MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction...

40
CAN UNCLASSIFIED Magnetic Electric Acoustic Signature Underwater Ranging Experiment (MEASURE) Trial Report HMCS Glace Bay Signature Trials Layton Gilroy Sean Kavanaugh DRDC – Atlantic Research Centre CAN UNCLASSIFIED December 2019 DRDC-RDDC-2019-D140 Reference Document Defence Research and Development Canada

Transcript of MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction...

Page 1: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

���

� �

��

CAN�UNCLASSIFIED�

Magnetic�Electric�Acoustic�Signature�Underwater�Ranging�Experiment�(MEASURE)�Trial�Report��

HMCS�Glace�Bay�Signature�Trials��

Layton�Gilroy�Sean�Kavanaugh�DRDC�–�Atlantic�Research�Centre�����

CAN�UNCLASSIFIED

December 2019

DRDC-RDDC-2019-D140

Reference�Document

Defence�Research�and�Development�Canada

Page 2: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

CAN�UNCLASSIFIED�

Template�in�use:�EO�Publishing�App�for�SR-RD-EC�Eng�2018-12-19_v1�(new�disclaimer).dotm��©� Her�Majesty�the�Queen�in�Right�of�Canada�(Department�of�National�Defence),�2019�

©� Sa�Majesté�la�Reine�en�droit�du�Canada�(Ministère�de�la�Défense�nationale),�2019�

��

CAN�UNCLASSIFIED�

IMPORTANT�INFORMATIVE�STATEMENTS���

This�document�was�reviewed�for�Controlled�Goods�by�Defence�Research�and�Development�Canada�(DRDC)�using�the�Schedule�to�the�Defence�Production�Act.�

Disclaimer:�This�publication�was�prepared�by�Defence�Research�and�Development�Canada�an�agency�of�the�Department�of�National�Defence.�The�information�contained�in�this�publication�has�been�derived�and�determined�through�best�practice�and�adherence�to�the�highest�standards�of�responsible�conduct�of�scientific�research.�This�information�is�intended�for�the�use�of�the�Department�of�National�Defence,�the�Canadian�Armed�Forces�(“Canada”)�and�Public�Safety�partners�and,�as�permitted,�may�be�shared�with�academia,�industry,�Canada’s�allies,�and�the�public�(“Third�Parties”).��Any�use�by,�or�any�reliance�on�or�decisions�made�based�on�this�publication�by�Third�Parties,�are�done�at�their�own�risk�and�responsibility.�Canada�does�not�assume�any�liability�for�any�damages�or�losses�which�may�arise�from�any�use�of,�or�reliance�on,�the�publication.����

Endorsement�statement:�This�publication�has�been�published�by�the�Editorial�Office�of�Defence�Research�and�Development�Canada,�an�agency�of�the�Department�of�National�Defence�of�Canada.�Inquiries�can�be�sent�to:��[email protected].�

��

Page 3: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

DRDC-RDDC-2019-D140� i��

��

Abstract��

In�support�of�the�Maritime�Evaluation�(Evaluation�of�Naval�Signature�Management�System),�the�final�of�three�signature�ranging�activities�was�performed�on�the�Kingston-class�vessel�HMCS�Glace�Bay.�The�first�ranging,�which�took�place�in�Halifax�in�November�2017,�only�involved�infrared�and�radar�cross-section�measurements.�The�second�ranging,�also�Halifax,�involved�underwater�signatures�(acoustic,�magnetic,�and�electric)�and�onboard�measurements,�and�the�third�trial,�described�here,�was�also�limited�to�underwater�signatures�and�took�place�in�Europe�in�November�2018.�These�latter�trials�involved�multi-influence�(acoustic,�magnetic,�and�electric)�ranging�in�Stavanger,�Norway,�acoustic�ranging�in�Heggernes,�Norway,�electromagnetic�investigations�at�the�Earth�Magnetic�Field�Simulator�in�Shirnau,�Germany,�airborne�acoustic�measurements�during�transit,�and�multi-influence�ranging�in�Aschau,�Germany.�During�the�acoustic�rangings,�onboard�signature�predictions�were�made�using�the�transfer�functions�developed�from�the�ranging�data�from�the�second�trial.�The�electric�ranging�also�included�the�use�at�the�Aschau�range�of�DRDC’s�Underwater�Electric�Potential�(UEP)�array�which�was�also�deployed�during�the�Halifax�trials.�Data�from�these�trials�will�be�used�to�evaluate�onboard�acoustic�transfer�functions,�range�comparisons�for�both�acoustic�and�electric�signatures,�and�the�optimization�of�the�Glace�Bay’s�degaussing�system.�Overall,�the�trials�were�successful�in�performing�the�majority�of�the�planned�runs�and�gathering�the�required�signature�data�to�support�the�planned�work.�

Significance�to�Defence�and�Security��

The�trials�performed�using�HMCS�Glace�Bay�will�give�us�insights�into�the�requirements�and�performance�of�signature�monitoring�and�management�systems,�particularly�with�respect�to�the�equipment�and�measurements�required�to�support�such�systems.�The�data�should�also�provide�insight�into�the�comparability�of�various�signature�ranges,�the�performance�and�optimization�of�the�Glace�Bay’s�degaussing�system,�and�data�to�support�electric�signature�modelling.�These�lessons�should�be�valuable�when�applied�to�either�current�Canadian�Patrol�Frigate�(CPF),�Victoria�Class�Submarines�(VCS)�or�future�Canadian�Surface�Combatant�(CSC)�naval�platforms.�

Page 4: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

ii� DRDC-RDDC-2019-D140��

��

Résumé��

À�l'appui�de�l'évaluation�maritime�(évaluation�du�système�de�gestion�de�signature�navale),�la�dernière�de�trois�activités�de�télémétrie�de�signature�a�été�réalisée�sur�le�navire�de�classe�Kingston,�le�NCSM�Glace�Bay.�Le�premier�télémètre,�qui�a�eu�lieu�à�Halifax�en�novembre�2017,�ne�portait�que�sur�des�mesures�de�sections�efficaces�dans�l'infrarouge�et�le�radar.�Le�second,�Halifax�également,�impliquait�des�signatures�sous-marines�(acoustiques,�magnétiques�et�électriques)�et�des�mesures�à�bord.�Le�troisième�essai,�décrit�ici,�se�limitait�également�aux�signatures�sous-marines�et�avait�eu�lieu�en�Europe�en�novembre�2018.�Ces�derniers�essais�comprenaient�plusieurs�-influence�(acoustique,�magnétique�et�électrique)�à�Stavanger,�en�Norvège,�acoustique�à�Heggernes,�en�Norvège,�études�électromagnétiques�au�simulateur�de�champ�magnétique�terrestre�à�Shirnau,�en�Allemagne,�mesures�acoustiques�aéroportées�pendant�le�transit�et�multi-influences�à�Aschau,�Allemagne.�Au�cours�des�parcours�acoustiques,�les�prédictions�de�signature�embarquées�ont�été�effectuées�à�l'aide�des�fonctions�de�transfert�développées�à�partir�des�données�de�télémétrie�du�deuxième�essai.�La�télémétrie�électrique�incluait�également�l’utilisation�à�la�plage�d’Aschau�du�réseau�de�capteurs�de�potentiel�électrique�sous-marin�(PDE)�de�RDDC,�qui�avait�également�été�déployé�au�cours�des�essais�à�Halifax.�Les�données�de�ces�essais�serviront�à�évaluer�les�fonctions�de�transfert�acoustique�embarquées,�à�comparer�les�plages�pour�les�signatures�acoustiques�et�électriques�et�à�optimiser�le�système�de�démagnétisation�de�Glace�Bay.�Dans�l’ensemble,�les�essais�ont�réussi�à�effectuer�la�plupart�des�analyses�prévues�et�à�rassembler�les�données�de�signature�requises�pour�appuyer�les�travaux�prévus.�

Importance�pour�la�défense�et�la�sécurité��

Les�essais�réalisés�à�l’aide�du�NCSM�Glace�Bay�nous�permettront�de�mieux�comprendre�les�exigences�et�les�performances�des�systèmes�de�surveillance�et�de�gestion�des�signatures,�en�particulier�en�ce�qui�concerne�l’équipement�et�les�mesures�nécessaires�pour�supporter�de�tels�systèmes.�Les�données�doivent�également�permettre�de�mieux�comprendre�la�comparabilité�de�diverses�plages�de�signatures,�les�performances�et�l’optimisation�du�système�de�démagnétisation�de�Glace�Bay,�ainsi�que�les�données�permettant�de�prendre�en�charge�la�modélisation�des�signatures�électriques.�Ces�leçons�devraient�être�utiles�lorsqu'elles�sont�appliquées�aux�plates-formes�navales�actuelles�(CPF,�VCS)�ou�futures�(CSC).�

Page 5: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

DRDC-RDDC-2019-D140� iii��

��

Table�of�contents��

Abstract� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . � i�

Significance�to�Defence�and�Security�. . . . . . . . . . . . . . . . . . . . . . . . . � i�

Résumé� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �ii�

Importance�pour�la�défense�et�la�sécurité� . . . . . . . . . . . . . . . . . . . . . . . �ii�

Table�of�Contents�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . � iii�

List�of�Figures� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . � iv�

List�of�Tables� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �v�

Acknowledgements� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . � vi�

1� Introduction� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �1�

2� Trial�Outline� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �3�

2.1� Schedule� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �3�

2.2� Personnel� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �4�

2.3� Locations� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �4�

2.3.1� Stavanger�EM�Range� . . . . . . . . . . . . . . . . . . . . . . . . �4�

2.3.2� Heggernes�Acoustics�Range� . . . . . . . . . . . . . . . . . . . . . �5�

2.3.3� Earth�Magnetic�Field�Simulator�(Shirnau)� . . . . . . . . . . . . . . . . �6�

2.3.4� Aschau�Multi-Influence�Range� . . . . . . . . . . . . . . . . . . . . �7�

2.4� Security�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �8�

2.5� Shipboard�Equipment�. . . . . . . . . . . . . . . . . . . . . . . . . . . �8�

3� Stavanger�Ranging� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . � 10�

4� Heggernes�Ranging�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . � 14�

5� EMFS�Ranging� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . � 19�

6� Airborne�Noise�Trial� . . . . . . . . . . . . . . . . . . . . . . . . . . . . � 21�

7� Aschau�Ranging�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . � 22�

8� Lessons�Learned�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . � 24�

9� Conclusion�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . � 26�

References� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . � 28�

List�of�Symbols/Abbreviations/Acronyms/Initialisms�. . . . . . . . . . . . . . . . . . � 29�

Page 6: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

iv� DRDC-RDDC-2019-D140��

��

List�of�Figures��

Figure�1:� HMCS�Glace�Bay.� . . . . . . . . . . . . . . . . . . . . . . . . . . . . �2�

Figure�2:� Stavanger�range�[7].�. . . . . . . . . . . . . . . . . . . . . . . . . . . . �5�

Figure�3:� Heggernes�range�[7].� . . . . . . . . . . . . . . . . . . . . . . . . . . . �6�

Figure�4:� Location�WTD�71�Shirnau�(EMFS)�[7].�. . . . . . . . . . . . . . . . . . . . �7�

Figure�5:� Aschau�multi-influence�range�[7].� . . . . . . . . . . . . . . . . . . . . . . �8�

Figure�6:� Sound�velocity�profile�at�Stavanger.� . . . . . . . . . . . . . . . . . . . . � 12�

Figure�7:� Sound�velocity�profile�at�Heggernes.� . . . . . . . . . . . . . . . . . . . . � 15�

Figure�8:� Radiated�noise�comparison�at�3�knots.� . . . . . . . . . . . . . . . . . . . � 16�

Figure�9:� Radiated�noise�comparison�at�5�knots.� . . . . . . . . . . . . . . . . . . . � 16�

Figure�10:� Radiated�noise�comparison�at�7�knots.� . . . . . . . . . . . . . . . . . . . � 17�

Figure�11:� Radiated�noise�comparison�at�9�knots.� . . . . . . . . . . . . . . . . . . . � 17�

Figure�12:� Radiated�noise�comparison�at�12�knots.� . . . . . . . . . . . . . . . . . . . � 18�

Figure�13:� Radiated�noise�comparison�at�15�knots.� . . . . . . . . . . . . . . . . . . . � 18�

Figure�14:� Sound�velocity�profile�at�Aschau.� . . . . . . . . . . . . . . . . . . . . . � 23�

Page 7: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

DRDC-RDDC-2019-D140� v��

��

List�of�Tables��

Table�1:� HMCS�Glace�Bay�particulars.�. . . . . . . . . . . . . . . . . . . . . . . . �2�

Table�2:� Planned�trial�schedule.�. . . . . . . . . . . . . . . . . . . . . . . . . . . �3�

Table�3:� DRDC�and�related�personnel.� . . . . . . . . . . . . . . . . . . . . . . . . �4�

Table�4:� Pattern�of�diesel�alternators.� . . . . . . . . . . . . . . . . . . . . . . . � 10�

Table�5:� Stavanger�range�runs.� . . . . . . . . . . . . . . . . . . . . . . . . . . � 11�

Table�6:� Water�sample�analysis.� . . . . . . . . . . . . . . . . . . . . . . . . . � 13�

Table�7:� Heggernes�range�runs.�. . . . . . . . . . . . . . . . . . . . . . . . . . � 14�

Table�8:� Microphone�locations.�. . . . . . . . . . . . . . . . . . . . . . . . . . � 21�

Table�9:� Aschau�range�runs.� . . . . . . . . . . . . . . . . . . . . . . . . . . . � 22�

Page 8: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

vi� DRDC-RDDC-2019-D140��

��

Acknowledgements��

The�authors�would�like�to�thank�Courtney�Greene,�Jasper�Dupuis,�Heather�Smiley,�and�Dang�Phan�of�DRDC;�the�crew�of�HMCS�Glace�Bay;�the�range�staff�of�Fleet�Management�Facility�Cape�Scott;�the�German,�Norwegian,�and�Dutch�range�staff�of�the�Stavanger,�Heggernes,�Shirnau,�and�Aschau�ranges;�and�the�administrative�staff�of�Centre�for�Ship�Signature�Management�(CSSM)—in�particular��Florian�Koenig—for�their�professionalism�and�assistance�with�the�successful�completion�of�these�trials.�

Page 9: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

DRDC-RDDC-2019-D140� 1��

��

1� Introduction�

In�support�of�the�Maritime�Evaluation�(Evaluation�of�Naval�Signature�Management�System�[1]),�the�third�of�three�signature�ranging�activities�was�performed.�The�aim�of�the�maritime�evaluation�was�to�capture�the�at-sea�requirements�for�the�Naval�Signature�Management�Project�(01EC)�being�advanced�by��Defence�Research�and�Development�Canada�(DRDC)�–�Atlantic�Research�Centre�and�this�evaluation�covered�all�the�sea�trials�required�to�evaluate�a�signature�management�system�at�the�pre-prototype�stage.�The�primary�objective�of�01EC�is�to�enable�DRDC�to�provide�scientific�and�technical�advice�to�the�Royal�Canadian�Navy�(RCN)�on�Signature�Management�Systems�(SMS).�To�further�this�objective,�DRDC�intends�to�produce�and�demonstrate�on�a�ship�a�pre-prototype�underwater�SMS.�DRDC�produced�and�demonstrated�through�simulation�a�more�complete�version�of�this�SMS�through�an�international�collaboration�with�the�Centre�for�Ship�Signature�Management�(CSSM),�under�the�Continuous�Operational�Signature�Monitoring,�Awareness�and�Recommendation�(COSIMAR)�Project�[2].��

Overall,�the�Maritime�Evaluation�included�three�trials;�an�initial�complete�ship�ranging,�a�secondary�ranging�including�onboard�measurements,�and�a�final�ranging�with�a�limited�SMS�on�board.�The�initial�ranging,�which�took�place�in�Halifax�in�November�2017�[3],�was�limited�to�infrared�and�radar�cross-section�measurements�(due�to�Engineering�Change�(EC)�delays).�The�second�ranging�also�took�place�in�Halifax�in�June�2017,�and�involved�underwater�signatures�(acoustic,�magnetic,�and�electric)�and�onboard�measurements�and�is�described�in�[4].�This�Reference�Document�describes�the�third�series�of�trials�which�was�also�focussed�on�underwater�signatures�and�which�took�place�in�Europe�in��November�2018.�These�trials�are�collectively�known�as�the�Magnetic�Electric�Acoustic�Underwater�Ranging�Experiment�(MEASURE).�

DRDC�initiated�an�Engineering�Change�(EC)�[5]�to�outfit�the�ship�with�a�ship�motions�package,�accelerometers,�magnetometers,�and�electric�sensors,�as�well�as�a�Data�Acquisition�System�(DAQ)�and�a�limited�prototype�SMS�in�order�to�correlate�the�onboard�measurements�with�the�offboard�range�measurements.�These�data�were�used�to�assist�with�the�development�of�the�ship-specific�transfer�functions�required�for�an�operational�SMS.�This�EC�was�completed�immediately�prior�to�the�second�trial�with�the�final�installation�of�the�sensors�by�DRDC�staff.��

The�final�trial�within�the�Maritime�Evaluation�was�scheduled�for�the�month�of�November,�2018,�timed�for�the�start�of�the�trial�to�coincide�with�the�completion�of�the�naval�exercise�Trident�Juncture�[6]�taking�place�in�Norwegian�waters�in�which�several�RCN�vessels�including�the�planned�trials�vessel�HMCS�Glace�Bay�(GLA)�(see�Figure�1,�ship�particulars�in�Table�1),�would�be�participating.�GLA�was�the�ship�which�has�been�the�test�platform�in�the�first�two�trials.�DRDC�staff�would�join�the�ship�in�Stavanger,�Norway;�complete�the�outfitting�of�the�ship�for�trials,�then�stay�with�the�ship�performing�the�various�rangings.�Upon�completion�of�the�trials,�the�DRDC�staff�would�partially�strip�the�equipment�for�return�shipping,�then�be�flown�home�while�the�ship�returned�across�the�Atlantic�on�its�own�schedule.�

Overall,�as�described�in�more�detail�in�the�trials�plan�[7],�the�ship�performed�one�day�of�acoustic�and�Electromagnetic�(EM)�ranging�in�Stavanger,�then�transited�to�Heggernes,�Norway,�for�three�days�of�deep-water�acoustic�ranging,�followed�by�a�two-day�transit�to�Kiel�and�into�the�Kiel�Canal�to�enter�the�Earth�Magnetic�Field�Simulator�(EMFS)�in�Shirnau,�Germany,�for�six�days�of�magnetic�experiments.�Upon�departure�from�the�EMFS,�the�ship�performed�a�limited�set�of�airborne�noise�trials�en�route�back�through�the�Kiel�Canal�to�Eckernförde,�Germany.�The�ship�then�performed�three�days�of�multi-influence�ranging�at�the�Aschau�range�across�from�Eckernförde.�Upon�completion,�DRDC�staff�disembarked�in�Kiel.�Throughout�

Page 10: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

2� DRDC-RDDC-2019-D140��

��

portions�of�the�trials�DRDC�and�range�staff�(including�staff�from�Fleet�Maintenance�Facility�(FMF)�Cape�Scott,�Germany,�Norway,�and�the�Netherlands),�were�present�both�on�board�GLA�and�in�the�appropriate�range�facility.�

Figure�1:�HMCS�Glace�Bay.�

Table�1:�HMCS�Glace�Bay�particulars.�

Displacement� 970�long�tons�(990�t)�

Length� 55.3�m�(181�ft.�5�in)�

Beam� 11.3�m�(37�ft.�1�in)�

Draught� 3.4�m�(11�ft.�2�in)�

Speed� 15�knots�(28�km/h;�17�mph)�

The�goals�of�these�trials�included:�

1.� Evaluating�an�onboard�to�off-board�acoustic�transfer�function�(created�by�the�Netherlands�(NLD)�research�organization�TNO�through�the�Netherlands�Defence�Materiel�Organization�(DMO)).�

2.� Enabling�range�comparisons�between�Halifax,�Stavanger�(Norway),�Heggernes�(Norway)�and�Aschau�(Germany)�using�data�from�the�second�trial�for�Halifax.�

3.� Acquiring�data�to�support�the�development�of�electric�signature�models�and�evaluating�the�DRDC�UEP�array.�

4.� Optimizing�the�GLA�degaussing�system.�

This�report�outlines�the�trials�performed,�the�data�recorded,�preliminary�results,�and�any�lessons�learned.�Further�analysis�of�the�data�gathered�during�the�trials�will�be�published�in�separate�reports.��

Page 11: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

DRDC-RDDC-2019-D140� 3��

��

2� Trial�Outline�

The�trial�was�composed�of�five�largely�distinct�activities�involving�acoustic,�magnetic,�and�electric�rangings,�as�well�as�other�specialized�signature�measurements.�After�completing�the�Trident�Juncture�exercise,�GLA�proceeded�to�Stavanger�to�meet�the�trials�crew�from�DRDC.�While�the�majority�of�shipboard�sensors�had�been�installed�in�GLA�in�advance�of�the�June�trials,�DRDC�had�also�previously�shipped�trials�equipment�to�a�Forces�Sensor�and�Weapons�Accuracy�Check�Site�(FORACS)�facility�located�in�Stavanger�and�the�entire�UEP�array�to�the�range�facility�in�Aschau.�One�day�of�multi-influence�trials�were�performed�at�the�Stavanger�range,�followed�by�a�northern�transit�to�the�Heggernes�range�(near�Bergen)�where�three�days�of�acoustic�ranging�were�completed.�The�ship�sailed�two�days�south�to�the�Kiel�Canal�where�it�docked�at�the�Earth�Magnetic�Field�Simulator�for�six�days�of�magnetic�measurements.�After�completion,�the�ship�exited�the�Kiel�Canal�and�headed�for�Eckernförde�performing�onboard�acoustic�measurements�en�route.�The�last�trial�involved�three�days�of�multi-influence�ranging�at�the�Aschau�range�in�Germany.�DRDC�staff�then�removed�the�trials�equipment�(not�the�sensors)�for�shipment�home�and�disembarked�the�ship.�GLA�then�sailed�for�its�return�journey�to�Halifax�in�company�with�HMCS�Summerside.�

2.1� Schedule�

An�outline�of�the�trials�schedule�is�shown�in�Table�2.�

Table�2:�Planned�trial�schedule.�

Date� Activity�

Nov�9–12� Embark�GLA�and�outfit�ship.�

Nov�13� EM�ranging�Stavanger.�

Nov�14–16� Acoustic�ranging�Heggernes.�

Nov�17–18� Transit�to�EMFS.�

Nov�19–26� Magnetic�work�in�EMFS.�

Nov�27� Transit�to�Eckernförde,�airborne�noise�testing�en�route.�

Nov�27–30� Multi-influence�ranging�Aschau.�

Nov�30� �Disembark�GLA,�strip�trials�equipment.�

Page 12: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

4� DRDC-RDDC-2019-D140��

��

2.2� Personnel�

The�DRDC�and�related�Canadian�personnel�involved�in�the�trial�are�shown�in�Table�3.�The�ship-borne�personnel�are�noted�with�an�asterisk.�Remaining�personnel�travelled�as�necessary�and�stayed�in�hotels.�

Table�3:�DRDC�and�related�personnel.�

Name� �Role�

Layton�Gilroy*� Chief�Scientist,�acoustic�ranging�lead.�

Sean�Kavanaugh*� Project�Manager,�primary�ship�liaison.�

Yueping�Wang� UEP�ranging�lead�(Stavanger�and�Aschau).�

Marius�Birsan� Magnetic�ranging�lead�(EMFS).�

Courtney�Greene*� Computer�scientist,�data�acquisition.�

Jasper�Dupuis*� Computer�scientist,�data�acquisition.�

Heather�Smiley*� Technologist,�sensor�and�equipment�management.�

Dang�Phan*� Technologist,�sensor�and�equipment�management.�

Dirk�Bouter� FMF�Cape�Scott�magnetic�expert�(at�EMFS).�

Gordon�Bennett� FMF�Cape�Scott�acoustic�expert�(at�various�ranges).�

Stanley�Au� FMF�Cape�Scott�electrician�(at�EMFS).�

*�Ship-borne�personnel.�

2.3� Locations�

The�following�section�describes�the�various�ranges�and�facilities�used�during�the�trial.�All�rangings�were�performed�at�established�military�ranges�and�met�their�environmental�and�operational�protocols.��

2.3.1� Stavanger�EM�Range�

Figure�2�shows�the�Stavanger�multi-influence�range�location�north�of�the�city�of�Stavanger,�Norway,�where�the�first�trial�was�performed.�The�range�house�is�annotated�and�the�nominal�underwater�sensor�locations�indicated�by�the�red�dots.�The�range�has�deployable�acoustic,�electric,�and�magnetic�sensors.�In�

Page 13: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

DRDC-RDDC-2019-D140� 5��

��

this�trial�the�ship�sailed�the�three�tracks�indicated,�primarily�for�magnetic�reasons.�The�range�is�somewhat�confined,�particularly�in�the�270°�and�315°�directions,�leading�to�careful�monitoring�of�the�turns�by�ship�staff,�particularly�at�high�speed.�Electric�measurements�were�also�made�for�signature�modelling�and�water�samples�were�taken�for�further�analysis�in�Halifax.�There�was�limited�range�fouling�although,�in�any�case,�acoustics�were�not�the�focus.�

Figure�2:�Stavanger�range�[7].�

2.3.2� Heggernes�Acoustics�Range�

Figure�3�shows�a�sketch�of�the�deep-water�Heggernes�acoustics�range�located�near�the�city�of�Bergen,�Norway.�As�noted�in�[7],�the�range�has�port,�starboard,�and�keel�hydrophones�over�which�the�ship�sails�using�approximately�the�track�shown.�The�hydrophones�can�be�raised�and�lowered�to�different�depths.�The�Herdle�fjord�is�over�300�m�deep�at�this�location,�leading�to�conditions�more�closely�approximating�open�ocean�(or�free�field)�conditions�in�very�sheltered�waters.��

Page 14: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

6� DRDC-RDDC-2019-D140��

��

Figure�3:�Heggernes�range�[7].�

2.3.3� Earth�Magnetic�Field�Simulator�(Shirnau)�

Figure�4�shows�the�Earth�Magnetic�Field�Simulator�(EMFS)�which�is�an�unique�facility�[7]�allowing�for�the�simulation�of�the�local�magnetic�field�anywhere�in�the�world�on�the�platform�within�it.�The�EMFS�is�commonly�used�to�assess�the�magnetic�state�of�both�Mine�Countermeasures�(MCM)�platforms�and�submarines�which�are�typically�the�largest�vessels�capable�of�fitting�within�the�simulator.�The�simulator�resembles�an�open�frame�building�with�a�series�of�wire�coils�used�to�carry�the�currents�to�simulate�the�magnetic�field�in�all�three�coordinate�directions.�The�facility�also�has�an�extensive�network�of�sensors�on�the�canal�bed�below�used�to�precisely�map�the�platform�signature�within�the�facility.�GLA�is�the�second�Canadian�vessel�to�enter�the�facility�(following�CFAV�QUEST�in�2011).�

Page 15: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

DRDC-RDDC-2019-D140� 7��

��

Figure�4:�Location�WTD�71�Shirnau�(EMFS)�[7].�

2.3.4� Aschau�Multi-Influence�Range�

Figure�5�shows�the�location�of�the�Aschau�ranging�facility�located�northwest�of�the�city�of�Kiel,�Germany,�and�across�the�fjord�from�Germany’s�Eckernförde�naval�base.�Aschau�is�a�multi-influence�range�with��two�acoustic�sensor�areas,�a�magnetic�array�and�a�UEP�array.�The�water�depth�at�Aschau�is�about�20�m,�making�it�the�shallowest�of�the�ranges.�

Page 16: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

8� DRDC-RDDC-2019-D140��

��

Figure�5:�Aschau�multi-influence�range�[7].�

A�typical�ship�track�is�shown�(green�arrows)�while�the�red�arrow�marks�the�location�of�the�range�house.�DRDC�also�deployed�their�UEP�array�with�the�help�of�German�Navy�divers�at�the�range�location�athwart�the�expected�ship�track.�

2.4� Security�

All�data�gathered�onboard�GLA�were�unclassified�and�were�treated�with�normal�security�protocols.�Regardless�of�classification,�care�was�taken�to�transport�all�data�by�hand�to�DRDC.�A�copy�of�all�onboard�data�was�delivered�to�CSSM�for�storage�and�subsequent�distribution�as�required.�

Processed�acoustic�data�gathered�at�the�acoustic�ranges�was�classified�SECRET�and�was�treated�as�required�if�any�transportation�was�necessary.�A�secure�facility�was�available�onboard�GLA�to�store�any�classified�data.�Processed�magnetic�and�UEP�data�gathered�at�the�EM�ranges�were�classified�CONFIDENTIAL�and�was�also�treated�as�required.�

2.5� Shipboard�Equipment�

A�major�initiative�of�this�trial�included�the�measurement�of�onboard�signature-related�data�to�correlate�with�off-board�measurements.�To�accomplish�this,�a�set�of�acoustic�and�magnetic�sensors�were�installed�as�described�in�an�Engineering�Change�(EC)�OTT-1601A�[5]�and�the�Trials�Plan�[7].�The�sensor�fit�included�a�ship�motions�package,�59�accelerometers,�11�magnetometers,�and�two�shaft�rpm�sensors�(one�per�shaft)�as�well�as�the�associated�data�acquisition�equipment.�

The�accelerometers�were�placed�either�near�the�mounts�of�the�expected�significant�noise�sources�(machinery)�on�the�ship�or�on�the�ship�hull�itself.�The�hull�accelerometers�were�placed�below�the�waterline�on�both�port�and�starboard�as�well�as�on�the�hull�above�the�propellers.�The�machinery�accelerometers�were�placed�below�any�isolation�mounts�as�close�as�possible�to�the�attachment�point�of�the�machinery.�An�acoustic�Data�Acquisition�System�(DAQ)�was�installed�in�the�ship’s�switchboard�compartment�and�connected�by�a�network�cable�to�the�bridge�where�all�information�was�processed.�Acoustic�data�were�sampled�at�25�kHz.�

Page 17: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

DRDC-RDDC-2019-D140� 9��

��

Magnetometers�were�equally�spaced�(fore�and�aft,�port�and�starboard)�on�the�machinery�deck�level�except�for�one�that�was�placed�on�the�mast�for�use�in�the�EMFS).�These�sensors�consisted�of�tri-axial�magnetometer�nodes�with�tri-axial�accelerometers�for�sensor�orientation,�both�sampled�at�2000�samples�per�second.�Three�chains�of�nodes�(six�forward�nodes,�four�aft�nodes,�and�the�mast�node)�were�connected�to�an�Omnitech�Electronics�Array�Receiver�(ARC).�The�ARC�provided�synchronization�signals�to�the�nodes,�received�the�data�from�the�nodes,�timestamped�them,�and�packetized�it�for�transmission�on�the�network�interface�to�the�ship’s�bridge�central�location.�

During�the�trial,�the�operation�of�the�sensors�was�checked�on�a�regular�basis�(at�minimum�before�each�major�trial�event)�by�tapping�of�the�accelerometers�and�moving�small�magnets�in�front�of�the�magnetometers.�

A�modified�version�of�the�COSIMAR�SMS�[2]�was�deployed�on�the�rear�bridge�of�GLA�to�process�and�manage�the�trials�data�and�to�monitor�the�status�of�the�sensors.�

Page 18: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

10� DRDC-RDDC-2019-D140��

��

3� Stavanger�Ranging�

The�primary�objectives�of�the�Stavanger�ranging�were�to�gather�data�to�support�magnetic�range�comparisons,�gather�data�to�support�electric�range�comparisons,�and�gather�data�for�electric�signature�modelling.�As�such,�the�run�variations�covered�various�ship’s�degaussing�states�(magnetic)�and�the��three�separate�modes�(Off,�Harbour,�and�Sea)�of�the�Marine�Growth�Prevention�(MGP)�system�(electric).�Ship�speeds�were�varied�for�the�electric�signature�requirements�(UEP�signature�is�speed�dependent).�

As�the�water�composition�is�a�factor�in�electric�signature,�DRDC�took�water�samples�and�performed�Conductivity,�Temperature,�Depth�(CTD)�measurements�during�breaks�between�ranging�runs.�The�ship�was�also�requested�to�perform�an�XBT�(Bathythermograph)�measurement�three�times�per�day�(roughly�at�the�start�of�runs,�midway�through,�and�near�the�end�of�the�runs).��

Due�to�minor�issues�with�the�diesel�alternator�set�identified�as�DA1,�the�ship�preferred�to�use�DA2�when�using�only�one�DA�at�the�lowest�speeds.�This�changed�the�expected�machinery�states�to�that�shown�in�Table�4.�

Table�4:�Pattern�of�diesel�alternators.�

Number�of�DA’s�Required� Approximate�Ship�Speed�Range�(kn)�

DA’s�Used�

1� 0–7� 2�

2� 7–10� 2,4�

3� 10–12� 1,2,4�

4� 12–15� 1,2,3,4�

The�wind�speeds�were�moderate�during�this�ranging�averaging�about�12�knots�from�the�east;�however�sea�states�were�reasonably�low�(wave�heights�less�than�0.5�m)�due�to�the�protected�nature�of�the�range�location.�Table�5�shows�the�runs�performed�in�the�order�in�which�they�were�done.�Overall,�47�runs�were�performed,�ranging�from�5�to�15�knots.�While�some�details�are�missing�from�the�table�(due�to�physical�logging�errors),�the�missing�data�are�available�in�the�respective�data�files.�Note�also�that�the�magnetic�state�of�the�ship�was�varied�(as�per�the�trial�plan),�but�this�is�not�shown�in�this�table.�

� �

Page 19: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

DRDC-RDDC-2019-D140� 11��

��

Table�5:�Stavanger�range�runs.�

Run�Number�

Port�RPM�

Stbd�RPM�

Speed�Over�

Ground�(kn)�

DA's�In�Use�

MGP�State�

1� 315� 315� � 2� Off�

2� � � � 2� Off�

11� � � � 2� Sea�

12� � � � 2� Sea�

25� � � 5.3� 2� Harbour�

26� 316� 315� 5.5� 2� Harbour�

31� 546� 550� 9.1� 2,�4� Harbour�

32� 543� 552� 9.2� 2,�4� Harbour�

17� 545� 550� 9.1� 2,�4� Sea�

18� � � 9.2� 2,�4� Sea�

7� � � � 2,�4� Off�

8� 550� 556� 9.3� 2,�4� Off�

9� 765� 753� 11.9� 1,�2,�4� Off�

10� 766� 750� 11.8� 1,�2,�4� Off�

19� 765� 750� 12.0� 1,�2,�4� Sea�

20� 765� 750� 12.3� 1,�2,�4� Sea�

33� 765� 750� 11.9� 1,�2,�4� Harbour�

34� 765� 750� 12.4� 1,�2,�4� Harbour�

35� 940� 940� 14.5� 1,�2,�4� Off�

36� 946� 946� 14.6� 1,�2,�4� Off�

3� 330� 325� 5.4� 2� Off�

4� 320� 325� 5.6� 2� Off�

5� 309� 329� 6.2� 2� Off�

6� 320� 322� 5.3� 2� Off�

15� 320� 324� 5.2� 2� Sea�

16� 322� 326� 5.2� 2� Sea�

29� 318� 319� 5.6� 2� Harbour�

30� 317� 321� 5.3� 2� Harbour�

13� 316� 326� 5.2� 2� Sea�

14� 313� 321� 5.5� 2� Sea�

27� 314� 317� 5.3� 2� Harbour�

28� 321� 324� 5.2� 2� Harbour�

21� 320� 321� 5.2� 2� Sea�

22� 325� 325� 5.6� 2� Sea�

23� 316� 320� 5.2� 2� Sea�

Page 20: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

12� DRDC-RDDC-2019-D140��

��

Run�Number�

Port�RPM�

Stbd�RPM�

Speed�Over�

Ground�(kn)�

DA's�In�Use�

MGP�State�

24� 314� 321� 5.5� 2� Sea�

1� 321� 322� 5.4� 2� Off�

2� 321� 325� 5.5� 2� Off�

9� 745� 746� 12.1� 1,�2,�4� Off�

10� 740� 755� 12.0� 1,�2,�4� Off�

19� 744� 745� 11.9� 1,�2,�4� SEa�

20� 746� 745� 12.0� 1,�2,�4� Sea�

35� 927� 922� 14.3� 1,�2,�3,�4� Off�

36� 928� 923� 13.9� 1,�2,�3,�4� Off�

36� 974� 968� 14.0� 1,�2,�3,�4� Off�

7� 550� 557� 9.0� 2,�4� Off�

23� 320� 307� 5.2� 2� Sea�

The�sound�speed�profile�determined�from�a�sample�CTD�measurement�is�shown�Figure�6�(note�that�the�water�depth�was�limited�at�this�location).�

Figure�6:�Sound�velocity�profile�at�Stavanger.�

The�water�samples�were�analyzed�upon�returning�to�Halifax�and�the�results�are�shown�in�Table�6.�Note�the�significant�differences�between�the�two�locations�(Stavanger�and�Aschau).�

Page 21: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

DRDC-RDDC-2019-D140� 13��

��

Table�6:�Water�sample�analysis.�

�� �� Aschau� Stavanger�

Concentration�(ppm�or�mg/kg)�

Na� 6296� 10,004�

Mg� 763� 1197�

K� 246� 352�

Ca� 104� 175�

Cl� 10,970� 17,900�

�� pH� 7.02� 7.35�

�� Conductivity�(mS/cm)�at�24.1°C� 34.1� 51.1�

��Practical�Salinity�Units�((PSU),�calculated,�PSS-78)� 21.8� 34.2�

Overall,�the�Stavanger�ranging�was�deemed�successful�with�the�entire�run�plan�covered�and�all�planned�data�gathered.�

Page 22: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

14� DRDC-RDDC-2019-D140��

��

4� Heggernes�Ranging�

The�primary�focus�of�the�Heggernes�ranging�was�on�acoustic�signatures�as�this�range�is�considered�optimal�for�such�measurements�given�the�deep�water�and�variable�position�hydrophones.�The�wind�speeds�were�moderate�during�this�ranging�averaging�about�15�knots�from�the�west;�however�wave�heights�were�less�than�0.5�m�due�to�the�protected�nature�of�the�range�location.�Wind�speeds�did�decrease�somewhat�over�the�three�days,�but�stayed�over�10�knots�until�the�very�last�runs.�Table�7�shows�the�runs�performed�in�the�order�in�which�they�were�done.�Overall,�116�runs�were�performed,�ranging�from�5�to�15�knots.�While�some�details�are�missing�from�the�table�(due�to�physical�logging�errors),�the�missing�data�are�available�in�the�respective�data�files.��

Table�7:�Heggernes�range�runs.�

Run�

Number Port�RPM Stbd�RPM

Speed�Over�

Ground�(kn)

DA's�In�

Use

Run�

Number Port�RPM Stbd�RPM

Speed�Over�

Ground�(kn)

DA's�In�

Use

Run�

Number Port�RPM Stbd�RPM

Speed�Over�

Ground�(kn)

DA's�In�

Use

61 552 542 9.8 2,�4 74 298 302 5.0 2 67 1,�2,�3,�4

62 530 549 8.1 2,�4 75 298 296 5.2 2 68 941 936 14.2 1,�2,�3,�4

63 2,�4 76 304 302 4.9 2 67 932 931 15 1,�2,�3,�4

64 534 548 8.2 2,�4 77 332 334 5.8 2 70 931 934 14.2 1,�2,�3,�4

65 532 550 10.0 2,�4 78 337 329 5.5 2 69 938 934 14.8 1,�2,�3,�4

66 540 548 8.1 2,�4 79 338 333 5.8 2 72 931 932 14.1 1,�2,�3,�4

1 191 187 4.0 2 80 334 331 5.5 2 71 937 929 14.9 1,�2,�3,�4

12 328 314 4.4 2 81 317 322 5.5 2 113 548 562 8.9 2,�4

11 322 316 6.3 2 82 314 317 5.3 2 112 563 569 9.6 2,�4

14 312 308 4.4 2 83 307 322 5.6 2 102 425 434 7.0 2

13 304 317 5.6 2 84 317 322 5.3 2 103 Fouled 2

16 304 309 4.3 2 85 305 319 5.3 2 104 426 431 6.9 2

15 310 315 5.4 2 86 315 310 5.0 2 103 427 437 7.9 2

42 313 316 4.4 4 87 311 314 5.5 2 108 287 299 4.6 2

41 333 353 6.0 4 88 317 316 5.0 2 105 430 437 7.7 2

44 309 314 4.3 4 89 318 314 5.5 2 111 327 309 4.8 2

43 300 312 6.2 4 90 312 306 5.0 2 29R 740 717 12.1 1,�2,�4

46 305 305 4.5 4 23 720 740 12.3 1,�2,�4 30R 736 742 11.8 1,�2,�4

45 317 307 5.9 3 24 746 746 12.1 1,�2,�4 32 744 735 11.8 1,�2,�4

48 300 311 4.5 3 26 749 752 11.9 1,�2,�4 33 739 740 12.3 1,�2,�4

47 310 310 6.0 3 25 728 750 12.2 1,�2,�4 20 322 312 5.3 2

54 313 312 4.6 3 28 749 749 12.0 1,�2,�4 19 330 315 5.7 2

53 320 309 6.0 3 27 744 744 12.4 1,�2,�4 22 326 315 5.4 2

56 310 307 4.5 3 6 311 311 5.1 2 21 310 313 5.5 2

55 318 308 6.0 3 5 316 312 5.6 2 115 821 819 12.8 1,�2,�4

50 312 307 4.5 1 8 310 309 4.9 2 31 738 739 12.1 1,�2,�4

49 316 305 5.9 1 7 310 307 5.5 2 98 235 237 4.0 2

52 340 345 5.2 1 10 307 306 4.7 2 99 237 234 4.3 2

51 345 350 6.5 1 9 308 312 5.5 2 100 233 241 4.2 2

58 320 320 5.1 2 36 750 735 11.9 1,�2,�4 101 232 234 4.3 2

57 320 320 6.3 2 35 755 735 12.5 1,�2,�4 114 734 736 12.0 1,�2,�4

60 320 320 5.2 2 36R 758 744 11.8 1,�2,�4 1 207 204 3.4 2

59 320 320 6.2 2 37 763 751 12.5 1,�2,�4 2 199 200 3.3 2

79 4.4 38 757 742 11.9 1,�2,�4 3 195 198 3.2 2

73 6.0 39 737 754 12.5 1,�2,�4 4 205 201 2.9 2

40 790 748 12.1 1,�2,�4 4R 183 167 3.0 2

17 310 331 5.6 2

18 314 320 4.6 2

29 742 731 12.4 1,�2,�4

30 750 729 11.6 1,�2,�4

31 754 733 12.4 1,�2,�4

32 755 727 11.6 1,�2,�4

33 750 723 12.5 1,�2,�4

34 753 728 11.5 1,�2,�4

Day�1 Day�2 Day�3

Page 23: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

DRDC-RDDC-2019-D140� 15��

��

CTD�and�XBT�measurements�were�again�performed�during�breaks�in�the�ranging�runs.�The�first�CTD�measurement�was�limited�(in�depth)�due�to�deployment�difficulties,�but�subsequent�deployments�were�more�successful.�Sample�sound�speed�profiles�from�CTD�measurements�are�shown�Figure�7�(note�that�the�CTD�did�not�go�the�full�depth�of�the�Heggernes�range).�The�first�day�shows�a�significant�difference�from�the�later�days,�likely�due�to�the�heavy�rainfall�experienced�immediately�prior�to�arriving�at�the�range.�

Figure�7:�Sound�velocity�profile�at�Heggernes.�

The�Heggernes�ranging�was�the�first�opportunity�to�test�the�signature�prediction�capability�available�within�the�limited�SMS.�Using�data�from�the�onboard�accelerometers�and�the�acoustic�transfer�function�provided�by�TNO,�signature�predictions�were�made�during�each�acoustic�ranging�run�through�the�installed�SMS.�These�were�stored�for�later�comparison�to�standard�range�measurements�made�by�the�acoustic�range�staff�at�both�Heggernes�and�Aschau.�As�the�predictions�include�a�Lloyd’s�Mirror�effect�(destructive�and�constructive�interference�particularly�important�at�lower�frequencies),�a�theoretical�Lloyd’s�Mirror�was�incorporated�into�the�range�measurements.�Figure�8�through�Figure�13�show�the�comparison�for�various�ship�speeds�in�1/3-octave�bands.�Note�that�the�vertical�and�horizontal�axis�labels�have�been�removed�for�classification�reasons.�These�figures�are�representative�only,�showing�only�a�few�runs�as�part�of�a�preliminary�analysis.�Given�the�limitations�of�the�analysis�(a�more�complete�analysis�will�be�reported�at�a�later�date),�the�predictions�are�remarkably�close�to�the�measurements,�particularly�at�lower�speeds.�There�is�some�deviation�at�higher�frequencies�at�higher�speeds.�Note�also�that�the�predictions�are�based�on�Halifax�range�data�and�that�some�range�differences�are�expected.�

Page 24: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

16� DRDC-RDDC-2019-D140��

��

Figure�8:�Radiated�noise�comparison�at�3�knots.�

Figure�9:�Radiated�noise�comparison�at�5�knots.�

Page 25: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

DRDC-RDDC-2019-D140� 17��

��

Figure�10:�Radiated�noise�comparison�at�7�knots.�

Figure�11:�Radiated�noise�comparison�at�9�knots.�

Page 26: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

18� DRDC-RDDC-2019-D140��

��

Figure�12:�Radiated�noise�comparison�at�12�knots.�

Figure�13:�Radiated�noise�comparison�at�15�knots.�

Page 27: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

DRDC-RDDC-2019-D140� 19��

��

5� EMFS�Ranging�

After�departing�Heggernes,�the�ship�sailed�south�to�Aschau�and�entered�the�Kiel�Canal,�eventually�docking�at�the�Earth�Magnetic�Field�Simulator�(EMFS)�in�Shirnau,�Germany.�Trials�took�place�at�the�EMFS�over�6�working�days.�The�objectives�of�these�trials�included:�

1.� Measuring�and�optimizing�the�magnetic�condition�of�GLA;�

2.� Measuring�the�magnetic�coil�effects;�

3.� Data�collection�to�support�the�development�of�closed-loop�monitoring�and�degaussing;�

4.� Assessing�the�performance�of�GLA’s�degaussing�system;�and�

5.� Measuring�the�effects�of�ship-board�magnetic�sources�on�the�signature�of�GLA.�

These�objectives�were�chosen�to�meet�the�requirements�of�the�following�stakeholders:�DRDC,�FMF��Cape�Scott,�the�CSSM,�and�Director�Naval�Platform�Systems�(DNPS).�Personnel�from�the�first�three�stakeholders�were�present�at�various�points�to�help�with�the�conduct�of�the�trial.�

The�various�tests�were�conducted�by�applying�currents�to�the�coils�in�the�EMFS�to�generate�known�magnetic�fields.�Measurements�were�then�taken�by�three�different�sets�of�magnetic�sensors:�off-board�sensors�located�below�the�ship�at�9�m�and�13�m,�on-board�sensors�located�within�the�hull,�and�finally�on-board�sensors�located�outside�the�hull�on�the�forecastle�deck.�The�preferred�place�for�on-board�magnetometers�is�within�the�hull,�but�there�is�some�question�as�to�whether�or�not�data�acquired�by�these�sensors�is�sufficiently�representative�of�the�off�board�magnetic�field�to�be�useful�in�the�development�of�a�closed-loop�degaussing�system.�The�forecastle�magnetometers�were�installed�in�order�to�mitigate�this�risk.�

The�trials�program�began�with�calibrations�of�both�the�EMFS�and�GLA’s�degaussing�system.�An�evaluation�on�the�effectiveness�of�the�DG�system�was�then�performed.�This�was�accomplished�by�first�simulating�a�journey�around�the�world,�including�the�locations�of�the�other�magnetic�ranges,�both�poles�and�the�equator.�The�next�step�was�to�measure�the�ship’s�response�to�roll�and�pitch�induced�eddy�currents.�These�experiments�were�conducted�with�both�the�degaussing�system�on�and�off.��

A�second�group�of�trials�was�conducted�to�determine�the�physical�parameters�of�GLA’s�magnetic�condition.�The�ship’s�magnetic�viscosity�was�measured�by�creating�a�step�change�in�the�magnetic�field�along�all�three�axes.�The�linearity�of�the�ship’s�response�to�an�applied�field�was�measured�by�applying�a�sequence�of�slowly�changing�triangular�fields.�Finally,�the�permanent�magnetizations�of�GLA�were�measured�by�having�the�EMFS�null-out�the�earth’s�field.�

The�third�group�of�trials�was�performed�in�order�to�measure�the�characteristics�of�the�degaussing�system’s�coils.�Coil�linearity�tests�were�performed�by�slowly�ramping�up�the�current�in�each�set�of�coils�(M.A,�L)�in�a�null�field.�The�effects�of�coil�failures,�namely�current�reversals�and�short�circuits,�were�then�measured�in�the�ambient�field.�

Lastly,�the�effects�of�ship-board�magnetics�sources�on�the�overall�signature�were�measured.�This�was�done�by�changing�the�load�conditions�of�GLA’s�diesel�generators.�A�portable�magnetic�source�was�then�placed�

Page 28: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

20� DRDC-RDDC-2019-D140��

��

at�various�points�inside�the�hull�and�excited�at�multiple�frequencies.�Finally,�the�effects�of�the�Marine�Growth�Prevention�(MGP)�system�were�measured.�

While�a�complete�analysis�of�all�the�trial�runs�has�not�yet�been�completed,�here�are�some�preliminary�observations:�

1.� There�were�large�discrepancies�between�the�measurements�made�in�Halifax�prior�to�deployment�and�the�measurements�made�inside�the�EMFS.�This�could�indicate�that�a�magnetic�relaxation�process�is�occurring.��

2.� Regardless�of�ship�location,�there�is�an�asymmetry�between�the�Induced�Vertical�Magnetization�and�the�Permanent�Vertical�Magnetization.�This�difference�limits�the�performance�of�the�degaussing�system.�

3.� The�two�operating�modes�for�the�degaussing�system,�Magnetic�Probe�mode�and�Map�mode,�do�not�protect�the�ship�in�a�comparable�way.�The�difference�between�these�modes�increases�with�the�distance�from�Halifax�(initial�setting).�

Page 29: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

DRDC-RDDC-2019-D140� 21��

��

6� Airborne�Noise�Trial�

During�the�last�day�in�the�EMFS,�CSSM�staff�came�on�board�to�install�a�series�of�microphones�and�recording�equipment�to�measure�airborne�noise�in�the�primary�machinery�spaces.�The�purpose�was�to�attempt�to�determine�correlations�between�various�machinery�states�and�ship�speeds�and�the�resulting�airborne�noise�(which�can�then�contribute�to�underwater�noise).�

Six�microphones�and�a�data�acquisition�system�were�installed.�The�microphones�were�located�as�shown�in�Table�8�along�with�the�primary�noise�source�to�be�monitored.�

Table�8:�Microphone�locations.�

Microphone� Compartment� Noise�Source�

A1� Z-Drive� Port�&�Stbd�Z-drives�

A2� Motor�Room� Port�&�Stbd�propulsion�motors�

A3� Aft�Machinery�Room� DA3�and�DA4�

A4� Aft�Machinery�Room� Ship�service�diesel�alternator�

A5� Forward�Machinery�Room� DA1�and�DA2�

A6� Forward�Machinery�Room� Ship�service�diesel�alternator�

Fourteen�runs�were�completed�as�per�the�original�trials�plan�with�speeds�increasing�from�3�to�15�knots�in�1-knot�increments.�No�preliminary�results�were�available�at�this�time,�although�the�data�were�gathered�successfully.�This�effort�is�being�led�by�TNO.�

Page 30: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

22� DRDC-RDDC-2019-D140��

��

7� Aschau�Ranging�

The�rangings�at�Aschau�were�multi-influence�running�over�two�acoustics�arrays,�a�magnetic�array,�a�fixed�UEP�array,�and�DRDC’s�portable�UEP�array.�While�at�the�EMFS,�DRDC�staff�travelled�to�Aschau�and,�assisted�by�German�Navy�divers,�deployed�the�UEP�array�across�the�expected�ship�track�close�to�the�existing�Aschau�arrays.�

The�wind�speeds�were�moderate�to�light�during�this�ranging�averaging�less�than�10�knots�from�the�south�and�sea�states�were�correspondingly�low�(sea�state�1).�The�ranging�area�is�less�protected�than�Stavanger�or�Heggernes,�but�the�wind�speeds�were�generally�lower.�Table�9�shows�the�runs�performed�in�the�order�in�which�they�were�done.�Overall,�63�runs�were�performed,�ranging�from�3�to�15�knots.�While�some�details�are�missing�from�the�table�(due�to�physical�logging�errors),�the�missing�data�are�available�in�the�respective�data�files.�See�the�trials�plan�for�the�electric�and�magnetic�states.�Note�that�some�time�was�lost�on�Day�1�due�to�a�morning�refueling�and�a�mid-day�medical�emergency�(a�crew�member�had�to�be�taken�off�GLA).�

Table�9:�Aschau�range�runs.�

A�sample�sound�speed�profile�generated�from�a�CTD�measurement�is�shown�in�Figure�14,�noting�again�that�the�water�depth�is�quite�shallow�at�this�location.�Water�samples�were�also�gathered�for�the�electric�ranging�analysis�(see�Table�6).�The�initial�acoustic�data�were�compared�with�the�onboard�predictions�as�discussed�in�Section�4.�

Run�

Number Port�RPM Stbd�RPM

Speed�Over�

Ground�(kn)

DA's�In�

Use

Run�

Number Port�RPM Stbd�RPM

Speed�Over�

Ground�(kn)

DA's�In�

Use

Run�

Number Port�RPM Stbd�RPM

Speed�Over�

Ground�(kn)

DA's�In�

Use

1 168 196 2.7 2 22 561 584 9.8 2,�4 46 311 310 4.9 3

2 186 199 2.9 2 21 562 545 9.1 2,�4 45 317 312 5.2 3

3 200 201 3.7 2 24 562 558 9.0 2,�4 54 314 311 5.4 3

4 201 195 3.2 2 23 546 540 9.0 2,�4 53 315 316 5.1 3

5 251 243 4.0 2 26 555 544 9.3 2,�4 64 311 316 5.2 2

6 246 240 3.7 2 25 551 538 9.1 2,�4 63 306 314 5.2 2

7 242 239 4.1 2 28 762 752 12.0 1,�2,�4 60 311 311 5.3 2

8 251 242 3.9 2 27 745 744 12.0 1,�2,�4 59 313 320 5.2 2

9 305 298 5.3 2 30 750 749 12.0 1,�2,�4 62 305 293 5.8 2

10 314 309 5.1 2 29 754 745 12.0 1,�2,�4 61 317 305 5.1 2

11 306 303 5.3 2 32 750 750 12.2 1,�2,�4 28 709 721 11.8 1,�2,�4

12 305 308 5.0 2 31 745 745 11.9 1,�2,�4 27 726 721 11.8 1,�2,�4

13 316 303 5.3 2 48 940 920 14.0 1,�2,�3,�4 22 544 549 9.2 2,�4

14 310 298 4.8 2 47 930 923 14.0 1,�2,�3,�4

15 440 431 7.7 2 50 935 926 14.4 1,�2,�3,�4

16 430 440 7.3 2 49 928 931 14.2 1,�2,�3,�4

17 446 437 7.6 2 52 927 922 14.5 1,�2,�3,�4

18 2 51 934 926 14.2 1,�2,�3,�4

19 433 443 7.5 2 34 305 308 5.3 4

20 437 438 7.3 2 33 306 309 4.8 4

36 309 312 5.5 4

35 310 310 4.9 4

38 324 319 4.9 3

37 320 315 5.0 3

40 320 312 5.5 3

39 316 310 4.9 3

56 311 310 5.2 2

55 314 317 5.0 2

58 307 307 5.3 2

57 303 312 4.8 2

Day�1 Day�2 Day�3

Page 31: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

DRDC-RDDC-2019-D140� 23��

��

Figure�14:�Sound�velocity�profile�at�Aschau.�

Upon�completion�of�the�Aschau�ranging,�the�ship�sailed�to�the�Kiel�Naval�Base�to�unload�the�trials�equipment�and�scientific�staff.�The�ship�departed�the�next�day�to�return�home.�

Page 32: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

24� DRDC-RDDC-2019-D140��

��

8� Lessons�Learned�

For�the�Warship�Performance�Section�and,�in�particular,�the�Signature�Management�Group,�this�was�the�largest,�longest,�and�most�logistically�difficult�trial�in�recent�history.�As�such,�several�lessons�were�learned�in�the�planning�and�running�of�the�trial�outside�of�any�scientific�outcomes.�In�no�particular�order,�these�included:�

·� Rental�car�in�Stavanger—Upon�arrival�to�load�and�outfit�the�ship,�DRDC�staff�should�have�rented�a�car.�Although�parking�was�difficult�and�expensive,�it�was�necessary�for�moving�personnel�and�recovering�equipment�and,�in�this�instance,�DRDC�was�forced�to�rely�on�FMF�staff�(who�were�fortuitously�on�site�early)�who�had�rented�a�vehicle.�

·� Communications—DRDC�staff�had�two�Blackberries�and�one�personal�iPhone�which�were�not�enough�when�staff�ended�up�separated�at�various�times.�This�is�partially�due�to�the�fact�that�the�trials�had�a�significant�shore�component�which�meant�that�all�staff�were�not�always�on�the�ship.�It�is�recommended�that,�for�such�trials,�a�majority�of�staff�be�issued�phones�for�the�trial.�

·� Logistics—Again,�due�to�the�significant�shore�aspects�of�the�trial,�this�trial�would�not�have�been�successful�without�the�assistance�of�CSSM�in�dealing�with�local�logistics.�While�the�ship�had�access�to�a�local�agent�in�most�ports,�this�avenue�was�not�available�to�DRDC�staff.�CSSM�arranged�accommodations,�transport,�materiel�assistance,�and�shipping�support.�

·� Shipping—While�in-house�DRDC�support�was�invaluable�with�shipping�our�equipment�to�Europe,�it�can�be�useful�to�have�the�ship�assist�with�more�problematic�items.�In�particular,�GLA�was�able�to�take�our�SECRET�laptop,�ITAR-labelled�ship�motions�package,�SECRET�Halifax�range�data,�and�HAZMAT�laptop�batteries�on�board�for�the�transit�to�and�from�Europe.�Obviously,�sufficient�time�must�be�allowed�for�this.�As�well,�further�coordination�with�Base�Logistics�is�likely�beneficial�as�we�had�some�issues�getting�our�equipment�returned�from�Germany.�

·� Ship�contacts—DRDC�and�CSSM�staff�were�in�constant�contact�with�ship�staff�(including�the�Commanding�Officer�(CO),�Executive�Officer,�Chief�Engineer,�and�Operations�Officer)�in�the�planning�phases�of�the�trial.�However,�there�was�a�several�month�gap�between�the�end�of�planning�and�the�ship’s�departure�and�in�that�time�some�of�these�personnel�(particularly�the�CO)�were�replaced.�To�ease�any�transitions�and�assist�with�an�understanding�of�the�trial,�more�effort�should�have�been�made�to�update�the�new�ship�staff.�

·� Shipboard�life—In�advance,�the�small�size�of�the�ship�was�not�well�appreciated�from�a�working�and�wellness�point�of�view.�DRDC�staff�did�not�have�sufficient�“working�space”�for�either�computer�work�or�general�scientific�work�(writing,�meetings,�etc.)�and�the�assignment�to�various�ship�messes�for�personal�time�was�not�properly�done.�It�is�possible�that�this�is�not�resolvable,�but�it�should�be�considered�when�planning�future�trials�on�small�vessels.�

·� Trials�planning—The�senior�staff�on�GLA�were�strongly�appreciative�of�the�detailed�trials�plan�provided.�They�were�also�appreciative�when�the�plan�was�followed�closely,�but�were�generally�supportive�of�necessary�changes.�Note�that�the�trial�plan�[7]�was�a�major�document,�largely�produced�by�CSSM.�

� �

Page 33: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

DRDC-RDDC-2019-D140� 25��

��

·� Experimental�software—While�DRDC�staff�was�aware�that�our�signature�management�software�is�not�commercial�grade;�several�components�(fortunately�not�crucial)�were�provided�by�foreign�parties�and�were�not�rigorously�tested�for�this�application.�When�difficulties�were�encountered,�we�did�not�have�easy�access�to�either�the�source�code�or�the�parties�themselves�to�assist�with�corrections.�

·� Equipment—Overall,�the�experimental�equipment�functioned�very�well;�however,�some�issues�were�encountered.�The�CTD�kit�had�not�previously�been�used�and�the�initial�tests�were�not�as�successful�as�they�could�have�been.�Also,�our�prototype�software�was�a�“system�of�systems”�working�on�many�(up�to�12)�laptops.�While�acceptable�in�a�laboratory�environment,�this�was�not�an�unacceptable�prototyping�solution�in�a�confined�ship�at�sea�situation.�Appropriate�rack-mounted�servers�would�have�been�a�better�solution.�

·� Staff—The�most�significant�issue�that�arose�was�the�lack�of�sea-going�trials�experience�among�the�DRDC�staff.�Only�two�of�the�staff�had�any�significant�trials�experience�and�much�of�that�was�not�recent.�In�particular,�the�technical�staff�had�very�little�experience�with�large�trials.�A�senior�experienced�technologist�would�have�assisted�greatly,�at�the�very�least�in�assisting�with�more�personal�wellness�issues�(as�the�technical�aspects�were�quite�well�handled�by�the�staff�present).�

Page 34: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

26� DRDC-RDDC-2019-D140��

��

9� Conclusion�

In�support�of�the�Maritime�Evaluation�(Evaluation�of�Naval�Signature�Management�System),�the�third�of�three�signature�ranging�activities�was�performed.�The�aim�of�the�maritime�evaluation�was�to�capture�the�at-sea�requirements�for�the�Naval�Signature�Management�Project�(01EC)�and�this�evaluation�covered�all�the�sea�trials�required�to�evaluate�a�signature�management�system�at�the�pre-prototype�stage.�Overall,�the�Maritime�Evaluation�included�three�trials;�an�initial�complete�ship�ranging,�a�secondary�ranging�including�onboard�measurements,�and�a�final�ranging�with�a�limited�SMS�on�board.�The�initial�ranging,�which�took�place�in�Halifax�in�November�2017,�only�involved�infrared�and�radar�cross-section�measurements.�The�second�ranging�also�took�place�in�Halifax�in�June�2017,�and�involved�underwater�signatures�(acoustic,�magnetic,�and�electric)�and�onboard�measurements.�This�report�describes�the�third�series�of�trials�which�was�also�limited�to�underwater�signatures�and�which�took�place�in�Europe�in�November�2018.�

HMCS�Glace�Bay�was�fitted�with�a�ship�motions�package,�accelerometers,�magnetometers,�and�electric�sensors,�as�well�as�a�data�acquisition�system�and�a�limited�prototype�SMS�in�order�to�correlate�the�onboard�measurements�with�the�off-board�range�measurements.�These�data�were�used�to�assist�with�the�evaluation�of�the�ship-specific�transfer�functions�required�for�an�operational�SMS.��

Overall,�the�ship�performed�one�day�of�acoustic�and�Electromagnetic�(EM)�ranging�in�Stavanger,�then�transited�to�Heggernes,�for�three�days�of�deep-water�acoustic�ranging,�followed�by�a�two-day�transit�to�Kiel�and�into�the�Kiel�Canal�to�enter�the�Earth�Magnetic�Field�Simulator�(EMFS)�in�Shirnau,�for�six�days�of�magnetic�experiments.�Upon�departure�from�the�EMFS,�the�ship�performed�a�limited�set�of�airborne�noise�trials�en�route�back�through�the�Kiel�Canal�to�Eckernförde.�The�ship�then�performed�three�days�of�multi-influence�ranging�at�the�Aschau�range�across�from�Eckernförde.�

The�objectives�of�the�electric�ranging�were�met.�All�proposed�trial�runs�were�conducted�as�planned�including�variations�in�speed,�heading,�and�MGP�setting.�The�newly-constructed�UEP�array�was�successfully�deployed�and�operated�at�Aschau.�As�expected,�the�MGP�operating�mode�has�a�significant�effect�on�the�UEP�signature�level,�particularly�when�the�ship�is�at�low�speeds.�Also,�as�expected,�the�speed�of�the�ship�also�has�a�significant�effect�on�the�UEP�signature�level.�In�general,�data�from�the�Stavanger�and�Aschau�ranges�appear�to�be�quite�good�and�will�prove�useful�in�developing�electric�signature�models.�Further�examination�of�the�DRDC�UEP�array�data�is�required.�

Overall,�the�magnetic�trial�objectives�were�met.�A�significant�dataset�was�collected�at�the�EMFS�and�the�Stavanger�and�Aschau�ranges�which�will�be�useful�for�evaluating�the�degaussing�system�on�GLA�as�well�as�comparing�the�ranges�to�the�Halifax�ranges.�This�trial�provided�the�first�opportunity�to�correctly�calibrate�the�Earth’s�field�magnetic�probe�of�the�automated�DG�system.�The�Permanent�Vertical�Magnetization�(PVM)�and�Induced�Vertical�Magnetization�(IVM)�were�correctly�separated�by�“moving”�the�ship�in�different�Z�zones.�Large�discrepancies�between�local�measurements�and�measurements�inside�the�EFS�were�noted,�possibly�indicating�a�magnetic�relaxation�process,�which�will�be�investigated.�It�was�discovered�that,�regardless�of�ship�location,�there�is�an�asymmetry�between�the�IVM�and�PVM�signatures�which�limits�the�performance�of�the�DG�system.�Finally,�operating�the�automated�DG�system�in�the�Magnetic�Probe�mode�and�GPS�Map�mode,�respectively,�does�not�protect�the�ship�in�a�comparable�way.�The�difference�between�these�modes�increases�with�the�distance�from�Halifax�(initial�setting).�The�latter�two�discoveries�may�be�of�some�operational�concern.�

Page 35: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

DRDC-RDDC-2019-D140� 27��

��

The�dynamic�acoustic�rangings�performed�at�Heggernes�and�Aschau�were�generally�successful.�A�significant�number�of�runs�were�completed�covering�ship�speeds�from�3�to�15�knots.�Initial�examination�of�the�data�shows�that�the�ranges�produce�similar�ship�signatures�and�that�the�predictions�made�using�the�onboard�signature�management�system�were�reasonably�accurate.�Further�evaluation�of�the�data�is�required.�Airborne�noise�data�were�also�gathered�successfully,�but�no�analysis�has�been�performed�to�date.�

Overall,�the�trials�were�extremely�successful�in�gathering�the�required�signature�data�to�support�the�planned�work.�The�trial�involved�DRDC�staff,�HMCS�Glace�Bay�and�crew,�FMF�Cape�Scott�staff,�and�significant�international�effort�including�multiple�ranges�and�range�staff.�The�trial�involved�complicated�logistics�and�planning�and�virtually�all�ranging�objectives�were�met.�Early�data�analysis�showed�a�significant�achievement�in�predicting�acoustic�signatures�using�only�onboard�sensors.�The�DRDC�UEP�array�was�also�successfully�deployed�and�DRDC�and�FMF�now�have�a�much�better�understanding�of�the�performance�of�the�GLA’s�degaussing�system.�

Page 36: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

28� DRDC-RDDC-2019-D140��

��

References��

[1]�Maritime�Evaluation�Assignment�Letter�for�Maritime�Evaluation:�Evaluation�of�Naval�Signature�Management�System�(3333-EVAL�(NELO)),�OTT_PKS-#377786-v16�January�2016.�

[2]� Janssen,�M.,�et�al,�Final�Report�–�Continuous�Operational�SIgnature�Monitoring,�Awareness�and�Recommendation�–�COSIMAR,�Centre�for�Ship�Signature�Management,�CSSM-2017-03,�DRAFT.�

[3]� Forand,�J.L.,�Legault,�S.,�Infrared�and�Radar�Cross�Section�Signature�Measurements�–�Trial�Agenda�for�a�Kingston�Class�Ship,�Defence�Research�and�Development�Canada,�Reference�Document,�DRDC-RDDC-2017-D035,�April,�2017.�

[4]�Gilroy,�L.,�Wang,�Y.,�Birsan,�M.,�HMCS�GLACE�BAY�2018�Underwater�Ranging�Trial,�Defence�Research�and�Development�Canada,�Scientific�Report,�DRDC-RDDC-2019-R023,�March�2019.�

[5]�Temporary�Engineering�Change�Specification,�Project�No:�OTT-1601A,�SNC�Lavelin,�Approved�21�November�2017.�

[6]�Wikipedia,�Exercise�Trident�Juncture,�https://en.wikipedia.org/wiki/Exercise_Trident_Juncture_2018,�last�edited�24�December�2018,�(Access�date:�18�January�2019).�

[7]�Hendriks,�B.R.,�et�al,�Trial�Plan�MCDV�2018�Version�7,�Centre�for�Ship�Signature�Management,�CSSM-2018-01,�July�2018.�

[8]�Birsan,�M.,�Assessment�of�the�Kingston-class�degaussing�system,�Defence�Research�and�Development�Canada,�Scientific�Report,�DRDC-DRDC-2017-R198,�December�2017.�

[9]�Trial�Agenda�for�Static�and�Dynamic�Sound�Ranging:�Applicable�to�Kingston�Class,�National�Defence,�C-03-020-000/NT-009,�November�2009.�

Page 37: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

DRDC-RDDC-2019-D140� 29��

��

List�of�Symbols/Abbreviations/Acronyms/Initialisms��

ARC� Array�Receiver�

CO�

COSIMAR�

Commander�Officer�

Continuous�Operational�Signature�Monitoring,�Awareness�and�Recommendation�

CPF�

CSC�

Canadian�Patrol�Frigate¸�

Canadian�Surface�Combatant�

CSSM� Centre�for�Ship�Signature�Management�

CTD� Conductivity�Temperature�Depth�

DAQ� Data�Acquisition�System�

DMO� Defence�Materiel�Organization�

DNPS�

DRDC�

Director�Naval�Platform�Systems�

Defence�Research�and�Development�Canada�

EC� Engineering�Change�

EM� Electromagnetic�

EMFS�

FMF�

Earth�(Magnetic)�Field�Simulator�

Fleet�Maintenance�Facility�

FORACS� Forces�Sensor�and�Weapons�Accuracy�Check�Site�

GLA� HMCS�Glace�Bay�

IVM�

MCM�

Induced�Vertical�Magnetization�

Mine�Countermeasures�

ME� Maritime�Evaluation�

MEASURE� Magnetic�Electric�Acoustic�Signature�Underwater�Ranging�Experiment�

MGP� Marine�Growth�Protection�

NLD�

PDE�

Netherlands�

Potentiel�électrique�sous-marin�

PSU� Practical�Salinity�Units�

PVM�

RCN�

Permanent�Vertical�Magnetization�

Royal�Canadian�Navy�

RDDC�

SMS�

Recherche�et�développement�pour�la�défense�Canada�

Signature�Management�System�

UEP� Underwater�Electric�Potential�

Page 38: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

30� DRDC-RDDC-2019-D140��

��

VCS� Victoria�Class�Submarines�

XBT� Expendable�Bathythermograph�

Page 39: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

��

DOCUMENT�CONTROL�DATA�*Security�markings�for�the�title,�authors,�abstract�and�keywords�must�be�entered�when�the�document�is�sensitive�

�1.� ORIGINATOR�(Name�and�address�of�the�organization�preparing�the�document.�A�DRDC�Centre�sponsoring�a�contractor's�report,�or�tasking�agency,�is�entered�in�Section�8.)��

DRDC�–�Atlantic�Research�Centre�Defence�Research�and�Development�Canada�9�Grove�Street�P.O.�Box�1012�Dartmouth,�Nova�Scotia�B2Y�3Z7�Canada���

�2a.�� SECURITY�MARKING��(Overall�security�marking�of�the�document�including�special�supplemental�markings�if�applicable.)�

CAN�UNCLASSIFIED��

�2b.�� CONTROLLED�GOODS�

NON-CONTROLLED�GOODS�DMC�A�

�3.� TITLE�(The�document�title�and�sub-title�as�indicated�on�the�title�page.)��

Magnetic� Electric� Acoustic� Signature� Underwater� Ranging� Experiment� (MEASURE)� Trial� Report:�HMCS�Glace�Bay�Signature�Trials��

�4.� AUTHORS�(Last�name,�followed�by�initials�–�ranks,�titles,�etc.,�not�to�be�used)��

Gilroy,�L.;�Kavanaugh,�S.�

�5.� ���

��

� �

�6a.� NO.�OF�PAGES� ��(Total�pages,�including�Annexes,�excluding�DCD,�covering�and�verso�pages.)��

36�

�6b.� NO.�OF�REFS�� �(Total�references�cited.)����

9�

�7.� DOCUMENT�CATEGORY�(e.g.,�Scientific�Report,�Contract�Report,�Scientific�Letter.)��

Reference�Document��

�8.� SPONSORING�CENTRE�(The�name�and�address�of�the�department�project�office�or�laboratory�sponsoring�the�research�and�development.)��

DRDC�–�Atlantic�Research�Centre�Defence�Research�and�Development�Canada�9�Grove�Street�P.O.�Box�1012�Dartmouth,�Nova�Scotia�B2Y�3Z7�Canada���

�9a.� PROJECT�OR�GRANT�NO.�(If�appropriate,�the�applicable�research�and�development�project�or�grant�number�under�which�the�document�was�written.�Please�specify�whether�project�or�grant.)�

� �

� 01ec��-�Naval�Signature�Management�

�9b.� CONTRACT�NO.�(If�appropriate,�the�applicable�number�under��which�the�document�was�written.)��

� �� �

�10a.�DRDC�PUBLICATION�NUMBER�(The�official�document�number�by�which�the�document�is�identified�by�the�originating��activity.�This�number�must�be�unique�to�this�document.)��

DRDC-RDDC-2019-D140�

�10b.��OTHER�DOCUMENT�NO(s).�(Any�other�numbers�which�may�be�assigned�this�document�either�by�the�originator�or�by�the�sponsor.)���

��

�11a.�FUTURE�DISTRIBUTION�WITHIN�CANADA�(Approval�for�further�dissemination�of�the�document.�Security�classification�must�also�be�considered.)�

� �

Public�release�

�11b.�FUTURE�DISTRIBUTION�OUTSIDE�CANADA�(Approval�for�further�dissemination�of�the�document.�Security�classification�must�also�be�considered.)�

� ��

�12.� KEYWORDS,�DESCRIPTORS�or�IDENTIFIERS�(Use�semi-colon�as�a�delimiter.)�

Signature�Management;�Acoustics;�Electromagnetics;�Sea�trial���

13.� ABSTRACT�(When�available�in�the�document,�the�French�version�of�the�abstract�must�be�included�here.)��

December 2019

(Month�and�year�of�publication�of�document.)DATE�OF�PUBLICATION

Page 40: MagneticElectricAcousticSignatureUnderwater ... · DRDC-RDDC-2019-D140 1 1 Introduction InsupportoftheMaritimeEvaluation(EvaluationofNavalSignatureManagementSystem[1]),thethird ...

��

��

In�support�of�the�Maritime�Evaluation�(Evaluation�of�Naval�Signature�Management�System),�the�final� of� three� signature� ranging�activities� was� performed� on� the� Kingston-class� vessel� HMCS�Glace�Bay.�The�first�ranging,�which�took�place�in�Halifax�in�November�2017,�only�involved�infrared�and�radar�cross-section�measurements.�The�second�ranging,�also�Halifax,�involved�underwater�signatures� (acoustic,�magnetic,� and� electric)� and� onboard� measurements,� and� the� third� trial,�described�here,�was�also�limited�to�underwater�signatures�and�took�place�in�Europe�in�November�2018.� These� latter� trials� involved� multi-influence� (acoustic,� magnetic,� and� electric)� ranging� in�Stavanger,�Norway,�acoustic� ranging� in�Heggernes,�Norway,�electromagnetic� investigations�at�the�Earth�Magnetic�Field�Simulator�in�Shirnau,�Germany,�airborne�acoustic�measurements�during�transit,�and�multi-influence�ranging�in�Aschau,�Germany.�During�the�acoustic�rangings,�onboard�signature�predictions�were�made�using�the�transfer� functions�developed�from� the�ranging�data�from�the�second�trial.�The�electric�ranging�also�included�the�use�at�the�Aschau�range�of�DRDC’s�underwater�electric�potential�(UEP)�array�which�was�also�deployed�during�the�Halifax�trials.�Data�from�these�trials�will�be�used�to�evaluate�onboard�acoustic�transfer�functions,�range�comparisons�for�both� acoustic�and�electric�signatures,�and� the�optimization�of� the�Glace�Bay’s� degaussing�system.�Overall,� the� trials�were�successful� in�performing� the�majority� of� the� planned� runs�and�gathering�the�required�signature�data�to�support�the�planned�work.�

À� l'appui� de� l'évaluation�maritime� (évaluation�du� système�de�gestion�de� signature�navale),� la�dernière� de� trois� activités� de� télémétrie� de� signature� a� été� réalisée� sur� le� navire� de� classe�Kingston,�le�NCSM�Glace�Bay.�Le�premier�télémètre,�qui�a�eu�lieu�à�Halifax�en�novembre�2017,�ne�portait�que�sur�des�mesures�de�sections�efficaces�dans� l'infrarouge�et�le�radar.�Le�second,�Halifax� également,� impliquait� des� signatures� sous-marines� (acoustiques,� magnétiques� et�électriques)� et� des� mesures� à� bord.� Le� troisième� essai,� décrit� ici,� se� limitait� également� aux�signatures�sous-marines� et� avait� eu� lieu� en� Europe� en�novembre� 2018.�Ces� derniers� essais�comprenaient� plusieurs� -influence� (acoustique,� magnétique� et� électrique)� à� Stavanger,� en�Norvège,� acoustique�à�Heggernes,� en�Norvège,� études� électromagnétiques�au� simulateur� de�champ� magnétique� terrestre� à� Shirnau,� en� Allemagne,� mesures� acoustiques� aéroportées�pendant�le�transit�et�multi-influences�à�Aschau,�Allemagne.�Au�cours�des�parcours�acoustiques,�les�prédictions�de�signature�embarquées�ont�été�effectuées�à� l'aide�des� fonctions�de�transfert�développées� à� partir� des� données� de� télémétrie� du� deuxième� essai.� La� télémétrie� électrique�incluait�également�l’utilisation�à�la�plage�d’Aschau�du�réseau�de�capteurs�de�potentiel�électrique�sous-marin�(PDE)�de�RDDC,�qui�avait�également�été�déployé�au�cours�des�essais�à�Halifax.�Les�données�de�ces�essais�serviront�à�évaluer�les�fonctions�de�transfert�acoustique�embarquées,�à�comparer�les�plages�pour�les�signatures�acoustiques�et�électriques�et�à�optimiser�le�système�de�démagnétisation�de�Glace�Bay.�Dans�l’ensemble,�les�essais�ont�réussi�à�effectuer�la�plupart�des�analyses�prévues�et�à�rassembler�les�données�de�signature�requises�pour�appuyer�les�travaux�prévus.�

� ��