Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

129
Magnetism in ultrathin films W. Weber IPCMS Strasbourg

Transcript of Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Page 1: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Magnetism in ultrathin films

W. Weber

IPCMS Strasbourg

Page 2: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Orbital and Spin moment

1 with

222

)(2

)(2

22

lBlorb

orb

glgm

lm

ql

m

qL

m

q

mrm

qrqFIm

Intuitive : Orbital moment Mysterious : Spin moment

2 with sBsspin gsgm

s : momentumspin Angular

Page 3: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

FerromagnetismParamagnetic behavior: usually one has to apply an external magnetic field in order to align the magnetic moments

T

H

Ferromagnetic behavior: magnetization without an external magnetic field at non-zero temperatures possible

H

Page 4: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

FerromagnetismHow can we explain magnetic order up to temperatures of 1000 K?

Curie temperature

Page 5: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

FerromagnetismEarly explanation (1907): Weiss’ molecular field

A molecular field exists within the ferromagnet which orders the moments against the thermal motion. It is so large that the ferromagnet can be saturated even without an external magnetic field.

Order of magnitude:

mBcB HTk 0K 1000cT A/m 109mH

Page 6: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Ferromagnetism

What is the physical interaction responsible for it?

Dipole-dipole interaction?

rmrmr

mmr

Edip 215213

31

K 1 3

20 a

BStrength Too weak!

Page 7: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Ferromagnetism

Interplay of Pauli principle and Coulomb interaction

Two electrons of opposite spin can share the same orbital and come close

Two electrons of same spin cannot farther apart Lower Coulomb energy

This interaction does not act like a real magnetic field

J positive : parallel orientation (ferromagnetic)J negative : anti-parallel orientation (anti-ferromagnetic)

Exchange interaction in a solid

ji

ji SSJH

The strength of the interaction depends on the orbital overlap between neighbouring atoms decreases exponentially with distance

Page 8: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Indirect exchange coupling in multilayers

FM1

FM2

nonmagnetic metal

Page 9: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Indirect exchange coupling

Unguris et al., Phys.Rev. B 49, 14 (1994)

Page 10: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Indirect exchange coupling in multilayers

Amplitude of the coupling strength decreases with thickness

Parkin et al., Phys.Rev. B 44, 7131 (1991)

Co80Ni20 / Ru / Co80Ni20Co80Ni20 / Ru / Co80Ni20

Page 11: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Indirect exchange couplingRKKY interaction (Ruderman, Kittel,Kasuya, Yosida).

It explains for instance the coupling in rare earth systems

Virtually no overlap between magnetic 4f-orbitals

Indirect exchange through conduction electrons

Page 12: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

RKKY interaction

distance

Spin density

Page 13: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

RKKY interaction

distance

Spin density

Page 14: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

RKKY interaction

distance

Spin density

Page 15: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

RKKY interaction

distance

Spin density

Page 16: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

RKKY interaction

distance

Spin density

Page 17: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

RKKY interaction

Page 18: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

RKKY interaction

Page 19: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

RKKY interaction

Page 20: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

RKKY interaction

)2sin(1

2Rk

RJ F

Page 21: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Giant magnetoresistance

Baibich et al., PRL 61,2472 (1988)

Magnetic

Magnetic

Nonmagnetic

Fe

Cr

Fe

Page 22: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Spinfilter effect

E

EF

)(ED)(ED

Paramagnet

Page 23: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Spinfilter effect

E

EF

)(ED)(ED

Ferromagnet

strong scattering

weak scattering

Page 24: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Giant magnetoresistance

22

RrRRtot

r

r

R

R

Page 25: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Giant magnetoresistance

R R

r r

rrR

RrRtot 2

2

Page 26: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Page 27: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

GMR read head

Page 28: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Page 29: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Page 30: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

voltage

Page 31: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

voltage

Page 32: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

voltage

Page 33: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

voltage

Page 34: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

voltage

Page 35: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

voltage

Page 36: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

voltage

Page 37: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

voltage

Page 38: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Spin-resolved photoemission spectroscopy on MnPc/Co(001):

spin-polarized interface states

Page 39: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Insulating spacer layer : tunneling MR

min

min

NN

NNP

maj

maj

21

21

PP1

P2PTMR

Pi = polarisation

=

DOSDOS

DOS-DOS

Jullière’s model

Page 40: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

De Teresa et al., Science 286 (1999)

The polarisation dependson the interface !!LSMO

LSMO

PP1

P2PTMR

Co

Co

STO LSMOCo / / ALO LSMOCo / STO //

Page 41: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Mn(II)-phthalocyanine : Mn-C32H16N8

MnPc

Cu(001)

Co(001)

Advantage:large spin diffusion length expecteddue to weak spin-orbit coupling inlow-Z materials.

Page 42: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Photoemission spectroscopy

Page 43: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Spin detector

nPfNL 1 nPfNR 1

nPfNN

NNA

RL

RL

Au foiln

Page 44: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Spin-resolved spectra

Page 45: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

E

EF

)(ED)(ED

Page 46: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Spin-resolved spectra

Page 47: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Spin-resolved spectra

Page 48: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Spin-resolved spectra

Page 49: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Spin-resolved spectra

Page 50: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Page 51: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Page 52: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Page 53: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Page 54: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Interface state

Page 55: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Difference spectra

Page 56: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Difference spectra

Page 57: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Difference spectra

Page 58: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Difference spectra

first layer second layer third layer

contribution of the different Pc layers to the interface states

Page 59: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Polarization of difference spectra

Page 60: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Character of interface states

Determination of the character by exploiting the variation of the cross section with photon energy. By going from 20 to 100 eV the cross sections change by the following factors:

Co 3d: 1.4

Mn 3d: 0.7

C 2p: 1/40

N 2p: 1/20

Page 61: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

0,0 0,5 1,0 1,5 2,0

0

100

200

2,6 ML Pc/Co(3 ML) - Co(3 ML)

h=100 eV

Inte

nsity

(ar

b. u

nits

)

Binding energy (eV)

spin up spin down

Character of interface states

Page 62: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

EF

Co Interface Pc/Co

EF

C. Barraud et al., Nature Phys. (2010)

Page 63: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

EF

Co Interface Pc/Co

EF

C. Barraud et al., Nature Phys. (2010)

Page 64: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

EF

Co Interface Pc/Co

EF

Page 65: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Electron spin motion: a new tool to study ferromagnetic films

Page 66: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

M

Spin up

0

1

Spin down

1

0

1

0

0

10

1

0

0

1 ii erer

?

Page 67: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

x

y

z

P0

M

Page 68: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

x

y

z

M

Page 69: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

x

y

z

M

Page 70: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

x

y

z

M

Page 71: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

x

y

z

ε

M

Page 72: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

M

Spin up

0

1

Spin down

1

0

1

0

0

10

1

0

0

1 ii erer

rr

rr

2arctan

22

?

Page 73: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

x

y

z

ε

M

Page 74: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

εx

y

z

M

Page 75: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

εx

y

z

M

Page 76: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

εx

y

z

M

Page 77: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

εx

y

z

M

Page 78: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Experiment

Page 79: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Spin-dependent band gaps and their influence on the

electron-spin motion

Page 80: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Typical electronic band structure

Page 81: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Theory

Experimental results

Joly et al., PRL 96, 137206 (2006)

Page 82: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Spin-dependent band gaps and their influence on the

electron-spin motion

Fabry-Pérot experiments with spin-polarized electrons

Page 83: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Cu (001)

0P

Co

Quantum interference

Page 84: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

0P

Cu (001)

Co

Quantum interference

Cu

Page 85: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

0P

Cu (001)

Co

Quantum interference

Cu

Page 86: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

0P

Cu (001)

Co

Quantum interference

Cu

Page 87: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

0P

Cu (001)

Co

Quantum interference

Cu

Page 88: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Experimental results and simulations

Joly et al., PRL 97, 187404 (2006), Joly et al., PRB 76, 104415 (2007)

Page 89: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Joly et al., PRL 97, 187404 (2006), Joly et al., PRB 76, 104415 (2007)

Page 90: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Spin-dependent band gaps and their influence on the

electron-spin motion

Fabry-Pérot experiments with spin-polarized electrons

Morphology-induced oscillations of the electron-

spin precession

Page 91: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Tati Bismaths et al., PRB 77, 220405(R) (2008)

Fe/Ag(001)

Page 92: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

A/B without relaxation at the islands edges

Page 93: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

A/B with relaxation at the islands edges

Page 94: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

coverage

para

met

er

Page 95: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

coverage

para

met

er

coverage

para

met

er

Page 96: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

coverage

para

met

er

coverage

para

met

er

coverage

para

met

er

Page 97: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

coverage

para

met

er

coverage

para

met

er

coverage

para

met

er

coverage

para

met

er

Page 98: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Spin-dependent band gaps and their influence on the

electron-spin motion

Fabry-Pérot experiments with spin-polarized electrons

Morphology-induced oscillations of the electron-

spin precession

Influence of sub-monolayer MgO coverages on the spin-dependent

reflection properties of Fe

Page 99: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

T. Berdot et al., PRB 82, 172407 (2010)

d (ML)

Page 100: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

H.L. Meyerheim et al., Phys. Rev. B 65, 144433 (2002)

MgO-induced perpendicular relaxation of the Fe surface

Page 101: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

MgO-induced normal relaxation of the Fe surface

H.L. Meyerheim et al., Phys. Rev. B 65, 144433 (2002)

Page 102: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

MgO-induced normal relaxation of the Fe surface

0,0 0,5 1,0 1,5 2,0 2,5 3,00

5

10

15

20

Rel

axat

ion

(%)

MgO thickness (ML)

H.L. Meyerheim et al., Phys. Rev. B 65, 144433 (2002)

Page 103: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Page 104: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Page 105: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Page 106: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Page 107: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Page 108: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Ab initio calculations based on linear muffin-tin orbital method (LMTO) and the Korringa-Kohn-Rostoker (KKR) method.

Ab initio calculations

- 9 ML Fe

- First interlayer distance is relaxed without actually putting MgO on top of Fe

d=dFe bulk=1,43 Å

d = ?

Fe(001)

Page 109: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

0

10

20

30

40

0,0 0,2 0,4 0,6 0,8 1,0-20

-10

0

10

20

30

40

50

60

10

15

20

25

30

35

40

-5

0

5

10

15

20

25

(de

g.)

Theo

Exp

MgO thickness (ML)

(de

g.)

Theo

(d

eg.)

Exp

(d

eg.)

T. Berdot et al., PRB 82, 172407 (2010)

0,0 0,5 1,0 1,5 2,0 2,5 3,00

5

10

15

20

Re

lax

ati

on

(%)

MgO thickness (ML)

Page 110: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Spin-dependent band gaps and their influence on the

electron-spin motion

Fabry-Pérot experiments with spin-polarized electrons

Morphology-induced oscillations of the electron-

spin precession

Influence of sub-monolayer MgO coverages on the spin-dependent

reflection properties of Fe

Influence of lattice relaxation on the spin precession in Fe/Ag(001)

Page 111: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

prec

essi

on a

ngle

(de

gree

s)

A. Hallal et al., PRL 107, 087203 (2011)

Page 112: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

prec

essi

on a

ngle

(de

gree

s)

A. Hallal et al., PRL 107, 087203 (2011)

Page 113: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

prec

essi

on a

ngle

(de

gree

s)

A. Hallal et al., PRL 107, 087203 (2011)

Page 114: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

prec

essi

on a

ngle

(de

gree

s)

A. Hallal et al., PRL 107, 087203 (2011)

Page 115: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

prec

essi

on a

ngle

(de

gree

s)

A. Hallal et al., PRL 107, 087203 (2011)

Page 116: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

prec

essi

on a

ngle

(de

gree

s)

A. Hallal et al., PRL 107, 087203 (2011)

Page 117: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

prec

essi

on a

ngle

(de

gree

s)

A. Hallal et al., PRL 107, 087203 (2011)

Page 118: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

MgO/Fe(001)

pseudomorphic growth

dislocations

Page 119: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Ramsauer-Townsend effect

Resonance condition weak scattering

Page 120: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

on-resonance scattering phase is zero

off-resonance scattering phase is non-zero

Energy

Eex

Page 121: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

A. Hallal et al., PRL 107, 087203 (2011)

Page 122: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Spin-dependent band gaps and their influence on the

electron-spin motion

Fabry-Pérot experiments with spin-polarized electrons

Morphology-induced oscillations of the electron-

spin precession

Influence of sub-monolayer MgO coverages on the spin-dependent

reflection properties of Fe

Influence of lattice relaxation on the spin precession in Fe/Ag(001)

Organic molecules on ferromagnetic surfaces

Page 123: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

0,0 0,2 0,4 0,6 0,8 1,0

0

5

10

15

20

25

of H2Pc

of C60

(vert. shifted by 2o)

of Pentacontane (vert. shifted by 4o)

of carbon (vert. shifted by 12o)

prec

essi

on o

r ro

tatio

n an

gle

(deg

rees

)

thickness (ML)

Page 124: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Page 125: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Page 126: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Page 127: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Page 128: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

Laser

Polarizer

Pockels cell

Deflector

GaAs

Coils

Electron optics

SampleCoils

Electron optics

Retarding field analyser

Spin detector

Page 129: Magnetism in ultrathin films W. Weber IPCMS Strasbourg.

GaAs : Source of polarized electrons

% 50

NN

NNP