Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

download Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

of 60

Transcript of Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    1/60

    ModernMethods inHeterogeneous Catalysis Research

    SolidStateAspects inOxidationCatalysis

    20thJanuary 2012

    MaikEichelbaum/FHI

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    2/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 2MaikEichelbaum

    How chemists like to see the world:Everything is molecular

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    3/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 3MaikEichelbaum

    1.Introduction

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    4/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 4MaikEichelbaum

    Solid State Aspects: Goingunderneath the surface and beyond

    the molecule

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    5/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 5MaikEichelbaum

    1.Introduction

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    6/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 6MaikEichelbaum

    1.Introduction

    Dehydrogenation of formic acid with different bronzealloys: activation energy andresistivity

    HCOOH CO2 + H2

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    7/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 7MaikEichelbaum

    1.Introduction

    Defect electrons (holes) in NiO (withO excess): p-type semiconductor

    Ni3+ Ni2+

    Ni3+

    Ni2+ Ni2+ Ni2+

    Ni2+

    Ni2+Ni2+Ni2+Ni2+

    Ni2+ Ni2+

    Increase of defect electrons byLi2O, decrease by Cr2O3 addition:CO + O2 CO2

    Explanation: donor reaction

    defect electron + Ni2+

    = active site

    fast

    CO chemisorption rate-determining

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    8/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 8MaikEichelbaum

    1.Introduction

    Excess electrons in ZnO (with Znexcess): n-type semiconductor

    Increase of quasi-free electrons byGa2O3, decrease by Li2O addition:CO + O2 CO2

    Explanation: acceptor reactionZn2+ + (1 or 2) quasi-free electrons = active site

    fast

    Oxidation of active site rate-determing(strong influence of oxygen on rate)

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    9/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 9MaikEichelbaum

    1.Introduction

    Krger-Vink notation for point defects in crystalsF. A. Krger, H. J. Vink, Solid State Phys. 1956, 3, 307

    P. J. Gellings, H. J. M. Bouwmeester, Catal. Today 2000, 58, 1

    Precise description of point defects possible; differentiation between bulk

    vacancies, interstitials, surface vacancies, adsorbed ions etc.

    Examples: Ni3+ in Ni2+O2- on normal lattice position NiNi

    Interstitial Zn+ in Zn2+O2- iZn

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    10/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 10MaikEichelbaum

    2. Electrical Conductivity in SolidOxides

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    11/60

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    12/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 12MaikEichelbaum

    2.Electrical Conductivity inSolidOxides

    Formation of protonic defects:

    normal lattice oxygen

    Doubly ionized oxygen vacancy

    hydroxyl group on regular oxygen position

    1) Reaction with water

    2) Reaction with hydrogen and electron holes

    3) Reaction with hydrogen and formation of free electrons

    Oxygen vacancy

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    13/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 13MaikEichelbaum

    2.Electrical Conductivity inSolidOxides

    Proton conduction mechanisms:

    1)Proton hopping (Grotthus mechanism): protonhops between adjacent oxygen ions (large H+/D+

    isotope effect)

    2) Hydroxyl-ion migration (vehicle mechanism):negligible H+/D+ isotope effect

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    14/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 14MaikEichelbaum

    2.Electrical Conductivity inSolidOxides

    Example: Oxidation of propene to acrylic acid on MoVTeNbOx(M2)

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    15/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 15MaikEichelbaum

    2.Electrical Conductivity inSolidOxides

    humid propene-oxygen-helium (2-8-90) mixture

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    16/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 16MaikEichelbaum

    1) Proton conduction in oxides

    2) Oxygen conduction in oxides

    1) Proton conduction in oxides

    2) Oxygen conduction in oxides

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    17/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 17MaikEichelbaum

    2.Electrical Conductivity inSolidOxides

    Oxygen conduction orHow is oxygen incorporated into oxides?

    Existing point defects (oxygen vacancies: VO, oxygen interstitials: Oi, electronicpoint defects: h, e) allow a finite compositional flexibility in a binary oxide MOwith phase width MO1-

    R. Merkle, J. Maier,

    Example: Fe-doped SrTiO3- (quasi-binary due to fixed Sr/Ti ratio below 1200C)

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    18/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 18MaikEichelbaum

    2.Electrical Conductivity inSolidOxides

    Phase diagram for MO1-

    R.Merkle,J.Maier,

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    19/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 19MaikEichelbaum

    2.Electrical Conductivity inSolidOxides

    Reaction and transport of oxygen: kinetic limitations

    R.Merkle,J.Maier,

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    20/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 20MaikEichelbaum

    2.Electrical Conductivity inSolidOxides

    Fedoped

    SrTiO3single

    crystal,

    surface

    reaction

    is

    limiting,

    T=923

    K,

    pO2:

    0.01

    >1

    bar,

    ttotal=24

    h

    falsecolorimage concentrationprofile

    http://www.fkf.mpg.de/maier/downloads.html

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    21/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 21MaikEichelbaum

    2.Electrical Conductivity inSolidOxides

    Fedoped

    SrTiO3single

    crystal,

    bulk

    diffusion

    is

    limiting,

    T=823

    K,

    pO2:

    0.1

    >1

    bar,

    ttotal=6300

    s

    falsecolorimage concentrationprofile

    http://www.fkf.mpg.de/maier/downloads.html

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    22/60

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    23/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 23MaikEichelbaum

    2.Electrical Conductivity inSolidOxides

    Blocking grain boundary formation of space charge layers

    R.Merkle,J.Maier,

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    24/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 24MaikEichelbaum

    2.Electrical Conductivity inSolidOxides

    array of circular gold microelectrodes(20 m diameter) on polycrystalline Fe-

    doped SrTiO3 platinumcontacttips

    R.Merkle,J.Maier,

    Localized Impedance Spectroscopy

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    25/60

    Lecture SeriesCatalysis:SolidStateAspects in

    OxidationCatalysis 25MaikEichelbaum

    Insertion: Impedance spectroscopy

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    26/60

    Lecture SeriesCatalysis:SolidStateAspects inOxidationCatalysis

    26MaikEichelbaum

    3.Impedance Spectroscopy

    Impedance measurements (measurement at alternating voltages):

    )(

    )(

    )(

    )(

    I

    U

    ti

    ti

    et

    et

    +

    +

    =

    =

    II

    UU

    22XRZ +==

    I

    U

    Impedance []:

    )( IUii eZeZiXR ==+=ZComplex impedance:

    Resistance Reactance

    ieZIIZU ==Ohm`s law:

    Phase difference

    between voltage andcurrent

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    27/60

    Lecture SeriesCatalysis:SolidStateAspects inOxidationCatalysis

    27MaikEichelbaum

    3.Impedance Spectroscopy

    Impedance of an ideal resistor:

    Impedance of an ideal inductor:

    Impedance of an ideal capacitor: )2(

    2

    11

    ==

    ==

    =

    i

    C

    i

    L

    R

    eCCi

    Z

    LeLiZ

    RZ

    Total impedance calculated by using rules for combining impedances in seriesand parallel:

    Series combination: Ztot = Z1 + Z2 + + Zn

    Parallel combination: 1/Ztot = 1/Z1 + 1/Z2+ + 1/Zn

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    28/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 28MaikEichelbaum

    3.Impedance Spectroscopy

    Impedance spectroscopy (IE): Sinosoidal voltage, frequency variation (typicallybetween 106 and 10-3 Hz)

    According to Ohms law the impedance of a sample can be calculated by complex

    division of the voltage and current

    Looking for an equivalent circuit with certain impedance elements thatdescribes best the frequency-dependent behavior of the sample

    The impedance elements are related to certain physico-chemical properties, e.g.electrochemical double layer between electrode and electrolyte ions (Helmholtzlayer) can be described by a capacitor

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    29/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 29MaikEichelbaum

    3.Impedance Spectroscopy

    Bode plot (phase angle vs. frequency)e.g. oxide layer on Al

    one time constant ( = R C)e.g. chromate layer on oxide layer on Al

    two time constants

    Equivalent circuit:

    D. Ende, K.-M. Mangold, ChiuZ1993, 3, 134

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    30/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 30MaikEichelbaum

    3.Impedance Spectroscopy

    Simplified equivalent circuit for aredox reaction:

    Cdl

    Rct

    -ImZ

    ReZ

    RctCdl = 1

    Rct

    = 0 =

    Corresponding Nyquist diagram forRC parallel circuit:

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    31/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 31MaikEichelbaum

    The Physicists View of a Solid

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    32/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 32MaikEichelbaum

    4.ThePhysicist`s Viewof aSolid

    A.W.Bott,CurrentSeparations1998,17,87

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    33/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 33MaikEichelbaum

    4.ThePhysicist`s Viewof aSolid

    Occupancy of electrons in a band is determined byFermi-Dirac statistics

    Fermi-Dirac distribution (for an electron gas):

    potential

    Chemical(Electro-)...

    eTemperatur...

    constantBoltzmann...

    Energy...

    1exp

    1)(

    T

    k

    E

    Tk

    EEf

    B

    B

    +

    =

    2/1)( ==Ef

    = Fermi level

    Population densityE

    W

    EFermi

    Vacuum level

    Conduction band

    WA(work function)

    The Fermi curve determines thepopulation of occupied states,independent of the existence ofstates in the regarded Eregion

    (T = 0) =EFermi

    P.A.Tipler,Physik,SpektrumVerlag

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    34/60

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    35/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 35MaikEichelbaum

    Space charge region

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    36/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 36MaikEichelbaum

    4.ThePhysicist`s Viewof aSolid

    Metals

    Metal 1 Metal 1Metal 2 Metal 2

    free electrons

    a) Energy states of two different metals with different Fermi energies andwork functions. b) With contact, electrons will flow from the metal with higherFermi energy (lower work function) to the one with lower Fermi energy (largerwork function) until the Fermi levels of both metals are equalized

    Valence band

    Conductionband

    Contact voltage = (WA1 -WA2)/e

    P.A.Tipler,Physik,SpektrumVerlag

    h h i i ` i f S lid

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    37/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 37MaikEichelbaum

    4.ThePhysicist`s Viewof aSolid

    Semiconductorsn-type SC in contact with electrolyte p-type SC in contact with electrolyte

    Space Charge Region Space Charge Region

    Electrochemical double layer

    In metals: penetration depth (space charge region to compensate surface charge) of only a few

    lattice constants (high concentration of free charge carriers)

    In SCs: Debye shielding, LD, can amount from 10 nm to 1 mi

    BD

    nq

    TkL

    22

    =

    torsemiconducintrinsicincarrierschargeofionConcentrat...charge;Electron...crystal;oftypermittiviDielectric... inq

    LD LD

    A.W.Bott,CurrentSeparations1998,17,87

    4 Th Ph i i ` Vi f S lid

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    38/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 38MaikEichelbaum

    4.ThePhysicist`s Viewof aSolid

    External PotentialControl

    Positivepotential

    Negativepotential

    Flatband potential

    A.W.Bott,CurrentSeparations1998,17,87

    4 Th Ph i i t` Vi f S lid

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    39/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 39MaikEichelbaum

    4.ThePhysicist`s Viewof aSolid

    Conductionband

    Conductionband

    Valenceband

    Valenceband

    Junction(charge depleted zone)n sidep side

    p-n junction

    Electrons migrate to p side, holes migrate to n side untilelectrochemical potentials (Fermi energies) are equilibrated

    Potentialdifference

    (highresistance)

    Energy

    P.A.Tipler,Physik,

    SpektrumVerlag

    ++

    forwardbias

    reversebias

    breakdownvoltage

    4 The Ph si ist`s Vie of a Solid

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    40/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 40MaikEichelbaum

    4.ThePhysicist`s Viewof aSolid

    Metal-semiconductor junction (Schottky barrier)

    Ohmic contact

    Schottky barrier

    K.W.Kolasinski,Surface Science:Foundations of Catalysis and Nanoscience,JohnWiley &Sons2008

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    41/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 41MaikEichelbaum

    Back to Chemistry

    5 Oxidation Catalysis

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    42/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 42MaikEichelbaum

    5.OxidationCatalysis

    Oxidation catalysis with transition metal ions:

    1) Oxidation of the substrate by the catalyst (being reduced)

    2) Reoxidation of the catalyst (usually by gas phase oxygen)

    5 Oxidation Catalysis

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    43/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 43MaikEichelbaum

    5.OxidationCatalysis

    Experimental hints for the participation of lattice oxygen (oxygencovalently bound to the active transition metal ion) in the reaction:

    1) Reaction runs (awhile) without gas phase oxygen present (riser reactor

    concept)

    2) Different oxidation states of the transition metal are monitored independence on the partial pressures of reaction gases or on contact time

    3) By using 18O2 in isotope exchange experiments, first 16O (from thecatalyst) is found in the reaction product, and only after some time 18O

    4) After long 18O/16O exchange, 18O is found in the catalyst lattice (e.g. inToF-SIMS experiments)

    5) Conductivity changes upon reaction conditions, correlation betweenconductivity and activity/selectivity for differently doped semiconductors

    5 Oxidation Catalysis

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    44/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 44MaikEichelbaum

    5.OxidationCatalysis

    Example:

    5 Oxidation Catalysis

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    45/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 45MaikEichelbaum

    5.OxidationCatalysis

    Participation of lattice oxygen is often associated with the Mars-vanKrevelen mechanism

    5 Oxidation Catalysis

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    46/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 46MaikEichelbaum

    5.OxidationCatalysis

    Original derivation of the Mars-van Krevelen rate expressionAnanalysis by

    5. Oxidation Catalysis

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    47/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 47MaikEichelbaum

    5.OxidationCatalysis

    kinetic gas theory allows only n= 1 only O2 single-site adsorption represented (two-site adsorption: (1-)2), however involvement of Olattice ions necessitates O2 dissociation into atoms severe inconsistency

    no elementary step, Eley-Rideal reaction veryunlikely, multiple bond-breaking, multipleintermediates, sequence of elementary steps needed

    no intermediate species of final productsincluded, only O ions considered

    Mars-van Krevelen rate equation:

    5. Oxidation Catalysis

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    48/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 48MaikEichelbaum

    5.OxidationCatalysis

    Simple elementary steps for adsorption ofO2 on a lattice vacancy (active site)Alternative derivations by Vannice:

    Mars-van Krevelen rate equation:

    (n= 1)

    5.OxidationCatalysis

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    49/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 49MaikEichelbaum

    5. O dat o Cata ys s

    Simple elementary steps forlattice O ions involved in the reaction

    Mars-van Krevelen rate equation:

    ++= 1

    1642

    O

    2

    1

    2

    R

    2

    2

    O1

    R2R2R

    22Pk

    Pk

    Pk

    PkPkr

    ?

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    50/60

    5.OxidationCatalysis ElectronicTheory

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    51/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 51MaikEichelbaum

    y y

    Selective oxidation of hydrocarbons, consideration of bands and frontier orbitals:

    J.Haber,M.Witko,J.Catal.2003,216,416424

    Rigid band assumption (no local surface states)

    No site isolation totalconduction!

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    52/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 52MaikEichelbaum

    Surface States

    5.OxidationCatalysis ElectronicTheory

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    53/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 53MaikEichelbaum

    Surface states of a 3D crystal

    Intrinsic surface states: Onideal surfaces (perfecttermination with 2D

    translational symmetry)

    Extrinsic surface states: Onsurfaces with imperfections(e.g. missing atom)

    H. Lth, Solid Surfaces, Interfaces and Thin Films, Springer 2001

    5.OxidationCatalysis ElectronicTheory

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    54/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 54MaikEichelbaum

    J.Haber,M.Witko,J.Catal.2003,216,416424

    Electrocatalytic oxidation of catechol on vanadium-doped TiO2electrodes

    Flat band potential(no external potential)

    With external potential

    Surface states

    5.OxidationCatalysis ElectronicTheory

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    55/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 55Maik

    Eichelbaum

    Surface statecharge

    Space charge (to compensatesurface charge)

    Neutrality condition determines the Fermi level

    ECEFED

    EV

    acceptors

    e

    Build-up ofuncompensatednegative charge insurface acceptor state

    unstable

    Hypothetical flatband situation: Formation of (depletion) space charge layer:

    H. Lth, Solid Surfaces, Interfaces and Thin Films, Springer 2001

    5.OxidationCatalysis ElectronicTheory

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    56/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 56Maik

    Eichelbaum

    H. Lth, Solid Surfaces, Interfaces and Thin Films, Springer 2001

    Band schemes:

    Free chargecarrier

    densities:

    Local

    conductivity:

    n-SC: p-SC:

    DEPLETION

    pb

    nb

    5.OxidationCatalysis ElectronicTheory

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    57/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 57Maik

    Eichelbaum

    p-type semiconductor (e.g. (VO)2P2O7 for butane oxidation to maleic anhydride)

    Adsorption (catalysis) at surface states:

    Local surface state = active (isolated single) site selective oxidation

    Oxidation Reduction

    5.OxidationCatalysis ElectronicTheory

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    58/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 58Maik

    Eichelbaum

    H. Lth, Solid Surfaces, Interfaces and Thin Films, Springer 2001

    Spectroscopic evidence? Photoemission spectroscopy

    adsorbate-induced extrinsicsurface state

    Core levels, valence states, workfunction at the surface shift by sameamount of e due to band bending independence on chemical potential of

    adsorbate (no surface dipoles)

    5.OxidationCatalysis ElectronicTheory

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    59/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 59Maik

    Eichelbaum

    Valence band spectra (h = 35 eV) of In2O

    3surface in dependence on P

    O2

    A. Klein, Appl. Phys. Lett.2000, 77, 2009-2011

    Literature

  • 8/12/2019 Maik Eichelbaum Solid State Aspects in Oxidation Catalysis 120120

    60/60

    Lecture SeriesCatalysis:

    Solid

    State

    Aspects in

    OxidationCatalysis 60Maik

    Eichelbaum

    Reviews, e.g.:Solid state aspects of oxidation catalysis: P. J. Gellings, H. J. M. Bouwmeester, CatalysisToday2000, 58, 1-53; ibid.1992, 12, 1-105The role of redox, acid-base and collective properties and of cristalline sate ofheterogeneous catalysts in the selective oxidation of hydrocarbons, J. C. Vdrine, Top. Catal.

    2002, 21, 97-106In situ and operando spectroscopy for assessing mechanisms of gas sensing, A. Gurlo, R.Riedel, Angew. Chem. Int. Ed. 2007, 46, 3826-3848

    Surface physics and surface chemistry, e.g.:S. R. Morrison, The chemical physics of surfaces, Plenum Press New York and London 1977(surface physics and surface chemistry, includes chapter on heterogeneous catalysis)

    H. Lueth, Solid surfaces, interfaces and thin films, Springer 2010P. A. Cox, The electronic structure and chemistry of solids, Oxford University Press 1989R. Hoffmann, Solids and surfaces : a chemist's view of bonding in extended structures VCH1988

    Fundamental textbooks, e.g.:

    N. W. Ashcroft, N. D. Mermin, Solid state physics, Brooks/Cole Cengage Learning 2009H. Ibach, H. Lueth, Solid-state physics : an introduction to principles of materials science,Springer 2009

    (Examples)