Majorana Fermions and Topological Insulators

18
Majorana Fermions and Topological Insulators I. Topological Band Theory - Integer Quantum Hall Effect - 2D Quantum Spin Hall Insulator - 3D Topological Insulator - Topological Superconductor II. Majorana Fermions - Superconducting Proximity Effect on Topological Insulators - A route to topological quantum computing? hanks to Gene Mele, Liang Fu, Jeffrey Teo Charles L. Kane, University of Pennsylvania

description

Charles L. Kane, University of Pennsylvania. Majorana Fermions and Topological Insulators. Topological Band Theory - Integer Quantum Hall Effect - 2D Quantum Spin Hall Insulator - 3D Topological Insulator - Topological Superconductor - PowerPoint PPT Presentation

Transcript of Majorana Fermions and Topological Insulators

Page 1: Majorana Fermions and Topological Insulators

Majorana Fermions and Topological Insulators

I. Topological Band Theory

- Integer Quantum Hall Effect - 2D Quantum Spin Hall Insulator - 3D Topological Insulator - Topological Superconductor

II. Majorana Fermions

- Superconducting Proximity Effect on Topological Insulators - A route to topological quantum computing?

Thanks to Gene Mele, Liang Fu, Jeffrey Teo

Charles L. Kane, University of Pennsylvania

Page 2: Majorana Fermions and Topological Insulators

The Insulating State

Covalent Insulator

Characterized by energy gap: absence of low energy electronic excitations

The vacuumAtomic Insulator

e.g. solid Ar

Dirac Vacuum

Egap ~ 10 eV

e.g. intrinsic semiconductor

Egap ~ 1 eV3p

4s

Silicon

Egap = 2 mec2 ~ 106 eV

electron

positron ~ hole

Page 3: Majorana Fermions and Topological Insulators

The Integer Quantum Hall State2D Cyclotron Motion, Landau Levels

IQHE without Landau Levels (Haldane PRL 1988)

Graphene in a periodic magnetic field B(r)

gap cE E

Hall Conductance xy = n e2/h

Band structureB(r) = 0Zero gap, Dirac point

B(r) ≠ 0Energy gapxy = e2/h

Egap

k

Page 4: Majorana Fermions and Topological Insulators

Topological Band TheoryThe distinction between a conventional insulator and the quantum Hall state

is a topological property of the manifold of occupied states

2( ) : ( ) Bloch Hamiltonans Brillouinwith

energy gap

zone H Tk

Trivial Insulator: n = 0 Quantum Hall state: xy = n e2/h

The TKNN invariant can only change at a phase transition where the energy gap goes to zero

Classified by the first Chern class (or TKNN invariant) (Thouless et al, 1984)

2Tr

2 T

in

F

The set of occupied Bloch wavefunctions defines a U(N)vector bundle over the torus.

1

( )N

i iu

k

ij i jA u du

d F A A A

Berry’s connection

Berry’s curvature

1st Chern class

Page 5: Majorana Fermions and Topological Insulators

Edge States

Gapless states must exist at the interface between different topological phases

IQHE staten=1

Egap

Domain wall bound state 0

Vacuumn=0

Edge states ~ skipping orbits

n=1 n=0

Band inversion – Dirac Equation

x

y

M<0

M>0

Gapless Chiral Fermions : E = v k

E

Haldane Modelky

Egap

KK’

Smooth transition : gap must pass through zero

Jackiw, Rebbi (1976)Su, Schrieffer, Heeger (1980)

Bulk – Edge Correspondence : n = # Chiral Edge Modes

Page 6: Majorana Fermions and Topological Insulators

Time Reversal Invariant 2 Topological Insulator

2 topological invariant (= 0,1) for 2D T-invariant band structures

=0 : Conventional Insulator =1 : Topological Insulator

Kramers degenerate at

time reversal invariant momenta

k* = k* + G

E

k*=0 k*=/a

E

k*=0 k*=/a

Edge States

1. Sz conserved : independent spin Chern integers : (due to time reversal) n n

is a property of bulk bandstructure. Easiest to compute if there is extra symmetry:

, mod 2n

2. Inversion (P) Symmetry : determined by Parity of occupied 2D Bloch states

Quantum spin Hall Effect :J↑ J↓

E

Time Reversal Symmetry :

Kramers’ Theorem :

1 ( )H H k k *yi 2 1 All states doubly degenerate

Page 7: Majorana Fermions and Topological Insulators

2D Quantum Spin Hall Insulator

Theory: Bernevig, Hughes and Zhang, Science ’06Experiement: Konig et al. Science ‘07

HgTe

HgxCd1-xTe

HgxCd1-xTed

d < 6.3 nmNormal band order

d > 6.3 nm: Inverted band order

Conventional Insulator QSH Insulator

E

k

E

II. HgCdTe quantum wells

I. Graphene

• Intrinsic spin orbit interaction small (~10mK-1K) band gap

• Sz conserved : “| Haldane model |2”

• Edge states : G = 2 e2/h

Kane, Mele PRL ‘05

0 /a 2/a

↑ ↓

Eg

6 ~ s

8 ~ p 6 ~ s

8 ~ p Normal

Inverted

G ~ 2e2/h in QSHI

Page 8: Majorana Fermions and Topological Insulators

3D Topological InsulatorsThere are 4 surface Dirac Points due to Kramers degeneracy

Surface Brillouin Zone

2D Dirac Point

E

k=a k=b

E

k=a k=b

0 = 1 : Strong Topological Insulator

Fermi circle encloses odd number of Dirac points

Topological Metal :

1/4 graphene

Robust to disorder: impossible to localize

0 = 0 : Weak Topological Insulator

Fermi circle encloses even number of Dirac pointsRelated to layered 2D QSHI

OR

4

1 2

3

EF

How do the Dirac points connect? Determined by 4 bulk 2 topological invariants 0 ; (123)

kx

ky

Page 9: Majorana Fermions and Topological Insulators

Bi1-xSbx

Theory: Predict Bi1-xSbx is a topological insulator by exploiting inversion symmetry of pure Bi, Sb (Fu,Kane PRL’07)

Experiment: ARPES (Hsieh et al. Nature ’08)

• Bi1-x Sbx is a Strong Topological Insulator 0;(1,2,3) = 1;(111)

• 5 surface state bands cross EF

between and M

ARPES Experiment : Y. Xia et al., Nature Phys. (2009).Band Theory : H. Zhang et. al, Nature Phys. (2009).Bi2 Se3

• 0;(1,2,3) = 1;(000) : Band inversion at

• Energy gap: ~ .3 eV : A room temperature topological insulator

• Simple surface state structure : Similar to graphene, except only a single Dirac point

EF

Control EF on surface byexposing to NO2

Page 10: Majorana Fermions and Topological Insulators

Topological Superconductor, Majorana Fermions

††( ) k

k k BdGk k

cH c c H k

c

Particle-Hole symmetry :

Quasiparticle redundancy :

Discrete end state spectrum :

1( ) ( )BdG BdGH k H k † E E E E

0

*0

BdG

HH

H

0

E

E

-E0

E=0

Bogoliubov de GennesHamiltonian

=0“trivial”

=1“topological”

†0 0

Majorana Fermionbound state

“half a state”

1D 2 Topological Superconductor : = 0,1

END

†E E

E

(Kitaev, 2000)

BCS mean field theory : † † † † *

Page 11: Majorana Fermions and Topological Insulators

Periodic Table of Topological Insulators and Superconductors

Anti-Unitary Symmetries : - Time Reversal : - Particle - Hole :

Unitary (chiral) symmetry :

1( ) ( ) 12 ; H H k k

1( ) ( ) 12 ; H H k k

1( ) ( ) ; H H k k

RealK-theory

ComplexK-theory

Bott Periodicity

Altland-ZirnbauerRandom MatrixClasses

Kitaev, 2008Schnyder, Ryu, Furusaki, Ludwig 2008

Page 12: Majorana Fermions and Topological Insulators

Majorana Fermion : spin 1/2 particle = antiparticle ( † )

Particle Physics : • Neutrino (maybe) Allows neutrinoless double -decay.

Condensed matter physics : Possible due to pair condensation

• Quasiparticles in fractional Quantum Hall effect at =5/2• h/4e vortices in p-wave superconductor Sr2RuO4

• s-wave superconductor/ Topological Insulator ... among others

Current Status : NOT OBSERVED

† † 0

• 2 Majorana bound states = 1 fermion bound state - 2 degenerate states (full/empty) = 1 qubit

• 2N separated Majoranas = N qubits

• Quantum Information is stored non locally - Immune from local sources of decoherence

• Adiabatic Braiding performs unitary operations - Non Abelian Statistics a ab bU

1 2i

Potential Hosts :

Topological Quantum Computing Kitaev, 2003

Page 13: Majorana Fermions and Topological Insulators

Proximity effects : Engineering exotic gappedstates on topological insulator surfaces

†0 ( v )H i

† † *

Dirac Surface States :

Protected by Symmetry

1. Magnetic : (Broken Time Reversal Symmetry)

• Orbital Magnetic field :

• Zeeman magnetic field :

• Half Integer quantized Hall effect :

2. Superconducting : (Broken U(1) Gauge Symmetry)

proximity induced superconductivity

p p eA †

zM 21

( )2xy

en

h

• S-wave superconductor

• Resembles spinless p+ip superconductor

• Supports Majorana fermion excitations

Fu,Kane PRL 07Qi, Hughes, Zhang PRB (08)

Fu,Kane PRL 08

M. ↑

T.I.

S.C.

T.I.

Page 14: Majorana Fermions and Topological Insulators

Majorana Bound States on Topological Insulators

SC

h/2e

1. h/2e vortex in 2D superconducting state

2. Superconductor-magnet interface at edge of 2D QSHI

Quasiparticle Bound state at E=0 Majorana Fermion

TI

0

E

†0 0

S.C.M

QSHIEgap =2|m|

Domain wall bound state 0

m<0

m>0

| | | |S Mm

Page 15: Majorana Fermions and Topological Insulators

1D Majorana Fermions on Topological Insulators

2. S-TI-S Josephson Junction

SC

TI

SC

SCM

1. 1D Chiral Majorana mode at superconductor-magnet interface

TI

kx

E

†k k : “Half” a 1D chiral Dirac fermion Fv xH i

0

Gapless non-chiral Majorana fermion for phase difference

cos( / 2)Fv L x L R x R L RH i i

Page 16: Majorana Fermions and Topological Insulators

Manipulation of Majorana FermionsControl phases of S-TI-S Junctions

12

0

Majorana present

Tri-Junction : A storage register for Majoranas

CreateA pair of Majorana boundstates can be created from the vacuum in a well definedstate |0>.

BraidA single Majorana can bemoved between junctions.Allows braiding of multipleMajoranas

MeasureFuse a pair of Majoranas.

States |0,1> distinguished by• presence of quasiparticle.• supercurrent across line junction

E

00

1E

E

0

0

0

0

0

0

0

Page 17: Majorana Fermions and Topological Insulators

A Z2 Interferometer for Majorana Fermions

A Signature for Neutral Majorana Fermions Probed with Charge Transport

2

hNe

e e

e h

1

2

1

2 2

N even

N odd

†1 2

1 2

c i

c i

• Chiral electrons on magnetic domain wall split into a pair of chiral Majorana fermions

• “Z2 Aharonov Bohm phase” converts an electron into a hole

• dID/dVs changes sign when N is odd.

Fu and Kane, PRL ‘09Akhmerov, Nilsson, Beenakker, PRL ‘09

Page 18: Majorana Fermions and Topological Insulators

Conclusion

• A new electronic phase of matter has been predicted and observed - 2D : Quantum spin Hall insulator in HgCdTe QW’s - 3D : Strong topological insulator in Bi1-xSbx , Bi2Se3, Bi2Te3

• Superconductor/Topological Insulator structures host Majorana Fermions - A Platform for Topological Quantum Computation

• Experimental Challenges - Charge and Spin transport Measurements on topological insulators

- Superconducting structures : - Create, Detect Majorana bound states - Magnetic structures : - Create chiral edge states, chiral Majorana edge states - Majorana interferometer

• Theoretical Challenges

- Further manifestations of Majorana fermions and non-Abelian states - Effects of disorder and interactions on surface states