 1 1435406 73.94 43.50 28 1218

H2 196823 0.105096 20685 1.07 0.63 2 1

CO 17485 1.00367 17549 0.90 0.53 28 15

CO2 204423 0.916593 187373 9.65 5.68 44 250

CH4 37351 0.345307 12898 0.66 0.39 16 6

C2H4 43612 0.875529 38184 1.97 1.16 28 32

C2H6 8111 0.806991 6546 0.34 0.20 30 6

C3H6 61208 0.6747475 41300 2.13 1.25 42 53

C3H8 141126 0.652652 92106 4.74 2.79 44 123

C4+ Aliphatics 158055 0.564794 89269 4.60 2.71 58 157Total output [mg] 2329.50

Acetone Conversion 98.37 % Liq. Oil Product Yield 72.40 wt %

Gas Product Yield 27.60 wt %

Metode Penelitian

% Carbon ?

% Carbon ?

% C ?

Perhitungan konv.aseton, Fraksi Liquid, Fraksi Gas

Page 20: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Experimental MethodSelectivities &YieldInterval of sample   0.58 h

Acetone conversion 98.37 %

Product composition

weight in g % weight % carbonCO 14.89 0.67 0.31

CO2 249.83 11.21 3.31

CH4 6.25 0.28 0.23

C2H4 32.40 1.45 1.59

C2H6 5.95 0.27 0.29

C3H6 52.56 2.36 2.58

C3H8 122.81 5.51 6.03

C4+ Aliphatics 156.89 7.04 7.70

C5~C6 Aliphatics 42.08 1.89 2.07

C6+-Aliphatics 138.35 6.21 6.79Benzene 61.37 2.75 3.01Toluene 368.83 16.54 18.11Ethylbenzene 60.89 2.73 2.99m+p-Xylene 384.45 17.24 18.87o-Xylene 115.88 5.20 5.69

C9-Aromatics 306.67 13.75 15.05

C10-Aromatics 27.73 1.24 1.36Naphthalene 21.20 0.95 1.042-Methylnaphthalene 19.29 0.87 0.951-Methylnaphthalene 2.71 0.12 0.13DMN 30.60 1.37 1.50TMN 7.89 0.35 0.39

2229.51 100.00 100.00

Selectivities by %C

Page 21: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Results & Discussions

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Time on stream [h]

Co

nv

ers

ion

[w

t%] Si/Al=25

Si/Al=75

Si/Al=100

Acetone conversion over HZSM-5 by various Si/Al mol ratio. WHSV = 4 h-1, N2 carrier = 30 ml/min.

Si/Al=25, TOS =17 h stable at ca.100% Conv.

Si/Al=25

Si/Al=75

Si/Al=100

Page 22: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Time on stream [h]

Con

vers

ion

[wt%

]

723 K

673 K

623 K

573 K

The stability of H-ZSM-5 Si/Al =25 on various reaction temperature

TOS <= 17 h stable at ca.100% Conv.

T=673 K

T=723 K T=623 K T=573 K

Results & Discussions

Page 23: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

0

20

40

60

80

100

0 5 10 15 20 25 30

Time on stream [h]

Mon

oaro

mat

ic y

ield

[wt%

]723 K

673 K

623 K

573 K

Yield of monoaromatic duing time on stream on various temperature

TOS < 13 h, Yield > 60%

T=723 K

T=673 K

T=623 K T=573 K

Results & Discussions

Page 24: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

0 25 50

CO

CO2

CH4

C2H4

C2H6

C3H6

C3H8

C4 aliphatics

C5~C6 aliphatics

C6+ aliphatics

Benzene

Toluene

Ethylbenzene

m+p-Xylene

o-Xylene

C9-Aromatics

C10-Aromatics

Naphthalene

2-Methylnaphthalene

1-Methylnaphthalene

Dimethylnaphthalene

Trimethylnaphthalene

Selectivity (% carbon)

TOS = 40 min

TOS = 70 min

TOS = 100 min

Product Selectivity within 100 min with H-ZSM-5 Si/Al=25

Diaromatik

COx

Monoiaromatik

Alifatik

H-ZSM-5 → High Shape Selective for Aromatic Formations, Total Select. > 60 %

Results & Discussions

Page 25: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Si/Al=25, T=673 K

0

20

40

60

80

100

0 10 20 30

Time on stream [h]

Sele

ctiv

ity

[ %

Car

bon]

Si/Al=75, T=673K

0

20

40

60

80

100

0 10 20 30 40

Time on stream [h]

Sele

ctiv

ity

[ %

Car

bon]

Si/Al=100 and T= 673K

0

20

40

60

80

100

0 10 20 30

Time on stream [h]

Sele

ctiv

ity

[ %

Car

bon]

Fig. 6 The change of monoaromatic and C4 aliphatics selectivity during the progressing of time on stream reaction

Note •The relative symmetry in the opposite direction between the increasing of C4 aliphatics and the decreasing of monoaromatic selectivity

•The shift selectivity between the change of monoaromatic and C4 aliphatics selectivity during TOS

Monoiaromatik

C4 Aliphatics

Monoiaromatik

Monoiaromatik

C4 Aliphatics

C4 Aliphatics

Results & Discussions

Page 26: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Conclusions•ZSM-5 with Si/Al = 25 is the high active and stable than the Si/Al ratio, it indicates that the reaction of acetone reaction required a high acid density on the surface of catalyst.

•The reaction on 673 K is a favorable temperature for acetone conversion toward aromatic products. The lower temperatures of reaction lead to rapid deactivation, and the higher temperatures tend to decline the yield/selectivity of aromatics products

•The formation of aromatic compounds come from the C4 aliphatics and big possibilities that the loss of activity of catalyst and shift selectivity are caused by coking which covers the surface acid sites of ZSM-5

Page 27: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on
Page 28: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Terima kasih kpd.

Prof. T. Kojima, Staffs & the Excellent Students, Faculty Engineering, Seikei University, Tokyo-Japan Prof. T. Tsutsui Applied Chemistry & Chem. Engineering, Kagoshima University, Kyushu-Japan

Prof. Takao Masuda, Div. of Material Science and Eng., Graduate School of Eng., Hokkaido University, Sapporo, Japan

Page 29: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

The surface area for fresh and used catalyst

CatalystTotal area,

m2/gMicropore area,

m2/g

HZSM-5 Fresh 321.8 209.4

Used 225.4 159.9

HNZ (protonated Nat. Zeolite)

Fresh 294.4 248.2

Used 235.3 155.8

15 wt%B2O3-HNZ Fresh 115.4 58.3

Used 76.0 44.2

Page 30: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

The powder of Fresh Catalyst, the white color

The change of color for the powder of used Catalyst to be black or dark brown

Page 31: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Effect of Boron oxide loading into HNZ catalyst on Product Reaction

CatalystHNZ

5 wt% B2O3-HNZ

15 wt%B2O3-HNZ

25 wt%B2O3-HNZ

Temperature [oC] 400 400 400

Conversion [%] 98.9 98.4 95.8 20.3

Product distribution  (% w)     CO 0.31 0.63 0.65 0.36

CO2 2.93 3.66 5.45 4.85

CH4 0.21 0.27 0.30 0.10

C2H4 1.0 2.96 4.11 0.17

C2H6 0.31 0.24 0.10 0.00

C3H6 1.55 5.82 12.60 1.26

C3H8 6.90 4.02 1.84 0.00

C4 aliphatics 7.35 9.69 20.30 61.70

C3-C4 Hydrocarbons 15.80 19.53 34.74 62.96

Liquid Hydrocarbon 77.30 72.80 54.70 31.50

Page 32: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

Feed Acetone acetone + H2O (50% wt add)

Temperature, [oC] 400 400

LHSV [h-1] 2.18 4.32

Conversion [%] 98.9 99.1

Product (wt %)

Benzene 5.64 4.24

Toluene 21.12 18.26

Ethylbenzene 1.44 1.79

m+p-Xylene 15.38 16.01

o-Xylene 4.67 4.9

C9-Aromatics 7.22 9.36

Naphthalene 0.49 0.65

2-Methylnaphthalene 1.64 1

1-Methylnaphthalene 0.59 0.32

Dimethylnaphthalene 1.83 1.17

Trimethylnaphthalene 0.16 0.24

The comparation of the results due to the water addition into acetone feed

Page 33: Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time on stream [h]

Ace

ton

e co

nve

rsio

n, %

-1

0

1

2

3

4

5

6

Pa

raff

in/O

lefi

n r

ati

o

Si/Al=25

Paraff in/Olefin

The change of acetone conversion along with Paraffin/olefin ratio during reaction over ZSM-5 (Si/Al=25)

Reaction condition : Temperature = 673 K, P=0.13 MPa, WHSV= 4 g/g.h, N2 carrier = 30 ml/min